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Abstract: Grewia tomentosa Juss. is a deciduous shrub that mainly grows in Asia. Despite studies of
other Grewia species for treatment of various diseases, Grewia tomentosa Juss. has not been studied
as a medicinal herb. This study evaluates the anti-allergic and anti-topic dermatitis activity of
Grewia tomentosa Juss. ethanol extract (Gt-EE). The results show that Gt-EE suppressed IgE–antigen-
induced β-hexosaminidase release. The mRNA expression of IL-1β, IL-4, IL-5, IL-6, IL-13, TNF-α,
MCP-1, and TSLP, which are involved in allergic responses, was inhibited by Gt-EE in IgE-stimulated
RBL-2H3 cells. In addition, the phosphorylation of Syk, PLCγ1, PKCδ, PI3K, AKT, NF-κB p65,
NF-κB p50, p38, JNK, and ERK1/2 was decreased by Gt-EE in these cells. Gt-EE also showed anti-
inflammatory effects in in vivo mouse models. In passive cutaneous anaphylaxis (PCA), a commonly
used mouse model, Gt-EE decreased the allergic response, infiltration of mast cells, and mRNA level
of IL-4. Furthermore, Gt-EE ameliorated symptoms of DNCB-induced atopic dermatitis (AD). In
DNCB-induced AD, Gt-EE suppressed the increase in mast cells, serum IgE level, expression of
allergic mediators (IL-1β, IL-4, IL-5, IL-6, TNF-α), and phosphorylation of proteins (IκBα, NF-κB p65,
NF-κB p50, p38, JNK, and ERK1/2) implicated in allergic reactions

Keywords: Grewia tomentosa Juss.; allergic inflammation; mast cell; passive cutaneous anaphylaxis;
atopic dermatitis

1. Introduction

The prevalence of allergic diseases is increasing worldwide, and those diseases re-
duce the quality of life of affected patients. Allergic disorders include allergic rhinitis,
asthma, drug hypersensitivity, atopic dermatitis, urticaria, food allergy, eczema, life-
threatening anaphylaxis, conjunctivitis, eosinophilic esophagitis, angioedema, hypersensi-
tivity pneumonitis [1]. Globally, 400 million people have rhinitis, and 300 million people
suffer from asthma [2]. Allergic reactions occur when allergen-responsive type 2 helper T
cells (Th2) induce the activation or recruitment of immunoglobulin E (IgE) by antibody-
producing B cells, eosinophils, and mast cells [3]. Allergens that enter the body through the
respiratory tract, alimentary canal, or skin are perceived by B cells or macrophages. The
allergens are fragmented and displayed on the cell surfaces for interaction with Th2 cells.
Th2 cytokines help recruit B cells, eosinophils, and mast cells, all of which can produce IgE
antibodies. This process plays a pivotal role in the induction of allergic symptomatology [4].
In particular, mast cells serve as key effectors of IgE-mediated allergic and inflammatory
reactions, including allergic rhinitis, atopic dermatitis, and asthma [5]. The high-affinity IgE
receptor FcεRI is expressed on the surfaces of mast cells, and crosslinked IgE–FcεRI com-
plexes are induced when a multivalent antigen binds to IgE bound to FcεRI [6]. Activation
of the IgE/FcεRI pathway gives rise to mast cell degranulation and promotes the secretion
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of mediators that induce allergic reactions [7]. Because the secretion of these mediators also
leads to inflammation, a method to inhibit the activation of mast cells could help to treat
allergic symptoms.

Atopic dermatitis (AD) is a chronically relapsing inflammatory skin disease charac-
terized by severe itching, erythema, unbalanced immune system, and eczematous skin
lesions [8]. Worldwide, the prevalence rate of AD in children is 15% to 20%; in adults, it is
1% to 3% [9]. Because of its symptoms, AD can increase behavioral disorders, anxiety, de-
pression, and attention-deficit/hyperactivity disorder, significantly reducing the patient’s
overall quality of life and even adversely affecting their family. Therefore, appropriate
treatments must be found [10]. The typical feature of AD is the biased differentiation
of naïve T cells into Th2 cells. Among the various mediators generated by a Th2-biased
immune response, interleukin (IL)-4, which induces IgE production, is overexpressed in
AD patients. As mentioned above, upon encountering an antigen, IgE-bound FcεRI on
mast cells becomes aggregated, which leads to cell activation [11]. FcεRI aggregation results
in phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs), which
are located in the cytoplasm of FcεRI. Phosphorylated ITAMs provide a docking site for
the signal-propagating kinase Syk, which is activated and autophosphorylated by binding
to ITAMs [12]. Syk phosphorylation leads to activation of numerous signaling molecules,
including phospholipase Cγ (PLCγ) and phosphatidylinositol 3-kinase (PI3K) [13]. Ac-
tivated PLCγ triggers the phosphorylation of protein kinase Cδ (PKCδ), which has been
implicated in degranulation of RBL-2H3 mast cells [14,15]. In mast cells, phosphorylated
PI3K induces cytokine production by activating AKT and nuclear factor kappa B (NF-κB),
including p65 and p50 [16]. In addition, FcεRI–IgE crosslinking activates mitogen-activated
protein kinases (MAPKs), including p38, extracellular signal-regulated kinase (ERK), and
c-Jun N-terminal protein kinase (JNK), which leads to generation of lipid mediators such
as leukotrienes and prostaglandins [17].

Grewia tomentosa Juss., also known as Grewia hirsuta Sm., is a deciduous shrub belong-
ing to the family Malvaceae [18]. Grewia tomentosa Juss. can grow quickly, survive in wet
soil, and is resistant to shade, so it can grow on a forest floor covered by a canopy [19]. It
is distributed in Malaysia, Thailand, Cambodia, Jawa, Myanmar, Sumatera, and Lesser
Sunda Island. Grewia species have traditionally been used as medicinal herbs for various
diseases. Grewia hirsuta Vahl has been reported to cure ulcers [20], rheumatism, headaches,
sores, cholera, joint pain [21], and diarrhea [21,22]. Grewia asiatica Linn. has been used
to cure sore throats, colds, coughs, asthma, and bronchitis, as well as skin problems such
as eruptions, eczema, and inflammation [23]. Grewia tenax has been reported to treat
intestinal infections, dysentery, hepatic disorders, jaundice, fever, diarrhea, rheumatism,
and distress of the stomach and skin [24]. The pharmaceutical uses of Grewia species
are also supported by recent scientific studies. Grewia hirsuta Vahl has been reported to
possess analgesic, anti-inflammatory, anti-diarrheal, antimicrobial [25], antioxidant and an-
tiproliferative properties [26]. The antioxidant, antimicrobial [27], antimalarial, antiemetic
and antidiabetic [28] activity of Grewia asiatica Linn. has also been revealed. Despite
various pharmacological studies on Grewia species, no studies have been conducted on
Grewia tomentosa Juss.

Therefore, in this work, we evaluated the effect of an ethanol extract of Grewia tomentosa
Juss. (Gt-EE) on IgE/antigen-stimulated mast cells (RBL-2H3) and a passive cutaneous
anaphylaxis (PCA) mouse model. In addition, we investigated the effect of Gt-EE on a
2,4-dinitrochlorobenzene (DNCB)-induced mouse model of AD.

2. Results
2.1. Anti-Allergic Activities of Gt-EE

Because of the RBL-2H3 cell line, an analogue of mast cells is suitable for studying
the mechanisms of mast cell–mediated allergic reactions, and we used it to investigate the
anti-allergy efficacy of Gt-EE [29]. First, the cytotoxicity of Gt-EE to RBL-2H3 cells was
evaluated by a cell viability assay. When RBL-2H3 cells were treated with 100 µg/mL
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Gt-EE for 24 h, the viability was 94.4%, indicating non-cytotoxicity (Figure 1A). RBL-2H3
cells are frequently used in in vitro studies of degranulation [30]. After sensitizing RBL-
2H3 cells with anti-dinitrophenol (DNP) IgE, treating those cells with DNP conjugated
with human serum albumin (HSA) induces degranulation [31]. The degranulation of
RBL-2H3 cells can also be induced by synthetic compounds such as calcium ionophore
(A23187) and compound 48/80, which are used as a simple method for studying the
mechanisms of allergic responses in vitro [32,33]. β-Hexosaminidase is an enzyme released
when RBL-2H3 cells are activated and can be used to quantify the degree of degranulation
of variously stimulated RBL-2H3 cells [34]. We confirmed the anti-allergy effects of Gt-
EE (i.e., confirmed that Gt-EE inhibited the degranulation of RBL-2H3 cells) in terms of
β-hexosaminidase release activity. First, when degranulation of RBL-2H3 cells was induced
by anti-DNP IgE and DNP-HSA, Gt-EE inhibited the allergic reaction in a dose-dependent
manner (Figure 1B). Similarly, when RBL-2H3 cells were treated with A23187 and phorbol
12-myristate 13-acetate (PMA) or compound 48/80, Gt-EE dose-dependently inhibited the
degranulation of RBL-2H3 cells (Figure 1C,D).
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Figure 1. Inhibitory activity of Gt-EE on degranulation of RBL-2H3 cells and the phytochemical
components of Gt-EE. (A) The cytotoxicity of Gt-EE to RBL-2H3 cells was determined using the
MTT assay. RBL-2H3 cells were treated with Gt-EE for 24 h, and then cell viability was deter-
mined. (B–D) The degranulation of stimulated RBL-2H3 cells was investigated by establishing
the amount of β-hexosaminidase released. (B) IgE-sensitized RBL-2H3 cells were treated with
Gt-EE for 30 min and then challenged with DNP-HSA for 24 h. (C) RBL-2H3 cells were stimulated
with PMA/A23187 for 1 h. (D) RBL-2H3 cells were degranulated by compound 48/80 for 1 h.
The amount of β-hexosaminidase secreted was evaluated using a β-hexosaminidase activity assay;
(E) the GC-MS chromatogram of Gt-EE. A phytochemical fingerprinting profile of this extract was
obtained by GC-MS analysis. (A–D) are presented as the mean ± standard deviation. ## p < 0.01,
### p < 0.001 compared with the normal group, and ** p < 0.01, *** p < 0.001 compared with the
control group.

To determine which component contributes to the anti-allergy effect of Gt-EE, the
phytochemical components were analyzed using gas chromatography–mass spectrometry
(GC-MS). A primary compound was n-hexadecanoic acid, also known as palmitic acid
(Figure 1E), which has a 16-carbon backbone and is a commonplace saturated long-chain
fatty acid. Palmitic acid is found in human bodies and can be provided by diet (it is a major
component of palm oil) and endogenous synthesis from other carbohydrates, fatty acids,
and amino acids [35]. Palmitic acid has been reported to have several pharmacological ac-
tivities. For example, it plays an important role in the biological defense against pathogenic
microorganisms by contributing to IgA production in the intestine [36]. It has also been
reported to have anti-allergy activity because it significantly inhibited A23187- or antigen-
induced degranulation in RBL-2H3 cells [37]. The other compounds in Gt-EE, including
lupeol and friedelan-3-one (friedelin), that have been reported to have anti-inflammatory
activity are listed in Table 1 [38,39].

Additionally, we conducted an enzyme activity assay. Lipoxygenases (LOXs) are
dioxygenases that catalyze the oxygenation of polyunsaturated fatty acids such as linoleic
acid and arachidonic acid [40]. LOX enzymes produce leukotrienes from arachidonic
acid, and those leukotrienes are implicated in several inflammatory and allergic disor-
ders, including skin inflammatory disorders, chronic obstructive pulmonary disorder, and
bronchial asthma [41]. Therefore, LOX inhibition has been regarded as a potential way to
treat those diseases. To evaluate the bioactivity of Gt-EE against LOXs, the 15-lipoxygenase
inhibitory assay was carried out. As shown in Table 2, Gt-EE inhibited the activity of
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15-lipoxygenase by 34.6% and 43.6% at concentrations of 50 and 100 µg/mL, respectively.
Because quercetin is a well-known competitive inhibitor of LOX, it was used as a positive
control [42].

Table 1. GC-MS phytochemical analysis of an ethanol extract of Grewia tomentosa Juss.

Peak No. RT * Name of the Compound Corr. Area Peak Area %

1 1.739 Acetic acid 24884923 4.330
2 5.208 dl-Threitol 18836124 3.278
3 8.351 Catechol 9546314 1.661
4 8.632 Benzofuran, 2,3-dihydro- 9566333 1.665
5 10.044 2-Methoxy-4-vinylphenol 8342175 1.452
6 10.530 Phenol, 2,6-dimethoxy- 11035072 1.920
7 13.191 Vanillic acid 7966671 1.386
8 14.262 3,4-Dimethylbenzyl isothiocyanate 21642735 3.766
9 15.222 4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol 21823662 3.798

10 15.618 6-Hydroxy-4,4,7a-trimethyl-5,6,7,7a-
tetrahydrobenzofuran-2(4H)-one 13248125 2.305

11 17.430 n-Hexadecanoic acid 73947344 12.868
12 17.760 Hexadecanoic acid, ethyl ester 33280410 5.791
13 18.909 Phytol 15818890 2.753
14 19.120 9-Octadecenoic acid, (E)- 54693843 9.517
15 19.399 Ethyl Oleate 37006716 6.440
16 19.614 Octadecanoic acid, ethyl ester 5038345 0.877

17 20.149 Cyclopentanecarboxylic acid, 1-(2-butenyl)-2-oxo-, ethyl
ester, (E)- 4901576 0.853

18 20.427 2-Amino-3-cyano-5,6-dimethoxy-1H-indenone 3073809 0.535
19 21.099 9-Octadecenamide, (Z)- 11696305 2.035

20 22.269 Hexadecanoic acid,
2-hydroxy-1-(hydroxymethyl)ethyl ester 3834019 0.667

21 23.493 (E)-3,3’-Dimethoxy-4,4’-dihydroxystilbene 3465908 0.603
22 23.666 1,3,12-Nonadecatriene 5898982 1.026

23 24.665 (1R,2R,4S)-2-(6-Chloropyridin-3-yl)-7-azabicyclo
[2.2.1]heptane 1883262 0.328

24 28.303 Benzo[h]quinoline, 2,4-dimethyl- 5613204 0.977
25 28.669 N-Methyl-1-adamantaneacetamide 8297566 1.444
26 29.385 γ-Sitosterol 49971390 8.695
27 29.957 β-Amyrin 11442470 1.991
28 30.257 Arsenous acid, tris(trimethylsilyl) ester 4933525 0.858
29 30.586 Lupeol 35435894 6.166
30 31.338 1,2,5-Oxadiazol-3-amine, 4-(4-methoxyphenoxy)- 10571767 1.840
31 31.740 Tetrasiloxane, decamethyl- 5391505 0.938
32 32.347 1,2-Bis(trimethylsilyl)benzene 7023304 1.222
33 32.803 Friedelan-3-one 34569990 6.015

* Retention time (min).

Table 2. Inhibition of 15-lipoxygenase activity by Gt-EE.

Sample (µg/mL) % Inhibition

Gt-EE 50 34.6 ± 3.5
Gt-EE 100 43.6 ± 4.0

Quercetin 10 58.3 ± 6.6

2.2. Effects of Gt-EE on the mRNA Expression of Allergic Response–Related Cytokines and the
Activation of the IgE–FcεRI Signaling Pathway

Antigen exposure to IgE-sensitized RBL-2H3 cells leads to production and secretion of
diverse cytokines and chemokines that cause allergic inflammation. To determine whether
Gt-EE downregulates that allergic response, we evaluated the mRNA expression levels
of IL-1β, IL-4, IL-5, IL-6, IL-13, TNF-α, MCP-1, TSLP, and TGF-β1 in IgE-stimulated RBL-
2H3 cells. Anti-DNP IgE–sensitized RBL-2H3 cells were treated with Gt-EE for 30 min,
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stimulated with DNP-HSA for 24 h, and harvested to analyze the mRNA levels of those
cytokines. As shown in Figure 2A,B, the mRNA expression levels of the cytokines were
increased by DNP-HSA stimulation, and all but TGF-β1 were decreased in the group treated
with Gt-EE. Like the other cytokines, the mRNA expression of TGF-β1 was increased by
stimulation with IgE and antigen, and its mRNA level was further increased by Gt-EE
(Figure 2A,B).
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Figure 2. Gt-EE suppressed the mRNA expression of allergic cytokines and activation of the
IgE–FcεRI signaling pathway. (A,B) The mRNA expression levels of IL-1β, IL-4, IL-5, IL-6, IL-13,
TNF-α, MCP-1, TSLP, and TGF-β1 in IgE-stimulated RBL-2H3 cells were investigated using real-time
PCR. IgE-sensitized RBL-2H3 cells were treated with Gt-EE for 30 min and then challenged with
DNP-HAS for 24 h. (C–E) The total or phosphorylated forms of Syk, PLCγ1, PKCδ, PI3K, AKT, NF-κB
p65, NF-κB p50, p38, JNK, and ERK1/2 in IgE-stimulated RBL-2H3 cells were detected using an
immunoblotting analysis. IgE-sensitized RBL-2H3 cells were treated with Gt-EE for 30 min and then
stimulated with DNP-HAS for 24 h. (A,B) The results are expressed as mean ± standard deviation.
## p < 0.01, ### p < 0.001 compared with the normal group, and * p < 0.05, ** p < 0.01, *** p < 0.001
compared with the control group.

Crosslinked IgE–FcεRI complexes activate intracellular signaling pathways that lead
to cytokine secretion and degranulation of mast cells. We performed an immunoblotting
assay to determine the efficacy of Gt-EE on several of the signaling pathways related to
allergic reactions. As indicated in Figure 2C–E, stimulating RBL-2H3 cells with IgE induced
the phosphorylation of Syk, PLCγ1, PKCδ, PI3K, AKT, NF-κB p65, NF-κB p50, p38, JNK,
and ERK1/2. However, Gt-EE treatment markedly inhibited the phosphorylation of the
molecules implicated in those allergic response–related signaling pathways (Figure 2C–E).

2.3. Gt-EE Attenuated IgE–Antigen-Induced Passive Cutaneous Anaphylaxis

To research drugs with potential anti-allergic effects, the in vivo passive cutaneous ana-
phylaxis (PCA) model has been organized using anti-DNP IgE antibodies and antigens [29].
We induced topical and immediate hypersensitivity reactions in the ears of BALB/c mice
and then monitored the quantity of Evans blue dye taken out from those ear tissues. The
scheme of the experiment is summarized in Figure 3A. The ear tissues showing the passive
skin hypersensitivity reaction were stained quickly and intensely by Evans blue dye, but
the ears of the group pretreated with orally administered Gt-EE were less heavily stained
(Figure 3B,C). In addition, oral administration of Gt-EE improved the ear swelling caused
by allergic inflammation (Figure 3B,D). Allergic inflammation increases the number of the
mast cells at affected sites [43]. The toluidine blue O staining results indicate that oral
administration of Gt-EE inhibited the infiltration of mast cells (Figure 3B,E). During allergic
inflammation, cytokine production by the activated mast cells also increases, along with the
increase in mast cell infiltration. As shown in Figure 3F, IL-4, the main cytokine associated
with IgE-mediated allergic reactions, decreased in the Gt-EE group.
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Figure 3. Effects of Gt-EE on PCA. (A) Experimental procedure for induction of PCA. Anti-DNP
IgE and DNP-HSA were administered to the ears of BALB/c mice to induce PCA, and then the ears
were stained with Evans blue dye. Gt-EE was orally administered every day for 5 days before PCA
induction. Dexamethasone was used as the positive control. After euthanasia, the ears were dissected
and soaked in formamide for extravasation of the Evans blue dye or fixed for histopathological
analysis; (B) photographs of the Evans blue–stained ears and ear tissues stained with hematoxylin
and eosin (H&E) or toluidine blue O. Histopathological variations and alterations in the mast
cell counts due to IgE–antigen induction were assessed using H&E and toluidine blue O staining,
respectively. The red arrows indicate toluidine blue O–stained mast cells; (C) absorbance of Evans
blue extravasated from the mouse ears. Absorbance was measured at 620 nm. (D) The change in
ear thickness was investigated using dial thickness gauges (PEACOCK, Japan). (E) The number of
mast cells in the ear tissue was counted under a microscope at 400×magnification. (F) The mRNA
expression of IL-4 in the mouse ears was measured using real-time PCR. After euthanasia, the ears
were dissected and ground, and then total RNA was isolated for real-time PCR. (C–F) The results are
presented as the mean ± standard deviation. ### p < 0.001 compared with the normal group, and
* p < 0.05, ** p < 0.01, *** p < 0.001 compared with the control group.

2.4. Gt-EE Ameliorated DNCB-Induced Atopic Dermatitis

DNCB is a representative irritant used for research because it induces AD-like skin
damage by repeated application [44]. The experimental schedule is summarized in
Figure 4A. Repeated exposure to DNCB made the mouse ear tissues thick, rough, and
red. However, concurrent application of Gt-EE lessened these AD symptoms (Figure 4B).
The dermatitis score was determined using a sensory evaluation that considered itching,
erythema, and dryness. In the DNCB solo group, the dermatitis score was significantly
higher than in the normal group, and it was significantly decreased by application of Gt-EE
(Figure 4C). The ear tissue that was considerably thickened by AD was thinner in the
Gt-EE groups (Figure 4B,D). The water content of the ear tissue was measured to assess
the dryness of the AD-like lesions, but neither that nor body weight differed significantly
between the groups (Figure 4E,F). The number of mast cells in the ear tissue was increased
by AD, and Gt-EE significantly ameliorated that increase (Figure 4B,G). Because elevated
IgE production is one of the key features of Th2 immune responses, the serum IgE level, a
diagnostic marker of AD, was determined [45]. The amount of IgE in the serum of the AD
group was higher than normal, but Gt-EE restricted it to the normal level (Figure 4H).
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Figure 4. Effects of Gt-EE on DNCB-induced AD-like lesions. (A) scheme for induction of AD using
DNCB in the ears of BALB/c mice. The ears were sensitized by 1% DNCB on day 9, and then 0.5%
DNCB was applied to the ears every 3 days after sensitization. Gt-EE and dexamethasone were
applied to the ears every day. Dexamethasone was used as the positive control; (B) photographs of
BALB/c ears on which AD was induced and H&E- or toluidine blue O–stained ear tissues. Histopatho-
logical variations and alterations in mast cell counts due to DNCB treatment were investigated using
H&E and toluidine blue O staining, respectively. The red arrows indicate toluidine blue O–stained
mast cells. (C) The dermatitis score was measured every 3 days using itching, erythema, and dryness
(No change—0, slight change—2, moderate change—4, severe change—8). (D) Alterations in ear
thickness were measured using dial thickness gauges (PEACOCK, Japan). (E) Water content was
evaluated using an SK-IV digital moisture monitor for skin (Pandawill, China) every 3 days. (F) The
body weight of the mice was measured to check the toxicity of Gt-EE. (G) The number of mast cells
in ear tissue was counted under a microscope at 400×magnification. (H) The serum IgE level was
measured using ELISA. After euthanasia, blood was extracted directly from the heart, and the serum
was separated by centrifugation. (C–H) The results are expressed as mean ± standard deviation.
### p < 0.001 compared with the normal group, and ** p < 0.01, *** p < 0.001 compared with the
control group.
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2.5. Inhibitory Effects of Gt-EE on mRNA Expression of Cytokines and Activation of Signaling
Pathways in AD-like Lesions

In the worsening of AD caused by DNCB treatment, the expression of allergic inflammation-
related cytokines increases, and the NF-κB and MAPK signaling pathways are activated [46].
Using ear tissues in which AD had been induced, we evaluated whether Gt-EE inhibits the
expression of those cytokines and activation of those signaling pathways. Although the
mRNA expression of IL-1β, IL-4, IL-5, IL-6, and TNF-α in ear tissues with AD was signifi-
cantly higher than normal, those levels were significantly restricted by Gt-EE treatment
(Figure 5A–E). In addition, Gt-EE application suppressed the phosphorylation of IκBα,
NF-κB p65, NF-κB p50, JNK, and ERK1/2 in DNCB-induced AD-like lesions (Figure 5F,G).
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Figure 5. Gt-EE inhibits the mRNA expression of cytokines and activation of signaling pathways
in DNCB-induced AD. (A–E) The mRNA expression levels of IL-1β, IL-4, IL-5, IL-6, and TNF-α
were evaluated using real-time PCR. After euthanasia, the ears in which AD had been induced were
dissected and ground, and total RNA was extracted for real-time PCR. (F,G) The total or phospho-
rylated forms of IκBα, NF-κB p65, p38, JNK, and ERK1/2 were measured using immunoblotting
analysis. The total proteins were isolated from ears in which AD had been induced. (A–E) The results
are expressed as mean ± standard deviation. Fold increase in 5A, 5D, and 5E was relative value
compared with normal group, while fold increase in 5B and 5C was relative value compared with
DNCB-treated group (Control group). N.D.: Not detected. ## p < 0.01, ### p < 0.001 compared with
the normal group, and * p < 0.05, ** p < 0.01, *** p < 0.001 compared with the control group.

3. Discussion

Type 1 hypersensitivity is caused by secretion of allergy-related mediators, proinflam-
matory cytokines, and chemokines from activated mast cells [47]. After antigen exposure,
mast cells are stimulated by crosslinked IgE–FcεRI complexes. The crosslinking leads to
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release of allergic mediators that trigger allergic responses such as asthma, AD, conjunc-
tivitis and allergic rhinitis [48]. Therefore, mast cells are commonly considered targets to
treat allergic symptoms. RBL-2H3 cells of rat basophilic leukemia are analogues of mast
cells which have highly expressed FcεRI, and like mast cells, they can be stimulated by
IgE–antigen complexes [49].

In this study, we examined the anti-allergy effects of an ethanol extract of Grewia tomentosa
Juss. on IgE-stimulated RBL-2H3 cells, a PCA mouse model, and a DNCB-induced AD
mouse model. Gt-EE suppressed the degranulation of RBL-2H3 cells caused by IgE/antigen,
PMA/A23187, or compound 48/80 (Figure 1). In addition, Gt-EE inhibited the mRNA
expression of cytokines implicated in allergic responses (Figure 2A,B). Activation of mast
cells leads to the synthesis and secretion of various cytokines that continue the inflamma-
tory response. Cytokines such as IL-1β, IL-4 IL-5, IL-6, IL-13, TNF-α, MCP-1, and TSLP
induce allergy-related inflammation, which causes tissue fibrosis, granuloma formation,
and leukocyte infiltration. IL-1β is a typical proinflammatory cytokine that is implicated in
many inflammatory conditions, including allergic and autoinflammatory disorders such as
AD, bronchial asthma, and contact hypersensitivity [50]. IL-4 is crucial in the development
of allergic disorders because of its influence over T helper cell development and production
of IgE [51]. IL-4 also promotes the expression of IL-5, which is a cytokine responsible for
maturation and release of eosinophils [52]. During the acute stage of inflammation, IL-6
plays a central role in exacerbation of Th2-mediated diseases, including asthma and allergic
airway inflammation [53]. The Th2 cytokine IL-13, with IL-4, is a crucial regulator of IgE
generation [54]. TNF-α plays a pivotal role in the pathogenesis of allergies and has been
reported to contribute to both the early and late phases of allergy development [55]. MCP-1
is a chemokine responsible for regulating migration and infiltration of various immune
cells into inflamed sites at the beginning of the immune response, and it also activates the
basophils that are attracted to sites of inflammation. It promotes the production of IL-4
to induce differentiation of Th2 cells and directly induces degranulation of pulmonary
mast cells [56]. TSLP is crucial for differentiating dendritic cell–mediated CD4+ T-cells
into Th2 cells, and it is closely related to allergic diseases such as asthma, AD, allergic
rhinoconjunctivitis, and eosinophilic esophagitis [57]. Although some studies have indi-
cated that TSLP is expressed in mast cells [5,58], it is mainly produced in epithelial cells [59].
TSLP secreted from epithelial cells can activate mast cells to release proinflammatory
cytokines [60]. Therefore, TSLP is closely associated with AD. An immunohistochemical
analysis found TSLP overexpression in keratinocytes from both acute and chronic lesions
in AD patients [61]. Moreover, TSLP overexpression in keratinocytes exacerbated AD by
increasing the infiltration of Th2-related cells and the serum IgE level [62]. In this study,
we demonstrated that Gt-EE decreased the mRNA expression level of TSLP in mast cells
(Figure 2B). However, because TSLP is mainly produced and secreted by epithelial cells,
further studies are needed to determine whether Gt-EE inhibits the production and secre-
tion of TSLP in epithelial cells. Gt-EE upregulated the expression of TGF-β1 mRNA in
allergic conditions (Figure 2B). TGF-β1 can suppress IgE-mediated mast cell activation
by inhibiting the synthesis of IgE and the proliferation of mast cells [63]. TGF-β1 is also
known to inhibit the expression of FcεRI in the IgE-mediated allergic response of mast
cells [64]. Furthermore, in the presence of TGF-β1, proinflammatory mediators such as
histamine and leukotriene secreted by mast cells are reduced [65]. TGF-β1 inhibits IgE
secretion from activated B cells [66], and the role of TGF-β1 produced by Treg cells has been
known to inhibit allergic reactions [67]. We demonstrated that, during an allergic response,
Gt-EE promoted the production of TGF-β1 mRNA, which had already been increased in
mast cells. Therefore, this suggests that Gt-EE could induce the production of cytokines
(eg., TGF-β), leading to suppression of allergic reactions.

Leukotrienes (LTs) are well known mediators involved in the pathogenesis of allergic
diseases such as asthma, allergic rhinitis, AD, and chronic urticaria [68]. Upon stimula-
tion with a specific antigen, mast cells produce several eicosanoids, including LTs. The
production of eicosanoids is triggerd by phosphorylation and activation of cytoplasmic
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phospholipase A2 (cPLA2) via an ERK-dependent pathway [69]. The activated cPLA2s
liberate arachidonic acids from the plasma membrane, and then those free arachidonic
acids are metabolized to LTA4 by 5-LOXs. The subsequent conversion of LTA4 to LTB4,
LTC4, and LTD4 can then occur [70]. In our lipoxygenase enzyme inhibitory assay, Gt-EE
inhibited lipoxygenase (Table 2). Interestingly, Gt-EE also downregulated the phospho-
rylation of PKCδ, which has been reported to be involved in IgE signaling to ERK and
cPLA2 phosphorylation (Figure 2C) [71]. In addition, the level of ERK phosphorylation
was reduced by Gt-EE both in vitro and in vivo (Figures 2E and 5G). These results suggest
that Gt-EE could have synergistic effects that inhibit the synthesis of LTs.

Gt-EE ameliorated the inflammatory reactions of type I allergy in our PCA mouse
model (Figure 3). It also improved DNCB-induced AD (Figures 4 and 5). Because increase
in mast cell infiltration leads to an increase in the secretion of Th2 cytokines by mast
cells [72], inhibition of mast cell infiltration by Gt-EE appears to mitigate the symptoms
of PCA and AD. In particular, considering the importance of IL-4 in allergic reactions,
it is noteworthy that Gt-EE reduced the mRNA expression of IL-4 in both the PCA and
AD models (Figures 3F and 5B). Production of allergic inflammatory cytokines, including
IL-4, occurs through the NF-κB and MAPK signaling pathways [73]. Gt-EE inhibited
the phosphorylation of NF-κB p65, NF-κB p50, p38, JNK, and ERK1/2 in vitro and also
suppressed the phosphorylation of NF-κB p65, NF-κB p50, JNK, and ERK1/2 in vivo
(Figures 2D,E and 5F,G). Collectively, these results suggest that Gt-EE ameliorates allergic
reactions and has potential for use as a new therapeutic herb.

4. Materials and Methods
4.1. Materials

RBL cells (rat basophilic leukemia) were obtained from the American Type Culture
Collection (ATCC) (Rockville, MD, USA). Sodium dodecyl sulfate (SDS), dimethyl sulfox-
ide (DMSO), DNP IgE, DNP-HSA, calcium ionophore A23187, PMA, compound 48/80,
4-nitrophenyl-N-acetyl-β-D-glucosaminide, lipoxygenase from Glycine max (soybean),
linoleic acid, (3-4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), Evans
blue, toluidine blue O, DNCB, and formaldehyde solution were bought from Sigma
(St. Louis, MO, USA). Trypsin (0.25%) was purchased from HyClone Laboratories (Logan,
UT, USA). Additionally, TRI Reagent® solution was acquired from Molecular Research Cen-
ter, Inc. (Cincinnati, OH, USA). 1X phosphate-buffered saline (PBS) was purchased from
Samchun Pure Chemical Co. (Gyeonggi-do, Korea). The sets of primers for quantitative
real-time polymerase chain reaction (PCR) were synthetized by Macrogen (Seoul, Korea).
Horse anti-mouse HRP-conjugated secondary antibody, goat anti-rabbit HRP-conjugated
secondary antibody, and the antibodies against the total and phosphorylated forms of Syk,
PLCγ1, PKCδ, PI3K, AKT, NF-κB p65, p38, JNK, and ERK1/2 were acquired from Cell
Signaling Technology (Beverly, MA, USA), and those against NF-κB p50 and β-actin were
purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA).

4.2. Cell Culture

RBL-2H3 cells were cultured as monolayers in Dulbecco’s Modified Eagle’s Medium
(DMEM) (HyClone Laboratories, Logan, UT, USA) supplemented with 10% heat-inactivated
fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA) and 1% penicillin/streptomycin
(HyClone Laboratories, Logan, UT, USA). The cultured cells were maintained in a 5% CO2
humidified incubator at 37 ◦C.

4.3. Gt-EE Preparation

Gt-EE (Code number: NIBR 928) was obtained from the National Institute of Biological
Resources (NIBR) (Incheon, Korea). The aerial parts of Grewia tomentosa Juss. were collected
in Tịnh Biên, An Giang, Vietnam by D.C. Nguyen and V.M. Trinh on 23 August 2018
(Specimen No. NIBRVP0000722658). The preparation of Gt-EE was performed as previously
reported [74]. Briefly, the dried branches with aerial parts of Grewia tomentosa Juss. were
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soaked in 70% ethanol and Gt-EE was prepared by extraction in an ultrasonic extractor
(Ultrasonic Cleaner UC-10, UC-20, 400 W) for 3 h at 50 ◦C (three times). The extract was
kept in a freezer compartment at −20 ◦C until use. For the in vitro studies, the dried
Gt-EE stock was dissolved in DMSO to make a 100 mg/mL of Gt-EE stock solution. For
each experiment, the Gt-EE stock solution was diluted to the desired final concentration
of 25–100 µg/mL in a suitable culture medium. For the PCA and DNCB-induced AD
mouse model experiments, the dried Gt-EE stock was dissolved in 0.5% carboxymethyl
cellulose (CMC) and PBS, respectively, to doses of 50 and 100 mg/kg and 4 and 8 mg/kg,
respectively. The doses of Gt-EE in this study were decided in accordance with previous
papers covering similar in vitro and in vivo experiments [75,76].

4.4. Cell Viability Assay

RBL-2H3 cells were seeded in 96-well plates at a density of 5 × 104 cells/mL. To inves-
tigate the cytotoxicity of Gt-EE, RBL-2H3 cells were treated with 25, 50, and 100 µg/mL of
Gt-EE for 24 h. Cell viability was evaluated using the MTT assay. After discarding 100 µL of
the cultured media, the cells were incubated with 10 µL/well of MTT solution (10 mg/mL
in PBS, pH 7.4). After 3 h, the RBL-2H3 cells were treated with 100 µL of MTT stopping
solution (10% sodium dodecyl sulfate with 10 mM HCl in distilled water) overnight, and
then the absorbance of the solubilized formazan at 570 nm was detected using an optical
density reader (BioTek Instruments Inc., Winooski, VT, USA).

4.5. β-Hexosaminidase Activity Assay

RBL-2H3 cells were seeded into 96-well plates (5 × 105 cells/mL) in DMEM with
10% FBS and incubated overnight. RBL-2H3 cells were sensitized with anti-DNP IgE
(100 ng/mL) at 37 ◦C overnight. After being washed 3 times with Siraganian buffer, the
cells were treated with Gt-EE (25, 50, and 100 µg/mL) dissolved in Siraganian buffer for
30 min. Then, the cells were stimulated with DNP-HSA (1 µg/mL) for 24 h at 37 ◦C. The
stimulation was stopped on ice for 5 min, and the cell supernatants (50 µL) were moved
to new 96-well plates and incubated with 50 µL of 1 mM 4-nitrophenyl-N-acetyl-β-D-
glucosaminide in 0.1 M sodium citrate (pH 4.5) at 37 ◦C for 1 h. The reaction was termi-
nated with 200 µL/well of carbonate buffer containing 0.1 M Na2CO3 and 0.1 M NaHCO3
(pH 10), and the absorbance was measured at 405 nm using a microplate reader (BioTek In-
struments Inc., Winooski, VT, USA). In addition, RBL-2H3 cells incubated in 96-well plates
(5 × 105 cells/mL) in DMEM with 10% FBS overnight were washed 3 times with Siraganian
buffer and then treated with Gt-EE at concentrations of 25, 50, and 100 µg/mL for 30 min
before stimulation with 1 µM A23187 and 50 nM PMA or 30 µg/mL compound 48/80 for
1 h at 37 ◦C. The stimulation was stopped on ice for 5 min, and then cell supernatants were
collected for the β-hexosaminidase activity assay, as described above.

4.6. Gas Chromatography–Mass Spectrometry

A GC-MS analysis of Gt-EE was performed by the Cooperative Center for Research
Facilities of Sungkyunkwan University (Gyeonggi-do, Korea), as previously described [77].
Briefly, GC was conducted using an Agilent 8890 GC instrument (Santa Clara, CA, USA)
equipped with an Agilent J&W DB-624 Ultra Inert GC column (60 m in length × 250 µm in
diameter × 1.40 µm in thickness), and MS was performed using an Agilent 5977B MSD
instrument (Santa Clara, CA, USA) equipped with a Series II triple-axis detector with a
high energy dynode and long-life electron multiplier. The spectrum of phytochemicals in
the National Institute of Standards and Technology library was used to identify unknown
phytochemicals in Gt-EE.

4.7. Inhibition of 15-Lipoxygenase Activity Assay

The 15-LOX inhibitory activity of Gt-EE was determined according to the method
described by Yasin et al. with a slight modification [78]. In addition, 15-LOXs catalyze
the reaction between linoleic acid and oxygen, producing 13-hydroperoxyoctadecadienoic
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acid that increases absorbance at 234 nm. To prepare the reaction mixture, 200 µL of
sample (Gt-EE or quercetin) and 400 µL of soybean lipoxygenase solution (167 U/mL)
were mixed in 3.2 mL of 100 mM sodium phosphate buffer (pH 7.4), and then the reaction
mixture was incubated at 25 ◦C for 10 min. Quercetin was used as the positive control and
prepared by omitting the sample from the mixture and adding only solvent (DMSO). The
reaction was initiated by the addition of 200 µL of 2.5 mM sodium linoleic acid solution.
Absorbance was measured at 234 nm every 30 s for 3 min using a UV-vis spectrophotometer
(BioTek Instruments Inc., Winooski, VT, USA). The lipoxygenase inhibitory activity was
then calculated using the following equation:

Lipoxygenase inhibitory activity % = [(∆A1/∆t − ∆A2/∆t)]/(∆A1/∆t)] × 100

where A1/∆t is the enzymatic activity in the control, and A2/∆t is the enzymatic activity in
the samples.

4.8. Quantitative Real-Time PCR

To measure the expression of genes related to the allergy response, RBL-2H3 cells were
seeded in a 12-well plate at a density of 5 × 105 cells/mL and treated with Gt-EE (50 and
100 µg/mL) for 24 h. Total RNA was extracted using TRI Reagent® solution in accordance
with the manufacturer’s instructions. Quantification of total RNA was carried out using
a Take3 micro-volume plate (BioTek Instruments Inc., Winooski, VT, USA). We used 1 µg
of total RNA to synthesize cDNA using a cDNA synthesis kit (Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions. mRNA expression
levels were investigated by real-time PCR using 2x qPCRBIO SyGreen Blue Mix Lo-ROX in
accordance with the manufacturer’s instructions (PCR Biosystems Ltd., London, UK) on
a CFX96 real-time PCR detection system (Bio-Rad Laboratories Inc., Hercules, CA, USA).
The amplification conditions for real-time PCR were as follows: 10 s denaturation time at
95 ◦C, 10 s annealing time at 58 ◦C, and 60 s extension time at 72 ◦C for 39 cycles, with
detection of fluorescent product as the last step of each cycle. The primer sequences used
in this experiment are listed in Table 3.

4.9. Preparation of Whole Cell Lysates and Immunoblotting Analysis

Gt-EE-treated RBL-2H3 cells were harvested with cold PBS using a cell scraper and
then lysed for 30 min on ice in cell lysis buffer (20 mM NaF, 25 mM β-glycerol phosphate
pH 7.5, 120 mM NaCl, 2% NP-40, 2 µg/mL aprotinin, 2 µg/mL leupeptin, 50 mM Tris-HCl
pH 7.5, 100 µM Na3VO4, 2 µg/mL pepstatin A, 1 mM benzamide, 1.6 mM pervanadate,
and 100 µM PMSF). The cell lysates were centrifuged at 12,000× g for 15 min at 4 ◦C to settle
the cell debris and then stored at −70 ◦C until use. Protein concentrations were quantified
using the Bradford assay (Bio-Rad, Hercules, CA, USA), and then immunoblotting analysis
was carried out as previously described [79].

4.10. IgE-Mediated PCA Mouse Model

A total of 40 BALB/c mice (female, 8 weeks old) was randomly divided into 5 groups
(PBS only, DNP-HSA only, DNP-HSA and Gt-EE 50 mg/kg, DNP-HSA and Gt-EE 100 mg/kg,
and DNP-HSA and dexamethasone 10 mg/kg). Before induction of PCA, the BALB/c mice
in the Gt-EE groups were treated with an oral administration of Gt-EE (50 or 100 mg/kg)
dissolved in 0.5% CMC once a day for 5 days. To induce a PCA reaction, the ears of the
mice were sensitized by an intradermal injection of anti-DNP IgE (0.5 µg/site). The next
day, the mice were stimulated with an intravenous injection of DNP-HSA (1 mg/mouse)
and 1% (v/v) Evans blue solution. After 30 min, the mice were sacrificed, and the dissected
ears were soaked in 1 mL of formamide and left overnight at 65 ◦C for extravasation of
the Evans blue dye. The absorbance of Evans blue dye was measured at 620 nm with a
spectrophotometer (BioTek Instruments Inc., Winooski, VT, USA).
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Table 3. Sequences of primers used for PCR.

Gene Name Sequence (5′–3′)

IL-1β Forward AGGCTGACAGACCCCAAAAG
(Rat) Reverse CTCCACGGGCAAGACATAGG

IL-4 Forward TGTACCGGGAACGGTATCCA
(Rat) Reverse ACATCTCGGTGCATGGAGTC

IL-5 Forward AGAATCAAACTGTCCGAGGGG
(Rat) Reverse ACTCATCACGCCAAGGAACTC

IL-6 Forward ACAAGTCCGGAGAGGAGACT
(Rat) Reverse TTCTGACAGTGCATCATCGC

IL-13 Forward GCTCTCGCTTGCCTTGGTGG
(Rat) Reverse CATCCGAGGCCTTTTGGTTA

TNF-α Forward AGATGTGGAACTGGCAGAGG
(Rat) Reverse CCCATTTGGGAACTTCTCCT

MCP-1 Forward AGCCAACTCTCACTGAAGCC
(Rat) Reverse AACTGTGAACAACAGGCCCA

TSLP Forward TCAGGCAACAGCATGGTTCT
(Rat) Reverse AAGTTAGTGCCAGCCGTACC

TGF-β1 Forward TGACGTCACTGGAGTTGTCC
(Rat) Reverse GTGAGCACTGAAGCGAAAGC

β-actin Forward TAACCAACTGGGACGATATG
(Rat) Reverse ATACAGGGACAGCACAGCCT

IL-1β Forward GCCCATCCTCTGTGACTCAT
(Mouse) Reverse AGGCCACAGGTATTTTGTCG

IL-4 Forward ACAGGAGAAGGGACGCCAT
(Mouse) Reverse GAAGCCCTACAGACGAGCTCA

IL-5 Forward CTCTGTTGACAAGCAATGAGACG
(Mouse) Reverse TCTTCAGTATGTCTAGCCCCTG

IL-6 Forward AGCCAGAGTCCTTCAGAGAGAT
(Mouse) Reverse AGGAGAGCATTGGAAATTGGGG

TNF-α Forward TGCCTATGTCTCAGCCTCTT
(Mouse) Reverse GAGGCCATTTGGGAACTTCT

GAPDH Forward TGTGAACGGATTTGGCCGTA
(Mouse) Reverse ACTGTGCCGTTGAATTTGCC

4.11. DNCB-Induced AD Mouse Model

A total of 25 BALB/c mice (male, 5 weeks old) was randomly divided into 5 groups
(PBS only, DNCB only, DNCB and Gt-EE 4 mg/kg, DNCB and Gt-EE 8 mg/kg, and DNCB
and dexamethasone 8 mg/kg) [78,79]. DNCB, Gt-EE, and dexamethasone were all dis-
solved in PBS and applied directly to the ears of BALB/c mice. Gt-EE and dexamethasone
(200 µL/ear) were applied once a day for 28 days. On day 9, 1% DNCB (200 µL) was
painted on each ear. Then, treatment with 0.5% DNCB was repeated every 3 days. On
day 28, blood samples were collected after euthanasia. The serum was used in an ELISA
kit (BD Biosciences, Oxford, UK) according to the manufacturer’s instructions to mea-
sure the serum IgE level. After blood collection, the ears were removed and used for
histopathological analysis.

4.12. Histopathological Analysis

The ears of each mouse were fixed with 4% formaldehyde and embedded in paraffin.
Four-µm-thick paraffin sections were prepared and stained with H&E for histological
evaluation or with toluidine blue O for mast cell identification [80]. The number of mast cells
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in the ear tissues was manually counted from 10 random views under a light microscope at
400×magnification and is expressed as the count per high-power field.

4.13. Statistical Analysis

All data acquired from this study are presented as the mean ± standard deviation
of at least three independent experiments. Statistical analyses were carried out using
GraphPad Prism 8 statistics software (GraphPad Software, San Diego, CA, USA). All results
were analyzed using Student’s t-test and one-way ANOVA followed by Dunnett’s test. A
p-value < 0.05 was considered statistically significant.
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cPLA2 Cytoplasmic phospholipase A2
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ERK Extracellular signal-regulated kinase
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JNK c-Jun N-terminal protein kinase
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Syk Spleen associated tyrosine kinase
Th2 Type 2 helper T
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