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Gastritis is a common but a serious disease with a potential risk of developing carcinoma. Helicobacter pylori infection is 
reported as the most common cause of gastritis, but other genetic and genomic factors exist, especially single-nucleotide 
polymorphisms (SNPs). Association studies between SNPs and gastritis disease are important, but results on epistatic 
interactions from multiple SNPs are rarely found in previous genome-wide association (GWA) studies. In this study, we 
performed computational GWA case-control studies for gastritis in Korea Associated Resource (KARE) data. By transforming 
the resulting SNP epistasis network into a gene-gene epistasis network, we also identified potential gene-gene interaction 
factors that affect the susceptibility to gastritis. 
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Introduction

Gastritis is a common disease in Korea. There is a report 
that 9.9% of Koreans have gastritis [1]. Gastritis is 
associated with the potential risk of developing gastric 
cancer or peptic ulcer disease [2]. A common cause of 
gastritis is Helicobacter pylori infection [3]. However, in 
addition to the cause, other genetic and genomic factors have 
been examined for gastritis. Human leukocyte antigen class 
II allele is an important risk factor for chronic atrophic 
gastritis and gastric carcinoma in Koreans [4]. Moreover, 
many studies have reported that single-nucleotide 
polymorphisms (SNPs), including rs1143627 in interleukin- 
1 beta (IL1B), rs4073 in interleukin 8 (IL8), rs4986790 in 
Toll-like receptor 4 (TLR4), and rs16260 in cadherin-1 
(CDH1), are associated with susceptibility to gastric diseases, 
especially gastric cancer [5-8].

The results from SNP studies show the importance of 
research for the association between SNP and disease, based 
on the association and functional relationship between 

gastritis and gastric carcinoma [9]. In other words, a casual 
SNP in one disease may be a genetic factor for another 
disease. However, previous studies only targeted the effect 
from each single variation; results have been rarely obtained 
for high-order genetic interactions in gastritis from genome- 
wide association (GWA) studies to date. 

In this study, we performed a GWA case-control study for 
gastritis using SNP genotype data of the Korea Associated 
Resource (KARE) project [10]. Our study was focused on 
detecting significant epistatic SNP-SNP interactions and the 
resulting gene-gene interactions that are putative causal 
factors in gastritis. A validation and functional analysis of the 
result was performed on the obtained relevance gene-gene 
epistasis network. 

Our network construction method is based on the 
previous relevance network approach [11]. To measure the 
strength of the association between a pair of SNPs and 
gastritis, we used the mutual information that has shown to 
be effective in detecting epistasis in case-control GWA 
studies [12, 13]. An efficient permutation scheme was 
adopted to extract significant interaction pairs, and we also 
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approximated the p-values by exploiting the relationship 
between the mutual information value and the 2 value [14]. 
We further transformed this SNP network into a relevant 
gene-gene epistasis network to validate the biological 
significance of our findings. A functional analysis was 
performed on the gene-gene network, and the topological 
properties of the network were also investigated.

Methods
Pre-processing for KARE data

The KARE genotype data we used in the study initially 
consisted of 352,228 SNPs and 8,842 samples after the 
screening by genotype calling and quality control performed 
[10]. We performed the following additional stages of 
pre-processing. First, we selected case-control samples 
based on the survey of the disease history of the patients, 
which was carried out in the KARE project. In the first stage, 
we collected 1,885 patients who self-reported that they had 
gastritis in the past as cases. We also found 4,117 individuals 
who self-reported that they had no history of having gastritis 
or any other diseases. Among those patients, we randomly 
selected 1,885 individuals as controls to avoid bias in the 
study. 

After the selection of case-control patients, we filtered out 
SNPs that corresponded to the following conditions: minor 
allele frequency ＜0.01 in each group [15], pairwise linkage 
disequilibrium r2 ＞ 0.8 [16], and SNPs in the X chromo-
some. PLINK [17] was used for the calculation of these 
values. The resulting dataset consisted of 185,426 SNPs and 
3,770 samples for the case-control study.

Mutual information

We used mutual information measures to assess the 
strength of the association between a pair of SNPs and the 
disease status of gastritis. Mutual information has been 
widely used to measure dependence or independence 
between two random variables [11, 12, 18, 19]. It is a 
non-parametric measure and is able to detect both linear and 
non-linear associations [14]. This measure is based on 
Shannon’s entropy, H(X) = ∑x∈X − p(x)log(p(x)), which 
shows the uncertainty of the random variable X. Mutual 
information I(X;Y) between random variables X and Y is 
defined by the composition of entropy as follows:

I(X;Y) = H(X) + H(Y) − H(X,Y).

H(X), H(Y) denote entropies for the random variables X, Y, 
and H(X,Y) denotes the joint entropy of the two random 
variables as follows:

H(X,Y)=∑x∈X∑y∈Y − p(x,y)log(p(x,y)).

A high mutual information value indicates a strong 
association between two random variables. The measure can 
also be extended to assess the strength of association 
between a pair of SNPs and a phenotype. The extended 
version of mutual information is as follows: 

I(X1,X2;Y) = H(X1,X2) + H(Y) − H(X1,X2,Y),

where X1 and X2 are random variables for two SNPs, and Y 
denotes random variables for the disease. In our recent work 
[12], we have shown that this measure could identify 
high-order epistatic interactions both with and without 
marginal effects by using simulation models, such as in 
Culverhouse et al.'s [20] and Velez et al.’s studies [21].

As the genotype and disease status are represented as 
discrete values, it is more convenient to consider the random 
variables as a partition of the combination of the genotypes 
and disease status. Then, the entropy of a random variable X 
can be represented in terms of the partition as follows:

H(X) = 




 
 log2 

 ,

where X = {A1, A2, …, An} is a partition on the set of samples 
S = {A1∪A2∪…∪An}, and no intersections exist between 
elements in the partition. The joint entropy of two random 
variables for the partition of S, X = {A1, A2, …, An} and Y = 
{B1, B2, …, Bm} is defined as follows:

H(X,Y)=









 
∩ log2 

∩ .

The entropy also can be extended to the joint entropy of 
multiple random variables (e.g., 3 or 4 SNPs) naturally. 

Extraction of statistically significant epistatic 
interactions

As mentioned above, mutual information is a non-para-
metric measure, and the distribution of values from the 
population is unknown; therefore, it is difficult to show the 
statistical significance of values calculated by this measure. 
Rather than doing the computationally too-expensive 
permutation tests for every pair of SNPs, which causes 
severe multiple testing issues when applied to GWA studies, 
we adopted the alternative permutation scheme proposed 
[11]. First, we replicated 30 permutations for disease status 
in case-control samples. For every possible pair of given 
SNPs, we calculated mutual information of SNPs with the 
permutated disease status labels and obtained the average 
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Fig. 1. Scheme for mapping the SNP-SNP interaction network onto 
the gene-gene epistasis network. SNP, single-nucleotide polymor-
phism.

Fig. 2. Illustration of the network con-
struction method. GO, gene ontol-
ogy; M.I., mutual information; SNP, 
single-nucleotide polymorphism.

value from 30 replications.  denotes the maximum value of 
the averages. If a mutual information value between SNPs 
and the phenotype from real data is higher than , then we 
consider that the pair of SNPs shows a more significant 
association with gastritis than a random association.

To further assess the statistical significance of the 
identified SNP pairs, we approximated the p-values of the 
SNP pairs by exploiting the following relationship between 
2 value and mutual information [14]:

2 
∼ 2Nln2ㆍI(X1,X2;Y),

where N denotes the number of patients in the study.

Relevance network construction and assessment of 
significance

Network analysis is a powerful tool to understand bio-
logical systems. Given the significant epistatic interactions 
between SNP pairs and disease status detected by the 
permutation scheme, we constructed SNP-SNP epistatic 
interaction networks, where SNP represents the node and 
the significant interaction between SNP pairs represents the 
edge. However, it is difficult to assess the biological 
significance of the interaction networks directly because of 
the lack of interaction databases for SNPs. 

To overcome this limitation, we directly mapped these 
networks into a gene-gene relevance network. 

Fig. 1 represents a brief scheme of how to map the 
network. Suppose that some SNPs map directly to genes A 
and B, and there are at least two SNPs that have significant 
interactions for disease status. If one SNP maps to gene A 
and another SNP maps to gene B, then we consider that 
genes A and B have a unidirectional edge. The weight of the 
edge is defined by number of the interacting SNP pairs. For 
example, in Fig. 1, there are four SNP interactions between 
gene A and gene B. Thus, we consider that gene A and gene 
B have an edge, the weight of which is 4 in the gene-gene 
network. Finally, the top 5% edges having the largest edge 
weights are used in the biological validation and topological 
investigation.

We constructed a gene-gene network for each chromo-
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Fig. 3. Number of significant single- 
nucleotide polymorphism pairs for 
each chromosome.

Table 1. Number of significant SNP pairs in each chromosome

Chromosome 
No.

Significant SNP 
pairs

Chromosome 
No.

Significant SNP
pairs

1 2 12 0
2 6 13 0
3 2 14 5
4 0 15 146
5 0 16 0
6 10 17 0
7 1 18 1
8 0 19 0
9 119 20 0

10 0 21 0
11 1 22 0

SNP, single-nucleotide polymorphism.

some showing intra-chromosome interactions. We mea-
sured the network topologies of each network using Cyto-
scape [22] and also ran a gene ontology (GO) enrichment 
analysis for sets of genes in the network. We used DAVID 
[23] to validate the biological significance of the networks.

Fig. 2 illustrates the overall analysis scheme used in this 
study.

Results
Statistically significant epistatic interactions in each 
chromosome

We ran the permutation method for each individual 
chromosome separately. As a result, we obtained SNP pairs 
that were non-randomly associated with the status of 
gastritis for the given patients. 

Fig. 3 shows the number of such SNP pairs for each 
chromosome. We found that there were approximately 2%‒
4% associated pairs among all possible pairs in the chro-
mosomes.

We then calculated the p-value for each SNP pair by using 
the approximation scheme [14] and under Bonferroni 
correction [24]. Table 1 shows the number of statistically 
significant SNP pairs within each chromosome. Significant 
SNP pairs and p-values are listed in Supplementary Table 1. 
In total, 293 SNP pairs showed statistical significance in the 
study. Chromosomes 9 and 15 had many significant pairs, 
but many of those pairs included SNPs with marginal effects 
(rs169730 in chromosome 9, rs493971 in chromosome 15). 
There were few significant SNP pairs within the chro-
mosomes, and these pairs were not found in previous studies 
of gastric disease; therefore, further investigation of the pairs 
is needed to assess their biological significance.

Network topologies

Table 2 summarizes the results of the network topology 
measures (number of nodes and edges, clustering coe-
fficient, and network centralization) for the gene-gene 
interaction network for each chromosome. The table shows 
that all chromosomes showed similar properties: the 
number of edges is 10‒30-fold higher than the number of 
nodes, and the measurements reveal high clustering 
coefficients and network centralization. 

Additionally, every network from each chromosome 
consisted of only one component.

Figs. 4 and 5 present the structure of networks showing 
the highest values for the measures, especially the clustering 
coefficient and network centralization. 

In the real world, many biological networks show high 
average clustering coefficients [25]. The network in chro-
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Table 2. Network topologies for gene-gene interaction networks 
for each chromosome

Chromosome 
No.

No. of 
nodes

No. of 
edges

Clustering 
coefficient

Network 
centralization

 1 570 15,991 0.786 0.841
 2 424 8,554 0.786 0.899
 3 375 5,862 0.718 0.919
 4 279 5,108 0.838 0.802
 5 244 4,315 0.730 0.849
 6 332 5,152 0.748 0.903
 7 277 4,504 0.802 0.797
 8 364 3,186 0.518 0.957
 9 313 3,339 0.740 0.896
10 245 4,091 0.817 0.841
11 297 4,258 0.768 0.858
12 263 5,885 0.764 0.709
13 120 1,203 0.711 0.846
14 181 1,930 0.801 0.841
15 179 1,831 0.765 0.742
16 229 1,995 0.809 0.927
17 257 2,426 0.667 0.922
18 106 1,135 0.848 0.792
19 237 1,752 0.559 0.727
20 248 1,366 0.467 0.953
21  77  404 0.823 0.858
22  85  714 0.735 0.612

Fig. 4. Graphical visualization of the 
gene-gene interaction network in 
chromosome 18, which shows the 
highest clustering coefficient (0.848). 
Red edges represents frequent SNP- 
SNP interactions between two genes 
(＞100). SNP, single-nucleotide poly-
morphism.

mosome 18 showed the highest clustering coefficient, and 
we found some hub genes in the network that were reported 
to be associated with gastric disease. For example, Uchino et 
al. [26] reported frequent loss of heterozygosity at the 
deleted in colorectal carcinoma (DCC) locus in gastric 
cancer.

Higher network centralization values show that hub genes 
highly affect the network [27]. In other words, if the hubs are 
removed, then the network may divide into several 
components. The network in chromosome 20 showed the 
highest value for the centralization measure. In the network 
receptor-type tyrosine-protein phosphatase T (PTPRT), one 
of the hub genes was reported to be one of 15 genes in CpG 
islands showing significant differential methylation in 
gastric carcinoma [28].

From the results, we determined that there were many 
close gene-gene interactions derived from SNP-SNP inter-
actions for gastritis and that if a gene had a high degree in the 
network, then this gene was connected to other genes with 
which it had frequent SNP-SNP interactions. We also found 
this tendency in most chromosomes.

Enrichment analysis

We ran an enrichment analysis of the gene-gene inter-
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Fig. 5. Graphical visualization of 
gene-gene interaction network in 
chromosome 20, which shows the 
highest network centralization (0.953).
Red edges represent frequent SNP- 
SNP interactions between two genes 
(＞100). SNP, single-nucleotide poly-
morphism.

Table 3. Significantly enriched GO terms for each chromosome

Chromosome 
No. TERM Term Count Percentage p-value Fold 

enrichment FDR

 1 GOTERM_CC_FAT GO:0005886; plasma membrane 150  3 1.43E-05 1.35 1.93E-02
 1 GOTERM_CC_FAT GO:0044459; plasma membrane part  98  2 1.46E-05 1.51 1.97E-02
 2 GOTERM_MF_FAT GO:0004908; interleukin-1 receptor activity   5  1 6.10E-06 34.22 8.88E-03
 7 GOTERM_CC_FAT GO:0042995; cell projection  25 10 1.86E-05 2.67 2.47E-02
12 GOTERM_CC_FAT GO:0005626; insoluble fraction  29 12 2.28E-05 2.40 2.98E-02
12 GOTERM_BP_FAT GO:0006811; ion transport  25 11 1.98E-05 2.65 3.23E-02
16 GOTERM_MF_FAT GO:0005509; calcium ion binding  26 13 3.81E-06 2.80 5.14E-03
17 GOTERM_MF_FAT GO:0003774; motor activity  11 5 1.71E-05 5.88 2.38E-02
19 GOTERM_BP_FAT GO:0006350; transcription  75 33 3.36E-17 2.70 5.40E-14
19 GOTERM_BP_FAT GO:0051252; regulation of RNA metabolic 

process
 67 30 1.04E-15 2.79 1.61E-12

19 GOTERM_BP_FAT GO:0045449; regulation of transcription  81 36 3.26E-15 2.35 5.17E-12
19 GOTERM_BP_FAT GO:0006355; regulation of transcription, 

DNA-dependent
 65 29 5.60E-15 2.77 8.93E-12

19 GOTERM_MF_FAT GO:0003677; DNA binding  70 31 9.45E-11 2.14 1.27E-07
19 GOTERM_MF_FAT GO:0008270; zinc ion binding  68 30 5.25E-10 2.10 7.07E-07
19 GOTERM_MF_FAT GO:0046914; transition metal ion binding  75 33 2.22E-09 1.92 2.99E-06
19 GOTERM_MF_FAT GO:0046872; metal ion binding  95 42 1.47E-08 1.64 1.98E-05
19 GOTERM_MF_FAT GO:0043169; cation binding  95 42 2.46E-08 1.62 3.31E-05
19 GOTERM_MF_FAT GO:0043167; ion binding  95 42 5.46E-08 1.60 7.36E-05

GO, gene ontology; FDR, false discovery rate.
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Fig. 6. Graphical visualization of the 
internal structure of the sub-network, 
which consists of genes related to 
transcription (GO:0006350). Red 
edges represent frequent SNP-SNP 
interactions between two genes (＞
100). GO, gene ontology; SNP, 
single-nucleotide polymorphism.

Fig. 7. Graphical visualization of the internal structure of the 
sub-network, which consists of genes related to interleukin-1 
receptor activity (GO:0004908). Red edges represent frequent 
SNP-SNP interactions between two genes (＞10). GO, gene 
ontology; SNP, single-nucleotide polymorphism.

action network for GO using DAVID [23]. 
Table 3 summarizes the significantly enriched terms from 

DAVID. Every term that was annotated in the table was 
significant under a false discovery rate (FDR)-based cor-
rection (p ＜ 0.05 after adjustment).

Chromosome 19 had the most enriched terms among 
chromosomes, and these terms were related to regulation 
(biological process) and binding (molecular function).

Fig. 6 presents the internal structure of the sub-network 
for transcription (GO:0006350) in chromosome 19. This 
network has many zinc finger (ZNF) family genes. Taniuchi 
et al. [29] reported that zinc-binding protein-89 (ZBP-89), 
which is related to the ZNF gene family and is a Krüppel-type 
zinc finger protein, is overexpressed in gastric cancer pa-
tients.

Additionally, interleukin-1 receptor activity (GO:0004908) 
was significantly enriched in chromosome 2.

Fig. 7 presents the internal structure of the gene-gene 
relevance network for the GO terms. As mentioned in the 
introduction, interleukin family genes and intra-SNPs were 
reported [5, 7]; therefore, these genes and SNPs are 
associated with the susceptibility to gastric cancer. Genes 
that were enriched in the GO terms were not connected in 
the relevance gene-gene network; still, these genes had few 

SNP-SNP interactions with every other gene (weight equal 
or less than 11).

We also ran an enrichment analysis for the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway [30], 
but no terms were significant under FDR-based adjustment.
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Discussion

In this study, we applied a simple but powerful method to 
detect epistatic interactions that distinguish gastritis 
patients from controls. We found several putative SNP-SNP 
interactions using the mutual information measure. 
Additionally, relevance gene-gene interaction networks that 
are derived from epistatic interactions show high clustering 
coefficients and centralization.

We found that some sub-networks in the recovered 
network had biological significance for gastric disease from 
the GO enrichment analysis. However, we did not find these 
results to have direct associations with gastritis, because 
gastritis has been less extensively studied than other gastric 
diseases, such as gastric cancer or ulcer. We expect that 
future studies on gastritis will be necessary to validate the 
results from our study.

In this study, only intra-chromosome interactions were 
considered. We expect that if we extend the method to 
inter-chromosomal analyses, this could increase the chances 
of finding novel sub-networks that are enriched in pathways 
for gastritis. However, this extension will impose a 
computational burden and increase the type I error; 
therefore, the development of a more flexible framework is 
needed to resolve this issue. 

Supplementary material

Supplementary data including one table can be found with 
this article online at http://www.genominfo.org/src/sm/ 
gni-12-216-s001.pdf.
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