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Breast cancer is the most commonmalignancy among women worldwide, excluding non-
melanoma skin cancer. It is now well understood that breast cancer is a heterogeneous
entity that exhibits distinctive histological and biological features, treatment responses and
prognostic patterns. Therefore, the identification of novel ideal diagnostic and prognostic
biomarkers is of utmost importance. Long non-coding RNAs (lncRNAs) are commonly
defined as transcripts longer than 200 nucleotides that lack coding potential. Extensive
research has shown that lncRNAs are involved in multiple human cancers, including
breast cancer. LncRNAs with dysregulated expression can act as oncogenes or tumor-
suppressor genes to regulate malignant transformation processes, such as proliferation,
invasion, migration and drug resistance. Intriguingly, the expression profiles of lncRNAs
tend to be highly cell-type-specific, tissue-specific, disease-specific or developmental
stage-specific, which makes them suitable biomarkers for breast cancer diagnosis
and prognosis.
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INTRODUCTION

Breast cancer is a major public health dilemma on a global scale. Inherited and acquired genetic as well as
epigenetic alterations have been extensively demonstrated as the driving events of breast cancer (1).
Breast cancer is a heterogeneous entity, and different subtypes exhibit distinctive histological and
biological features, treatment responses and prognostic patterns (2). Despite substantial advancement in
early detection andmanagement, breast cancer remains the second-leading cause of cancer-related death
among women worldwide (3). Moreover, advanced or metastatic breast cancer is almost incurable by
current systemic treatment options (4). As such, one key challenge in breast cancer therapy is to identify
novel reliable diagnostic and prognostic biomarkers.
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Only approximately 2% of the human genome is composed of
protein-coding transcripts, indicating that the majority of
transcripts are non-coding RNAs (ncRNAs) (5). NcRNAs are
broadly divided into small ncRNAs (20~200 nucleotides) and
long ncRNAs (lncRNAs, >200 nucleotides) (6). LncRNAs were
previously considered “transcriptional noise” due to the lack of a
significant open reading frame (7). However, increasing evidence
indicates that lncRNAs are involved in different biological and
pathological processes, including cell apoptosis, differentiation
and autophagy (8). Over the last decade, high-throughput and
next-generation sequencing technologies have allowed the study
of RNAs in an unbiased manner. These technological advances
contribute to an explosion of genomic information and increase
the ability to identify novel lncRNAs.

More importantly, accumulating evidence suggests that
lncRNAs are involved in various human cancers, including
breast cancer. Approximately 1,900 lncRNAs are dysregulated
in breast cancer (9), and their levels may be associated with
distinct clinical outcomes. Dysregulated lncRNAs can act as
oncogenes or tumor suppressors to control breast cancer
pathophysiology and should be investigated to obtain a better
understanding of their roles in breast cancer biology and
determine their suitability as diagnostic and prognostic
biomarkers. Therefore, this study aims to review the current
knowledge about lncRNAs and evaluate their potential roles as
molecular markers in breast cancer.
BREAST CANCER

Breast cancer is the most common cancer among women
worldwide, excluding non-melanoma skin cancer (10). In 2018,
approximately 2.1 million cases of breast cancer were newly
diagnosed, and approximately 626,679 patients died that same
year (10). The well-established risk factors for breast cancer are
race, family history of cancer, genetic susceptibility, modifiable
exposures, environmental factors and unhealthy lifestyles (11).
The incidence of breast cancer varies worldwide and is higher in
high-income countries than in low-income countries. However,
the death rate in lower-income regions is higher due to the lack
of early diagnosis and limited access to treatment (12).

Breast cancer is a complex, heterogeneous disease, and
different subtypes have distinct clinical presentations and
therapeutic responses. Breast cancer is defined into 3 clinically
relevant subtypes according to estrogen receptor (ER)
expression, progesterone receptor (PR) expression and human
epidermal growth factor 2 (ERBB2; formerly HER2) gene
amplification: ER-positive/PR-positive, HER2/ERBB2-positive,
and triple-negative (lacking expression of all three molecular
markers) (2). Triple-negative breast cancer is an aggressive
subtype and accounts for 15% of breast tumors (13). It has
been well established that triple-negative tumors have a relatively
high mitotic activation index, prominent lymphocytic infiltrate,
high incidence of distant relapse, and poor clinical outcomes
(14). Breast cancer is staged I-IV, and stage IV has distant
metastases at diagnosis. Metastatic breast cancer remains
essentially incurable, and the therapeutic goals are symptom
Frontiers in Oncology | www.frontiersin.org 2
palliation and prolonging life. The median overall survival (OS)
of stage IV breast cancer patients for the triple-negative and
HER2/ERBB2-positive subtypes was approximately 1 year and 5
years, respectively (15). As such, detecting breast cancer at an
early stage is of paramount importance.

DISCOVERY, CLASSIFICATION, AND
FUNCTION OF LNCRNAS

LncRNAs are commonly defined as RNA transcripts larger than
200 nucleotides. Once considered junk DNA, lncRNAs have
recently attracted wide attention as crucial regulators in a diverse
array of biological processes. Over the past decade, technical
advancements in high-throughput sequencing have greatly
streamlined the process of identifying all forms of RNAs. To
date, more than 58,000 lncRNAs have been identified, and
approximately 30,000 lncRNA transcripts have been curated in
GENCODE v29 (16).

Like other RNAs, lncRNAs mainly consist of four core
nucleotides (17). LncRNAs exhibit the same characteristics as
mRNA transcripts, i.e., they are RNA polymerase II–transcribed,
5nscribedrase II–aracteristics as mR (18). Almost all lncRNAs are
localized in the cell nucleus, but some lncRNAs can be exported to
the cytoplasm (19). With respect to their genomic location,
lncRNAs can be classified into intronic, intergenic, sense,
antisense and bidirectional loci (6). Unlike the well-studied
miRNAs, lncRNA homologs exhibit weak or untraceable
primary sequence conservation (20). Importantly, lncRNAs have
evolutionarily conserved promoters, suggesting the importance of
lncRNA regulation. Furthermore, compared to small ncRNAs,
lncRNAs have highly conserved secondary and tertiary structures,
which are considered their major functional units (21).

LncRNAs have been identified as indispensable regulatory
elements in multiple cell processes, such as chromatin
modification and transcriptional and post-transcriptional
regulation (22). There is accumulating evidence that the biological
functions of lncRNAs depend strictly on their subcellular location
(23). Nuclear lncRNAs can function as cis- and trans-acting
elements to modulate chromatin remodeling (24). Some lncRNAs
may recruit DNA or chromatin regulatory complexes to regulate the
epigenetic silencing or activation of target loci by altering histone
modifications or DNA methylation patterns (25) (Figure 1A).
Intriguingly, lncRNAs have dynamic and flexible biophysical
structures, which confer lncRNAs the ability to serve as scaffolds
and allow the assembly of various proteins (26) (Figure 1B).
Besides, nuclear lncRNAs can also modulate messenger RNA
(mRNA) alternative spicing (27) (Figure 1C). In the cytoplasm,
lncRNAs may act as miRNA sponges or competitive endogenous
RNAs (ceRNAs) to prevent miRNA binding with target mRNAs,
hence regulating the expression of downstream target genes at the
post-transcriptional level (28) (Figure 1D). Recent studies have
shown that lncRNAs interact with some proteins to regulate their
stability and posttranslational modifications (29) (Figure 1E).
Furthermore, cytoplasmic lncRNAs transcribed from enhancer
regions can stabilize mRNAs by recruiting specific proteins (30)
(Figure 1F). More interestingly, some lncRNAs even hold the
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potential to encode functional small peptides (31) (Figure 1G).
Collectively, lncRNAs exert regulatory roles by directly or indirectly
interacting with DNA, RNA, or proteins, and the functions of
lncRNAs are still under investigation.

Recent studies have shed light on the regulatory effects of
lncRNAs in human cancers. Importantly, some aberrant
lncRNAs hold the promise to serve as ideal biomarkers in
certain cancers. Here, main lncRNAs with diagnostic and
prognostic values in breast cancer are summarized in Table 1.
ONCOGENIC LNCRNAS

Metastasis-Associated Lung
Adenocarcinoma Transcript 1
MALAT1, located in the nucleus, is approximately 8,000
nucleotides in length. MALAT1 is among the most conserved
and extremely abundant lncRNAs in different tissues, suggesting
that it may have vital biological functions (32, 33). MALAT1 was
initially identified as a tumor promoter in non-small cell lung
cancer (34). To date, MALAT1 overexpression has been shown
in multiple human cancers, such as ovarian, bladder and
colorectal cancers (35–37). It has been demonstrated that
serum MALAT1 levels in breast cancer patients are markedly
higher than those in patients with benign breast disease (38).
Frontiers in Oncology | www.frontiersin.org 3
Huang et al. indicated that the expression of MALAT1 was
elevated in breast cancer patients compared to healthy cases.
Moreover, silencing of MALAT1 significantly hindered
angiogenesis via upregulation of miR-145 expression (39). It
has also been found that MALAT1 promotes epithelial-
mesenchymal transition (EMT) mainly by regulating the miR-
204/ZEB2 axis (40). Another study demonstrated that MALAT1
could enhance the proliferation and invasion of breast cancer
cells by altering the histone 3 lysine 4 (H3K4) epigenotype to
activate the EEF1A1 promoter. Downregulation of MALAT1
expression may significantly reduce the promoter activity of
EEF1A1, suggesting a novel MALAT1-mediated epigenetic
mechanism of EEF1A1 regulation (41). Zhao et al. indicated
that a high concentration of 17b-estradiol inhibited the
proliferation, invasion and metastasis of breast cells via
downregulation of MALAT1 expression (42). In breast cancer,
early postoperative fever indicates unfavorable clinical outcomes.
Li et al. demonstrated that overexpression of MALAT1 in breast
cancer patients with early postoperative fever was significantly
related to inflammatory responses and lung metastasis (43). In
addition, Wang et al. indicated that elevated MALAT1 levels
were inversely correlated with OS in invasive ductal carcinoma
(44). Furthermore, a meta-analysis showed that high expression
of MALAT1 in breast cancer is correlated with unfavorable
disease-free survival (DFS) and recurrence-free survival (RFS)
FIGURE 1 | Molecular mechanisms of lncRNAs. (A) LncRNAs modulate histone modification and chromatin remodeling. (B) LncRNAs serve as scaffolds for various
proteins. (C) Nuclear lncRNAs participate in mRNA processing. (D) LncRNAs act as miRNA sponges or ceRNAs in regulating miRNAs. (E) LncRNAs regulate the
stability and posttranslational modifications of some proteins. (F) lncRNAs stabilize mRNAs. (G) lncRNAs encode functional small peptides.
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(45). In recent years, accumulating evidence has shown that the
aberrant expression of MALAT1, especially in serum/plasma,
may serve as a suitable biomarker in various human cancer
entities (46, 47).

Nuclear Enriched Abundant Transcript 1
NEAT1 has two variants (NEAT1-1 and NEAT1-2), and it is
indispensable for paraspeckle integrity (150). In the last few
years, several studies indicating the involvement of NEAT1 in
breast cancer have been published, and NEAT1 is closely related
to different miRNAs. Jiang et al. indicated that high levels of
NEAT1 in diverse breast cancer cell lines were linked to
aggressive progression and unfavorable prognosis. They also
found that miR-448, an inhibitor of cancer cell growth, was
inhibited by NEAT1 and consequently led to increased
expression of zinc-finger E-box binding protein 1 (ZEB1), an
oncogene (48). Zhang et al. demonstrated that ectopic expression
of NEAT1 was related to tumor volume and lymph node
metastasis, while silencing of NEAT1 expression resulted in
decreased proliferation and migration in breast cancer cell
lines (49). In addition, overexpression of NEAT1 leads to the
downregulated expression of miR-133b, which is a known
Frontiers in Oncology | www.frontiersin.org 4
inhibitor of tumorigenesis, consequently resulting in enhanced
migration and invasion (50). Ke et al. indicated that
downregulation of NEAT1 expression by miR-548 could
abrogate proliferation and induce apoptosis in breast cancer.
They also found that fused in sarcoma (FUS), a nuclear RNA
binding protein, directly interacted with NEAT1, and the role of
NEAT1 in cancer cell survival was mediated by FUS (51).
Enhancer of zest homolog 2 (EZH2), known as a molecular
marker of aggressive malignancies, is a target of miR-101. Qian
et al. showed that NEAT1 promoted the growth of breast cancer
cells via miR-101-dependent EZH2 regulation (52). In addition,
NEAT1 could increase the expression of high mobility group
AT-hook 2 (HMGA2) by sponging miR-211, thereby enhancing
the invasiveness of breast cancer cells (53). High levels of
NEAT1, miR-21, and RRM2 have been observed in different
breast cancer cell lines, and their elevated levels correlate with
poor clinical outcomes, suggesting that the NEAT1/miR-21-
RRM2 signaling axis contributes to breast cancer development
(54). Moreover, NEAT1 acts as a sponge for 146b-5p to promote
the proliferation, migration, and metastasis of breast cancer cells
(55). Zhou et al. showed that NEAT1 could coordinate various
miRNAs in different breast cancer subtypes and thus exert
TABLE 1 | Summary of breast cancer-associated lncRNAs.

LncRNAs Expression
status

Oncogene/
tumor

suppressor

Cell processes Clinical outcomes References

MALAT1 Upregulated Oncogene Proliferation, invasion, migration,
recurrence, drug resistance and
angiogenesis

Unfavorable OS, DFS and RFS (32–47)

NEAT1 Upregulated Oncogene Proliferation, invasion and metastasis Tumor volume, lymph node metastasis and poor prognosis (48–56)
H19 Upregulated Oncogene Proliferation, metastasis, invasion Shorter OS and DFS (57–64)
AFAP1-
AS1

Upregulated Oncogene Proliferation, anti-apoptosis, migration
and invasion

Greater tumor volume, advanced TNM stage, lymph node
metastasis and distant metastasis

(65–72)

HOTAIR Upregulated Oncogene Proliferation, anti-apoptosis, migration
and invasion

Advanced tumor stage, enhanced metastasis and unfavorable
prognosis

(73–79)

ROR Upregulated Oncogene Cell growth, migration, invasiveness
and drug resistance

Poor prognosis (80–85)

ANRIL Upregulated Oncogene Proliferation Increased tumor size, advanced TNM stage and unfavorable
prognosis

(86–91)

BC200 Upregulated Oncogene Proliferation, migration and invasion Poor prognosis (92–95)
SPRY4-
IT1

Upregulated Oncogene Proliferation, invasion and metastasis Increased tumor size, high TNM stage, lymph node metastasis and
unfavorable prognosis

(96–99)

UCA1 Upregulated Oncogene Proliferation, invasion and metastasis Increased lymph node metastasis and shorter OS (100–104)
ATB Upregulated Oncogene Drug resistance, anti-apoptosis,

proliferation, invasion and metastasis
More nodal metastasis, advanced clinical stage and unfavorable
prognosis

(105–109)

PVT1 Upregulated Oncogene Proliferation, invasion and migration More lymph node metastasis, increased distant metastasis,
advanced TNM stage, poor differentiation grade and unfavorable
prognosis

(110–115)

CCAT1 Upregulated Oncogene Radio resistance, proliferation, invasion
and metastasis

Histological grade, TNM staging and lymph metastasis, and poor
prognosis

(116–119)

CCAT2 Upregulated Oncogene Proliferation, invasion and metastasis Greater tumor volume, higher TNM grades, advanced clinical stage
and a poor OS

(120–124)

TINCR Upregulated Oncogene Proliferation, anti-apoptosis, migration
and invasion

unfavorable prognosis (125–128)

MEG3 Downregulated Tumor
suppressor

Proliferation, anti-apoptosis, metastasis
and invasion

Advanced TNM stage, lymph node metastasis and differentiation
grade

(129–137)

XIST Downregulated Tumor
suppressor

Proliferation, migration, invasion and
anti-apoptosis

Larger tumor volume, increased lymphatic metastasis, advanced
tumor stage and unfavorable prognosis

(138–144)

PTENP1 Downregulated Tumor
suppressor

Proliferation, colony formation,
migration, invasion and anti-apoptosis

Advanced TNM stage and worse OS (145–149)
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diverse regulatory functions (56). In conclusion, these data
revealed various mechanisms of NEAT1 in the regulation of
breast cancer and suggested that NEAT1 might function as a
potential biomarker in breast cancer.

H19
H19, an imprinted gene, is located on chromosome 11p15.5
(151). H19 is abundantly expressed during embryogenesis, and
the expression of H19 is repressed upon birth, except for basal
expression in adult tissues, such as lung, skeletal muscle and
mammary gland (152). The first evidence that H19 has a pivotal
role in breast cancer was provided by Adriaenssens et al., who
found that H19 overexpression was significantly associated with
ER/PR status and tumor progression (57). Matouk et al. found
that H19 suppressed the expression of E-cadherin, a
representative inhibitor of EMT, and promoted metastasis via
regulation of Slug in breast cancer (58). H19 functions as a
molecular sponge of miR‐152 to upregulate the expression of the
DNA methyltransferase DNMT1, thus facilitating the
proliferation and invasiveness of breast cancer cells (59). It has
also been demonstrated that H19 can sponge miR-200b/c and
let-7b differently to enhance EMT and mesenchymal-epithelial
transition (MET) (60). Additionally, downregulation of H19
expression could result in S-phase arrest of breast cancer cells,
suggesting its role in regulating cell cycle progression (61). H19
could serve as a precursor for miR-675, which is encoded by the
exon of H19. Vennin et al. found that high expression of H19
upregulated miR-675 expression, negatively regulating E3
ubiquitin ligases (c-Cbl and Cbl-b) to enhance the
aggressiveness of breast cancer cells (62). Zhang et al. showed
that high plasma H19 levels were correlated with ER/PR status
and lymph node metastasis (63). Moreover, elevated levels of
H19 have been significantly associated with unfavorable OS and
DFS, particularly in the triple-negative subtype (64). A meta-
analysis showed that dysregulated H19 expression correlated
with poor differentiation, high tumor stage, early distant
metastasis, and lymph node involvement in multiple cancers
(153). In sum, current evidence establishes H19 as a potential
breast cancer biomarker.

Actin Filament Associated Protein 1
Antisense RNA1
AFAP1-AS1 is 6,810 bp long and is located on human
chromosome 4p16.1 (154). Further studies have shown that
AFAP1-AS1 expression is markedly upregulated in breast
cancer tissues and cell lines and predicts poor clinical
outcomes (65). In addition, AFAP1-AS1 overexpression in
cancers correlates with greater tumor volume, advanced
tumor-node-metastasis (TNM) staging, lymph node metastasis
and distant metastasis (65). Intriguingly, elevated levels of
AFAP1-AS1 are more common in triple-negative breast cancer
(66). Previous experiments suggested that AFAP1-AS1 could
promote tumorigenesis by interfering with AFAP1 expression
(67). However, Dianatpour et al. demonstrated that high levels of
AFAP1-AS1 had no regulatory effect on AFAP1 expression in
breast cancer patients (68). Consistent with this study, Ma et al.
Frontiers in Oncology | www.frontiersin.org 5
indicated that silencing of AFAP1-AS1 exerted no effects on
AFAP1 expression or actin filament integrity (69). Such
discrepancies among different cancers need to be further
elucidated. Ki-67, a nuclear antigen, is not expressed in
quiescent cells (70). Downregulation of AFAP1-AS1 expression
was detected in all of the Ki-67-negative samples, suggesting that
AFAP1-AS1 might be implicated in cell proliferation (68).
Moreover, AFAP1-AS1 regulates the wnt/b-catenin pathway,
facilitating the expression of c-Myc and EMT-associated
transcription factors to promote tumorigenesis and induce
EMT (66). Furthermore, AFAP1-AS1 directly binds to miR-
497-5p to upregulate the expression of Septin 2, a well-known
oncogene. Depletion of AFAP1-AS1 inhibits proliferation and
migration and induces apoptosis in breast cancer (71). In triple-
negative breast cancer, AFAP1-AS1 sponges miR-154 to
coordinate the expression of MutT homolog-1, which in turn
induces cellular proliferation and invasion (72). Hence, the
dysregulated expression of AFAP1-AS1 and its molecular
mechanisms identify it as a putative biomarker and actionable
target in breast cancer.

HOX Transcript Antisense RNA
HOTAIR is a 2,158-bp lncRNA located on human chromosome
12q13.13 between the HOXC11 and HOXC12 genes (155).
Ectopic HOTAIR expression has been implicated in a variety
of cancers, such as pancreatic, colorectal and non-small-cell lung
cancers (156–158). HOTAIR expression seems to be elevated in
cancer tissues compared to paired non-cancerous tissues, and
high expression of HOTAIR has been associated with an
enhanced proliferation rate, advanced tumor stage, elevated
risk of metastasis, and unfavorable prognosis (73, 74). Gupta
et al. indicated that HOTAIR expression was upregulated in
primary breast tumors and metastases and that dysregulation of
HOTAIR in primary tumors correlated with metastasis and poor
prognosis (75). On the other hand, treatment with transforming
growth factor-b1 (TGF-b1) upregulates the expression of
HOTAIR and contributes to EMT. TGF-b1-induced EMT is
reversed by HOTAIR knockdown, suggesting that the effect of
TGF-b1 on EMT is, at least partly, mediated through HOTAIR
(76). Mechanistically, depletion of HOTAIR inhibits the growth,
invasion and migration of breast cancer cells through
downregulation of p53 expression (77). In addition, HOTAIR
sequesters miR-206 to enhance the expression of Bcl-w, an anti-
apoptotic protein, thereby promoting the proliferation of breast
cancer cells (78). Moreover, HOTAIR could recruit polycomb
repressive complex 2 (PRC2), known as a transcriptional
corepressor, to facilitate epigenetic gene silencing (75).
However, another study demonstrated that the oncogenic role
of HOTAIR in breast cancer cells may be independent of PRC2.
Instead, the recruitment of PRC2 seemed to be a consequence of
gene silencing (79). These contradictory findings on HOTAIR
have caused confusion about its role in breast cancer. Hence,
further studies are needed to elucidate the interaction between
HOTAIR and PRC2. Overall, the involvement of HOTAIR in
these signaling pathways contributes to the progression of breast
cancer, and HOTAIR might be utilized as a new predictive and
prognostic biomarker in breast cancer.
August 2021 | Volume 11 | Article 710538
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Regulator of Reprogramming
ROR is a 2.6-kb intergenic transcript located on chromosome
18q21.31 (159). ROR was initially discovered as a promoter of
the reprogramming process, and it was shown to contribute to
the maintenance of pluripotent and embryonic stem cells via
inhibition of cellular stress signaling pathways (159). Elevated
ROR expression has been detected across cancer cell lines (160).
Recent studies have shown that ROR promotes EMT in various
cancers (161, 162). Accordingly, ROR overexpression induces
EMT and promotes cell growth, migration and invasiveness in
breast cancer (80–82). Functionally, ROR regulates the TGF-b
pathway to promote breast cancer progression, whereas
suppression of ROR inhibits tumor growth (80). In addition,
ROR acts as a ceRNA for miR-205 to upregulate the expression
of a miR-205 target gene, the EMT inducer ZEB2 (81). Zhou et al.
showed that ROR sponged miR-194-3p and upregulated the
expression of a miR-194-3p target, the methyl-CpG-binding
protein 2 (MECP2) gene, to decrease the sensitivity of breast
cancer cells to rapamycin (82). Moreover, ROR activated the
MAPK/ERK pathway and upregulated the expression of dual
specificity phosphatase 7 (DUSP7), an ERK-specific
phosphatase, thereby facilitating estrogen-independent
proliferation of breast cancer cells (83). Furthermore, silencing
ROR reversed gemcitabine-induced apoptosis and autophagy in
MDA-MB-231 cell lines. Mechanistically, ROR decreased
acetylated histone H3 at the miR-34a promoter and resulted in
increased expression of autophagy-related genes and decreased
expression of p62 (84). ROR polymorphisms could influence
cancer susceptibility. For instance, Luo et al. indicated that the
TT genotype of ROR rs4801078 correlated with elevated ROR
mRNA levels and an increased risk of breast cancer (85). In
summary, these studies identified ROR as an oncogene in human
cancers and established it as a potential cancer biomarker.
Antisense Non-Coding RNA in
the INK4 Locus
ANRIL is a 3.8-kb-long transcript consisting of 19 exons (163). It
is located on the human chromosome 9p21 locus, which contains
three genes: CDKN2A (encoding p14ARF and p16INK4a) and
CDKN2B (encoding p15INK4b) (164). ANRIL was initially
discovered in the hereditary cutaneous melanoma-neural
system tumor syndrome family with a large germline deletion
of the entire CDKN2A and CDKN2B gene cluster (163). ANRIL
expression has been reported to be upregulated in many
malignancies, such as colorectal (165), gastric (166), and brain
cancers (167). Some studies have shown that the ectopic
expression of ANRIL is associated with increased tumor size,
advanced TNM stage, and poor clinical outcomes (168). Elevated
ANRIL expression has been found in breast cancer, particularly
in triple-negative breast cancer (86, 87). ANRIL was also
included in a three-ncRNA signature, which was proposed to
distinguish triple-negative breast cancer from other subtypes
(87). ANRIL promotes tumorigenesis in triple-negative breast
cancer by directly binding to miR-199a (88). In breast cancer,
ANRIL was found to be predominantly located in the nucleus,
and nuclear ANRIL positively correlated with periostin
Frontiers in Oncology | www.frontiersin.org 6
expression, suggesting that the subcellular localization of
ANRIL impacts cancer progression (89). Moreover, ANRIL
coordinates the expression of adjacent tumor-associated genes
to promote carcinogenesis. ANRIL could bind to and recruit PRC2
to attenuate the expression of p15INK4b (169). Furthermore, 9p21
polymorphisms have been implicated in cancer susceptibility.
In breast cancer patients, the rs11515 CG genotype was more
common and correlated with increased ANRIL expression and
decreased p16INK4a expression (90). Another study showed that
ANRIL was linked to breast cancer susceptibility at the
haplotype level and that haplotype analysis was more efficient
than single nucleotide polymorphism (SNP) analyses (91).
Hence, targeting ANRIL could provide novel insight into
breast cancer treatment.

Brain Cytoplasmic 200
BC200 is a 200-nucleotide-long transcript that is also known as
brain cytoplasmic RNA 1 (BCYRN1) (170). BC200 is expressed
exclusively to the nervous system, where it acts as a translational
modulator (171). In 1997, abnormal expression of BC200 was
found in diverse human cancers, such as breast, cervix, lung and
ovary cancers (172). BC200 is overexpressed in proliferating
cultured cells regardless of their origin. Knockdown of BC200
leads to decreased cell viability through regulation of growth
arrest and induction of apoptosis (173). In non-small-cell lung
cancer , BC200 increased the express ion of matr ix
metalloproteases (MMPs), MMP-9 and MMP-13, resulting in
enhanced invasion and migration (174). In addition, BC200
increased the expression of MMP-9 in colon cancer (175). In
cervical cancer, BC200 competitively binds with miRNA-138,
which leads to the enhancement of cell proliferation and
metastasis (176). Moreover, elevated expression of BC200 has
also been detected in luminal and triple-negative breast cancer
cell lines. High BC200 levels could lead to increased cell viability,
growth, migration, and invasion in vitro as well as to increased
tumor size in vivo (177). Intriguingly, the expression of BC200 in
ER-positive tumors was higher than that in ER-negative tumors.
Mechanistically, BC200 binds to B-cell leukemia/lymphoma-x
(Bcl-x) pre-mRNA to coordinate its alternative splicing, which
results in suppressed expression of Bcl-xS and overexpression of
Bcl-xL (92). Furthermore, BC200 RNA was reported to be
significantly expressed in invasive breast cancer tissues but was
not detectable in benign tumor tissues (93). Lacoangeli et al. also
showed that plasma BC200 RNA levels were markedly elevated
in invasive breast cancer patients compared to healthy subjects
(94, 174), indicating that BC200 is a noninvasive molecular
marker for invasive breast cancer detection.

SPRY4 Intronic Transcript 1
SPRY4-IT1 is a 708-bp transcript located on chromosome 5 (95).
It has specific secondary structures, which are possibly related to
its functional properties (178). SPRY4-IT1 was initially identified
as an oncogene in melanoma (178). To date, dysregulation of
SPRY4-IT1 has been detected in multiple cancers, such as
colorectal (179), non-small-cell lung (180), and breast cancers
(96). Some studies have shown that upregulated SPRY4-IT1
expression decreased apoptosis and increased proliferation and
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migration (97). Expression profile analysis of breast cancer
samples revealed that the expression of SPRY4-IT1 was
upregulated, and SPRY4-IT1 had a good specificity value (96).
Interestingly, the expression level of SPRY4-IT1 in ER‐negative
tumors is higher than that in ER‐positive tumors, suggesting that
estradiol expression may inversely correlate with SPRY4-IT1
expression (98). Functionally, deletion of SPRY4-IT1 induced
G0/G1 cell cycle arrest and apoptosis of breast cancer cells by
downregulating the expression of the oncogene zinc finger 703
(ZNF703) (98). Moreover, an N-terminal polypeptide derived
from vMIP-II (NT21MP) downregulated SPRY4-IT1 expression,
and the oncogenic role of SPRY4-IT1 was compromised by
depletion of SKA2, suggesting that the antitumor activity of
NT21MP was, at least partly, mediated through the SPRY4-IT1/
SKA2 signaling pathway (99). Xiang et al. indicated that high
SPRY4-IT1 levels correlated with increased tumor size, high
TNM stage, lymph node metastasis and unfavorable clinical
outcomes (181). The aforementioned findings indicate that
SPRY4-IT1 may serve as a potential biomarker for the
diagnosis and prognosis of breast cancer.

Urothelial Carcinoma Associated 1
UCA1 is a 1,442-bp transcript located on chromosome 19p13.12
(182, 183). UCA1 was first identified in bladder cancer and is
considered a novel oncogenic lncRNA (184). UCA1 is ubiquitously
expressed in embryonic tissues but not in normal adult tissues
except for the heart and spleen (185). UCA1 expression is
significantly upregulated in many types of cancers, and high levels
of UCA1 are associated with enhanced cell proliferation, invasion
and metastasis (186). For instance, UCA1 was shown to promote
both the proliferation and migration of lung cancer cells by
targeting the miR-193a/HMGB1 axis (187). In addition, Luo et al.
confirmed that UCA1 enhanced invasion and EMT by suppressing
the expression of miR-143 in bladder cancer (188). Li et al.
examined the strong association between UCA1 and protein
tyrosine phosphatase 1B (PTP1B). Their results showed that the
regulation of PTP1B by UCA1 was involved in the proliferation of
breast cancer cells (100). Moreover, high expression of UCA1
activated the wnt/b‐catenin signaling pathway, enhanced the
nuclear translocation of b‐catenin and promoted invasion in
breast cancer. In addition, knockdown of UCA1 inhibited the
EMT process by downregulating the expression of b‐catenin and
its downstream targetsMMP‐7 and cyclinD1 (101). It has also been
shown that the lncRNA AC026904 and UCA1 cooperatively
increase Slug expression at both the transcriptional and post-
transcriptional levels, thereby inducing EMT and metastasis in
breast cancer (102). Furthermore, it has been demonstrated that
higher levels of UCA1 are associated with shorter OS and increased
lymph node metastasis in multiple human cancers (103, 104).

Activated by Transforming Growth
Factor b
ATB is a 2,446-bp non-polyadenylated lncRNA located on human
chromosome 14 (189). Numerous studies have evaluated the
function of ATB in tumorigenesis. ATB was initially discovered
as an oncogene in hepatocellular carcinoma, and high levels ofATB
were associatedwith poor clinical outcomes (189). As amediator of
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TGF‐b, ATB can regulate different transcription factors to induce
the invasion-metastasis cascade. ATB was reported to be highly
expressed in breast cancer tissues compared with non-cancerous
tissues and the investigated cell lines, and this increase inATB levels
was associated with more nodal metastasis, advanced clinical stage
andunfavorableprognosis (105, 106). Inaddition, the serum level of
ATB was significantly elevated in breast cancer patients and could
serve as a novel diagnostic biomarker for stage I-II breast cancer
patients (107). Functionally, ATB increased the expression of Twist
by sponging the miR‐200 family, consequently inducing EMT
(105). Furthermore, downregulation of ATB expression could
promote E-cadherin expression and suppress EMT by targeting
miR-141-3p (106). Moreover, highly expressed ATB could act as a
ceRNA for miR-200c and upregulate the expression of the miR-
200c target genes ZEB1 and ZNF-217 to promote invasiveness and
trastuzumab resistance in HER2-positive breast cancer (108).
Intriguingly, the oncogenic role of ATB has been disputed by
conflicting studies. For instance, ATB acts as a tumor suppressor
in pancreatic cancer (190). Similarly, Nikpayam et al. showed that
ATB expression was significantly downregulated in most breast
cancer tissues comparedwith adjacent non-cancerous tissues (109).
Both upregulation and downregulation of ATB expression have
been indicated to contribute to tumorigenesis, suggesting that ATB
might play distinct roles in different cancers or evendifferent cancer
subtypes. Further mechanistic studies should be focused on
elucidating the role of ATB in cancer pathology.

Plasmacytoma Variant Translocation 1
PVT1, an intergenic lncRNA, is located on chromosome 8q24.21
adjacent to c-Myc (191). PVT1 is highly expressed in cancer
tissues compared with non-cancerous tissues and in cancer cell
lines (192, 193). Co-amplification of adjacent PVT1 and Myc has
been found in many human cancers. PVT1 increases Myc
protein levels in 8q24-gain cancers, while either Myc or PVT1
fails to measurably promote cancer (194). Moreover, depletion of
PVT1 resulted in decreased c-Myc expression and increased
apoptosis of cancer cells (195). PVT1 could also enhance the
stability of Kruppel-like factor 5 (KLF5) and increase the
expression of b-catenin, an important downstream effector of
KLF5, to promote tumorigenesis in triple-negative breast cancer
(110). Several studies have shown the connection between PVT1
and different miRNAs in breast cancer. PVT1 functions as a
sponge to regulate miR-543 (111), which is a known tumor
suppressor miRNA in breast cancer (112). The tumorigenic
potency of PVT1 could be abrogated by miR-543
overexpression, and loss of PVT1 is associated with inhibition
of growth, increased apoptosis, and decreased tumor size (111).
A cluster of oncogenes (miR-1204, 1205, 1206, 1207-3p, 1207-5p,
1208) at the 8q24.21 locus is regulated by PVT1 (193). For
instance, PVT1 upregulates the expression of miR-1207-5p to
repress the expression of signal transducer and activator of
transcription 6 (STAT6) and cyclin inhibitors, thus enhancing
cell proliferation and colony formation in breast cancer (113).
Additionally, miR-1204 overexpression contributes to the
proliferation, invasion and EMT of breast cancer cells both in
vitro and in vivo (114). Furthermore, a meta-analysis carried out
by Lu et al. indicated that high PVT1 expression correlated with
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more lymph node metastasis, increased distant metastasis,
advanced TNM stage, poor differentiation grade and
unfavorable prognosis but not with tumor volume (115). Thus,
PVT1 could act as a useful molecular marker for breast cancer.

Colon Cancer Associated Transcript 1
CCAT1, initially identified in colon cancer, is mapped to the
8q.24.2 locus and is ~2,628 nucleotides long (196). The 8q.24.2
locus contains only a few protein-coding genes and is often
referred to as a ‘gene desert’ (197). CCAT1 expression is
consistently upregulated in multiple types of cancers and
correlates with poor prognosis (198). Han et al. found that
CCAT1 was overexpressed in triple-negative breast cancer
tissues compared to adjacent normal tissues and in a panel of
triple-negative breast cancer cell lines in comparison to normal
breast epithelial cell lines (116). CCAT1 has been shown to act as
a decoy to inhibit the expression of several miRNAs. Loss of
CCAT1 resulted in the upregulation of miR-218 expression and
the simultaneous inhibition of a miR-218 target gene, zinc finger
protein ZFX, resulting in inhibited cell proliferation, migration,
and invasion. Moreover, silencing of miR-218, in turn, can block
the tumor suppressive effect of CCAT1 knockdown, suggesting
that CCAT1 may promote breast carcinogenesis through
regulation of the miR-218/ZFX axis (116). Another study
showed that the expression of CCAT1 was higher in
radioresistant breast cancer tissues than in radiosensitive breast
cancer tissues. Depletion of CCAT1 dramatically decreased the
colony formation rate and promoted apoptosis by directly
interacting with miR-148b. The authors concluded that loss of
CCAT1 might enhance the radiosensitivity of breast cancer cells
by downregulating miR-148b expression (117). CCAT1 could
function as a regulator of wnt/b-catenin signaling pathway in
cervical cancer (199) and non-small-cell lung cancer (200).
Consistent with these studies, Tang et al. indicated that
CCAT1 coordinated miR-204/211, miR-148a/152 and annexin
A2 to hyperactivate the wnt/b-catenin signaling pathway,
consequently promoting the proliferation and metastasis of
breast cancer stem cells (118). Overexpression of CCAT1 in
breast cancer has been related to histological grade, TNM staging
and lymph metastasis, and it is also an independent predictor of
OS and progression-free survival (PFS) (119). The ubiquitous
nature of CCAT1 upregulation in cancers shows promise for
future discovery of diagnostic biomarkers and pharmaceutical
targets for cancer control.

Colon Cancer Associated Transcript 2
CCAT2 is 1,752 bp in length and is located within the
chromosome 8q24.21 gene desert adjacent to Myc (201).
Amplification of the oncogenes in the 8q24.21 region has been
found in numerous human cancers. High CCAT2 levels
positively correlated with Myc levels in colon and colorectal
cancer (202, 203). Accordingly, CCAT2 could upregulate the
expression of Myc in breast cancer, suggesting that the
amplification of CCAT2 and Myc might occur simultaneously
(120). Huang et al. explored the expression of CCAT2 in 33
cancer types and 13,285 tumor patients. The study revealed that
CCAT2 was substantially overexpressed in cancer tissues
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compared to paired normal tissues, and this increase in
CCAT2 levels correlated with a greater tumor volume, higher
TNM grades, advanced clinical stage and a poor OS in patients.
In addition, CCAT2 expression was mainly upregulated in stage
II tumor pathology, followed by stage III, indicating that CCAT2
could be used for the early detection of cancers (121). Moreover,
CCAT2 expression levels in metastatic breast cancer were higher
than those in non-metastatic breast cancer. Downregulation of
CCAT2 expression significantly inhibited the expression of TGF-
b, Smad2 and a-SMA, thereby inducing apoptosis and G0/G1
cell cycle arrest (122). Deng et al. indicated that CCAT2
knockdown suppressed the expression of cell cycle-related
proteins and G0/G1 phase arrest in breast cancer cells (204).
They also found that CCAT2 interacted with EZH2, a marker of
aggressive breast cancer (123) and abrogated the expression of
P15 (204). It has been shown that Notch signaling could be
activated and upregulated in breast cancer (205). Xu et al.
demonstrated the strong association between CCAT2 and
Notch 2 in triple-negative breast cancer (124). Functionally,
CCAT2 promoted the growth, invasion and migration of
breast cancer stem cells by sponging miR-205, which targets
Notch 2 (124). Overall, accumulating evidence suggests that
CCAT2 is an oncogene and could serve as a useful biomarker
and therapeutic target for breast cancer treatment.

Tissue Differentiation-Induced
Non-Coding RNA
TINCR is highly expressed in keratinocytes and is essential for
normal epidermal differentiation (206). It is a 3,733-nucleotide
long transcript located on chromosome 19p13 (207). Aberrant
TINCR expression has been implicated in multiple human
cancers. TINCR expression is upregulated in gastric, gladder
and breast cancer but downregulated in glioma and prostate
cancer (208). In recent years, several studies have been
performed on the contribution of TINCR to breast cancer. Liu
et al. indicated that TINCR was activated by transcription factor
specificity protein 1 (SP1) in breast cancer (125). Consistent with
this observation, Xu et al. showed that SP1 could bind to the
putative GC-rich motifs of TINCR to upregulate the expression
of TINCR in gastric cancer (209). In addition, TINCR
overexpression competed with miR-7 and facilitated KLF4
expression, which in turn regulated cell proliferation,
migration, and invasion in breast cancer (125). Insulin-like
growth factor receptor 1 (IGFR-1), a tyrosine kinase cell
surface receptor, is involved in the development and
progression of breast cancer (210). Guo et al. showed that
TINCR played an oncogenic role in breast cancer through
regulation of the miR-589-3p/IGF1R axis (126). Moreover, the
expression of TINCR was higher in trastuzumab-resistant tissues
than in sensitive tissues owing to enhanced histone acetylation of
the TINCR promoter. Functionally, TINCR promoted the
expression of HER-2 by sponging miR-125b, consequently
conferring trastuzumab resistance (127). Moreover, TINCR
promoted EMT via downregulation of Snail-1 expression,
while enhanced Snail-1 expression reversed EMT suppression
induced by TINCR silencing in trastuzumab-resistant cell lines
(127). Furthermore, Kaplan-Meier survival curves showed that
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high levels of tissue TINCR correlated with unfavorable
prognosis in breast cancer (126). Wang et al. found that
circulating TINCR was dramatically elevated in breast cancer,
particularly in the aggressive triple-negative subtype. The
authors further noted that serum TINCR levels were associated
with unfavorable prognosis, suggesting that TINCR could serve
as a novel biomarker for breast cancer therapy (128).
TUMOR SUPPRESSOR LNCRNAS

Maternally Expressed Gene 3
MEG3 is an imprinted gene from the maternal allele mapped to
the human chromosome 14q32.3 region (211). The transcript
contains 10 exons and approximately 12 alternative splicing
isoforms, some of which are expressed in a tissue- or cell-type-
specific manner (211). MEG3 was the first lncRNA to be
identified as a tumor suppressor in the inhibition of cancer cell
growth (212). A loss of MEG3 expression has been found across
human cancer cell lines, and decreased MEG3 levels significantly
correlate with TNM stage, lymph node metastasis and
differentiation grade (129, 130). Loss of MEG3 expression also
predicts shorter OS, PFS, distant metastasis-free survival
(DMFS), and disease-specific survival (DSS) (130–132). Zhang
et al. showed that ectopic MEG3 overexpression promoted breast
cancer progression by upregulating the expression of the
endoplasmic reticulum stress-related proteins NF−kB and p53
(133). Mechanistically, MEG3 can bind directly to the p53
promoter and increase the transcriptional activity of p53, thus
regulating the expression of p53 target genes (134). In addition,
MEG3 deactivated the AKT/mTOR signaling pathway by
sponging miR-21, while miR-21 overexpression partially
abolished the tumor suppressive function of MEG3 in breast
cancer cells (135). Moreover, elevated expression of MEG3 can
inhibit cell invasion, proliferation, and apoptosis induction (213,
214), indicating that MEG3 might be a novel therapeutic target
for cancers. SNPs mainly refer to a set of DNA sequence
polymorphisms based on single nucleotide variations at the
genomic level (215). It has been reported that SNPs are linked
to genetic susceptibility to cancer (216). Ali et al. indicated that
MEG3 rs7158663 G > A with the mutant A allele correlated with
decreased serum MEG3 expression and unfavorable clinical
outcomes in an Egyptian population (136). Additionally, the
GG genotype of rs3087918 could influence the secondary
structure of MEG3 and decrease the susceptibility to breast
cancer risk in Chinese women (137). Hence, MEG3 could be a
suitable biomarker candidate for clinical cancer management.

X-Inactive Specific Transcript
XIST, 17 kb in length, is located at the X-inactivation center (217).
During primary embryogenesis, XIST recruits multiple factors to
orchestrate X chromosome inactivation (218). Recent studies have
identified associations between aberrant XIST expression and
breast cancer. Zheng et al. indicated that XIST expression was
drastically downregulated in breast cancer tissues and cell lines.
The authors also found that XIST sponged miR-155, which in turn
upregulated the expression of caudal-type homeobox 1 (CDX1)
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and inhibited the progression of breast cancer (138). In addition,
Liu et al. also found that XIST functioned as a ceRNA for miR-
362-5p and thus inhibited its repressive effect on ubiquitin-
associated protein 1 (UBAP1), consequently inhibiting breast
cancer progression (139). BRCA1 is a high-penetrance gene in
which loss-of-function mutations predispose patients to breast
and ovarian cancers (140, 141). Sirchia et al. indicated that BRCA1
participates in XIST regulation on the active X chromosome as
well as XIST dysregulation and drives tumorigenesis in breast
cancer. Mechanistically, BRCA1 knockdown resulted in enhanced
XIST expression, promoter demethylation and X chromosome
inactivation (142). However, another study suggested the potential
oncogenic role of XIST in breast cancer. Zong et al. showed that
XIST knockdown dramatically reduced characteristics associated
with breast cancer, such as cell proliferation, anti-apoptosis,
invasion, and migration activities. Functionally, XIST induced
sponging of miR-125b-5p and removed the inhibitory effect of
this miRNA onNLRC5, a breast cancer promotor, thus promoting
the malignancy of breast cancer cells (143). In addition, a meta-
analysis carried out by Zhu et al. demonstrated that XIST was
overexpressed in multiple cancers and that elevated XIST levels
correlated with larger tumor volume, increased lymphatic
metastasis, advanced tumor stage and unfavorable clinical
outcomes (144). XIST could serve as an oncogene or tumor
suppressor, and further studies are still needed to elucidate the
roles of XIST in cancer biology.
Growth Arrest−Specific Transcript 5
GAS5, a well-known tumor suppressor, is located on
chromosome 1q25 (219). Abnormal expression levels of GAS5
have been reported in different cancer types (220–222). For
example, GAS5 has been shown to promote proliferation by
regulating miR-22 and its downstream target transcripts in
gastric cancer (223). GAS5 can also promote cell invasion and
migration by targeting miR-196a and the PI3K/Akt/mTOR
signaling pathway in oesophageal squamous cell carcinoma
(224, 225). In ovarian cancer, loss of GAS5 is related to
increased tumor volume and advanced tumor stage (226, 227).
In addition, the expression of GAS5 is significantly
downregulated in breast cancer tissues compared with adjacent
non-cancerous tissues (228). Larger tumor volume, advanced
lymph node metastasis, and estrogen receptor negativity in
breast cancer cells are the outcomes of GAS5 downregulation
(229). In HER2-positive breast cancer, silencing of GAS5
contributes to trastuzumab resistance. Mechanistically, GAS5
serves as a molecular sponge of miR-21 to increase the
expression of phosphatase and tensin homologs (PTEN) and
alleviate trastuzumab resistance (230). Zhang et al. demonstrated
the reciprocal inhibition between miR-21 and GAS5 in breast
cancer. MiR-21 downregulated GAS5 expression, while silencing
of GAS5 increased miR-21 expression (231). Jing et al. found that
GAS5 expression was significantly downregulated by Notch‐1
and that decreased GAS5 levels were involved in the proliferation
of breast cancer (232). Thus, these studies demonstrate that
GAS5 could be an attractive biomarker candidate in
cancer therapy.
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Phosphatase and Tensin Homolog
Pseudogene 1
As a pseudogene of PTEN, PTENP1 has a highly homologous
region upstream of the 3′UTR of PTEN (233). To date, aberrant
expression of PTENP1 has been found in various malignancies,
including breast cancer (73). Low levels of PTENP1 have been
shown to be associated with increased proliferation, migration,
invasion and colony formation, as well as decreased apoptosis, in
breast cancer (73, 145, 146). PTENP1 has been implicated in the
regulation of the PI3K/Akt signaling pathway, which plays a
pivotal role in tumorigenesis and tumor development,
particularly in breast cancer (147). Chen et al. indicated that
PTENP1 suppressed breast cancer cell proliferation and
migration via regulation of Akt and cell cycle-related proteins
(145). In addition, PTENP1-induced sponging of miR-19b
resulted in increased expression of PTEN (73, 146) and
decreased expression of p-PI3K, PI3K and p-Akt, thereby
inhibiting cell proliferation and migration (73). Moreover, the
regulatory effect of PTENP1 on the PI3K/Akt signaling pathway
can be reversed by the overexpression of miR-19b (73).
Furthermore, Gao et al. showed that PTENP1 inversely
correlated with miR-20, a known oncogenic mRNA. PTENP1
acts as a decoy for miR-20 to derepress its inhibitory effect on
PTEN, ultimately attenuating the activation of the PI3K/Akt
pathway (148). They also found that low expression of PTENP1
and PTEN was associated with advanced TNM stage and worse
OS (148). Interestingly, the involvement of PTENP1 in breast
cancer biology may depend on the hormone receptor status.
PTENP1 overexpression was linked to decreased PTEN
expression and increased proliferation in ER-positive cells,
while increased PTEN expression and inhibited tumorigenesis
were observed in ER-negative cells (149). Hence, PTEN may
represent a promising biomarker for breast cancer.
CIRCULATING LNCRNAS AS
BIOMARKERS IN CANCER

Biomarker is defined as “a characteristic that is objectively
measured and evaluated as an indicator of normal biological
processes, pathogenic processes or pharmacologic responses to a
therapeutic intervention” by the US NIH’s Biomarkers
Definition Working Group and the Biomarkers Consortium
(1). A tumor marker is any specific molecule indicating the
presence or progression of human cancers. Tumor biomarkers
can be either found in body fluids or tumor tissues. Biomarkers
in body fluids (especially those in blood serum) are readily
measured, and their diagnostic performances have been
confirmed in multiple cancers. Carcinoembryonic antigen
(CEA) and cancer antigen 15-3 (CA15-3) in serum have been
approved by the US Food and Drug Administration (FDA) as
biomarkers for breast cancer. Notwithstanding CEA and CA15-3
are widely used in diagnosis of breast cancer, they bear some
limitations, mainly regarding to low sensitivity and specificity.
Therefore, it is critical to discover novel molecular markers with
improved diagnostic value.
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Dysregulated lncRNAs in primary tumor tissues could be
mirrored in different body fluids, such as blood plasma, urine
and saliva (234–236). Many studies have revealed that lncRNAs
remain stable while circulating in body fluids even under extreme
conditions, further enhancing their competitive advantage of
being good diagnostic tools. In recent years, several circulating
lncRNAs have been proved as suitable diagnostic and prognostic
markers in various cancer types, such as prostate cancer antigen
3 (PCA3) and MALAT1. lncRNA PCA3 in urine samples has
received the approval of the FDA as a diagnostic molecule for
prostate cancer. Intriguingly, lncRNA PCA3 is much more
specific and sensitive than prostate-specific antigen, the
conventional gold standard for prostate cancer. A meta-
analysis carried out by Xue et al. has determined the diagnostic
value of PCA3 for the detection of prostate cancer, with
sensitivity and specificity of 62% and 75%, respectively (235).
Also, plasma H19 holds great potential as an independent
biomarker for gastric cancer due to its high diagnostic
performance (sensitivity 82.9%; specificity 72.9%) (234). In
addition, serum MALAT1 has proven its diagnostic value for
breast cancer (sensitivity 83.7%; specificity 81.2%) (237). More
importantly, lncRNA-based detection method is noninvasive,
convenient and inexpensive when compared to the
traditional biopsies.
PROSPECTS AND CHALLENGES

Since lncRNAs are dysregulated in cancers, the functional
lncRNAs may be targeted to halt the process of carcinogenesis.
LncRNAs targeting strategies can be achieved by antisense
oligonucleotides (ASOs), RNA interference (RNAi) and
clustered regularly-interspaced, CRISPR-Cas9, etc. It was
suggested that ASOs mainly targeted the lncRNAs retaining in
the nucleus, whereas RNAi predominantly targeted the lncRNAs
in the cytoplasm (238). CRISPR-Cas9, a precise versatile toolkit,
could target lncRNAs at high throughput, representing a major
technology breakthrough in gene editing (239).

Although lncRNAs hold potential to serve as ideal diagnostic
biomarkers and therapeutic targets, some challenges need to be
addressed and resolved in the future. First, the poor consequence
conversation of lncRNAs has complicated the pre-clinical studies
across different species. In addition, lncRNAs have secondary and
tertiary structures, which could lead to ineffectiveness of the
lncRNAs targeting therapeutics. Secondly, the lncRNA-based
treatment may perturb other genes. Thus, there is a risk of off-
target effects and new strategies should be developed to maximize
the on-target efficacy. Thirdly, the concentration of circulating
lncRNAs may be below the detection limit of the existing
equipment, such as NanoDrop spectrophotometer. It is expected
that in the near future, more sensitive detection instruments will
open a new window for lncRNA quantification. Fourthly, a single
lncRNAmay not be feasible for cancer diagnosis. Xie et al. suggested
that a diagnostic panel for NSCLC possessed higher specificity
(79.2%) and sensitivity (77.1%) when compared to any single
molecular marker, such as CEA and lncRNA ANRIL (240).
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Indeed, biomarkers in a panel can complement each other,
contributing to enhanced diagnostic performance.
CONCLUDING REMARKS

As indicated in this review, lncRNAs have gained considerable
attention as pivotal regulators in various physiological and
pathophysiological events. Altered expression levels of
lncRNAs have been reported in multiple human cancers,
including breast cancer. It has become clear that lncRNAs with
dysregulated expression drive the initiation and progression of
cancers via interactions with other types of RNA molecules,
DNA and proteins. Intriguingly, lncRNAs are differentially
regulated in diverse cancers or even cancer subtypes and show
a significant association with pathological features and clinical
prognosis. Regarding the aberrant expression of lncRNAs and
the underlying mechanisms, lncRNAs may act as suitable
diagnostic and prognostic biomarkers in breast cancer.
Furthermore, lncRNAs could be targeted to reverse the process
Frontiers in Oncology | www.frontiersin.org 11
of carcinogenesis and represent valuable therapeutic targets for
cancer treatment. LncRNA-based tests and therapy are
promising strategies that deserve extensive research and
thorough exploration in the future.
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