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Comprehensive genomic profiles of metastatic and
relapsed salivary gland carcinomas are associated
with tumor type and reveal new routes to targeted
therapies
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Background: Relapsed/metastatic salivary gland carcinomas (SGCs) have a wide diversity of histologic subtypes associated
with variable clinical aggressiveness and response to local and systemic therapies. We queried whether comprehensive
genomic profiling could define the tumor subtypes and uncover clinically relevant genomic alterations, revealing new routes to
targeted therapies for patients with relapsed and metastatic disease.

Patients and methods: From a series of 85 686 clinical cases, DNA was extracted from 40 mm of formalin-fixed paraffin
embedded (FFPE) sections for 623 consecutive SGC. CGP was carried out on hybridization-captured, adaptor ligation-based
libraries (mean coverage depth, >500�) for up to 315 cancer-related genes. Tumor mutational burden was determined on
1.1 Mb of sequenced DNA. All classes of alterations, base substitutions, short insertions/deletions, copy number changes, and
rearrangements/fusions were determined simultaneously.

Results: The clinically more indolent SGC including adenoid cystic carcinoma, acinic cell carcinoma, polymorphous low-grade
adenocarcinoma, mammary analog secretory carcinoma, and epithelial–myoepithelial carcinomas have significantly fewer
genomic alterations, TP53 mutations, and lower tumor mutational burden than the typically more aggressive SGCs including
mucoepidermoid carcinoma, salivary duct carcinoma, adenocarcinoma, not otherwise specified, carcinoma NOS, and carcinoma
ex pleomorphic adenoma. The more aggressive SGCs are commonly driven by ERBB2 PI3K pathway genomic alterations.
Additional targetable GAs are frequently seen.

Conclusions: Genomic profiling of SGCs demonstrates important differences between traditionally indolent and aggressive
cancers. These differences may provide therapeutic options in the future.
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Introduction

Salivary gland carcinomas (SGCs) are rare histologically diverse

malignancies whose prognosis varies from indolent to aggressive

depending upon histology, grade, and stage [1]. Examples of

SGCs include those that tend to have more indolent clinical

courses, such as adenoid cystic carcinomas (ACC), acinic cell car-

cinoma (AciCC), polymorphous low-grade adenocarcinoma

(PLGA), mammary analog secretory carcinoma (MASC), and

myoepithelial carcinoma (myoepi). Tumors with generally worse

prognosis such as mucoepidermoid carcinoma (MEC), salivary

duct carcinoma (SDC), adenocarcinomas not otherwise specified

(AD-NOS), carcinomas not otherwise specified (CA-NOS), and

carcinoma ex pleomorphic adenomas (ca ex PA) [2, 3], though

there is still variation of behavior within each histologic subtype.

The standard curative therapy is surgery followed by radiation,

but the role of chemotherapy with radiation is controversial and

treatments in the relapsed/metastatic setting are often inadequate

[4, 5].

Studies using next-generation sequencing (NGS) techniques

focusing on specific histologies, such as SDC, MEC, and ACC,

have started to identify key molecular pathways in SGCs such as

HER2 (ERBB2) and PI3K .Limited studies have evaluated mul-

tiple histologies simultaneously but have been hampered by small

sample size [6, 7]. Additionally, there are scant data on tumor

mutation burden (TMB) in SGCs, a potentially critical element

for response to immunotherapy [8]. In the following study, we

present novel and expanded comprehensive genomic profiling

(CGP) of a large series of SGCs, additional data on TMB for pre-

viously presented cases, and comparisons between SGC histologic

subtypes.

Methods

Full methods can be found in the supplementary Methods, available at
Annals of Oncology online, and have been described previously [9].
Briefly, from a series of 85 686 clinical cases, a series of 623 clinical cases
of SGC were analyzed using CGP in a Clinical Laboratory Improvement
Amendments (CLIA)-certified, CAP (College of American Pathologists)-
accredited laboratory (Foundation Medicine, Cambridge, MA).
Approval for this study, including a waiver of informed consent and a
HIPAA waiver of authorization, was obtained from the Western
Institutional Review Board.The pathologic diagnosis of each case was
confirmed on routine hematoxylin and eosin (H&E) stained slides and
all samples forwarded for DNA extraction contained a minimum of 20%
tumor nuclear area, compared with benign nuclear area. GCP was carried
out as described previously [10]. TMB was determined on 1.1 megabases
(Mb) of sequenced DNA for each case based on the number of somatic
base substitution or indel alterations per Mb after filtering to remove
known somatic and deleterious mutations [8].

Results

Sequencing results for 623 SGCs by histologic subtype are sum-

marized in Table 1 and Figure 1. The tumors segregated into

groups based upon TP53 status and TMB. Histologies tending to

be lower grade and more clinically indolent, including ACC,

AciCC, PLGA, myoepi, and MASC had fewer median GAs/tumor

(2.1) than more aggressive tumors (4.3) (P< 0.001). Moreover,

more indolent SGCs harbored TP53 GAs <20% of the time

compared with typically more aggressive, higher grade tumors

having TP53 mutations rates of >40% (P< 0.001) (Table 1).

Interestingly, tumor classification by TP53 status correlated with

TMB. Histologies harboring <20% TP53 GAs all had TMB

>10 mut/Mb rates of�5%, whereas tumors with TP53 mutation

rates>40% had TMB>10 mut/Mb rates of�10% (P< 0.001 be-

tween indolent and aggressive tumors). Within histologic sub-

types TMB was assessed by grade. For ACC and MEC, the TMB

remained low in both low-grade and high-grade cases. For the

ductal adenocarcinoma and adenocarcinoma NOS categories,

the TMB was higher in the high-grade tumors than in the low-

grade tumors, but this difference did not reach statistical signifi-

cance. These data suggest the clinical aggressiveness of different

SGC histotypes may be related, in part, to the degree of TP53 mu-

tations and TMB.

ERBB2 and PIK3CA GAs were noteworthy in several tumors.

There were ERBB2 GAs, typically amplifications, observed in at

least 13% of all the higher grade tumors with SDC having ERBB2

GAs in 32%. In fact, the ERBB2 GA frequency in SDCs was the

highest of the 400 histologic cancer subtypes sequenced within

the 85 686 case Foundation Medicine cohort. None of the more

clinically indolent tumors had ERBB2 GAs (P< 0.001 between

more indolent and aggressive tumors). TP53 mutations were seen

in 87% of ERBB2 amplified tumors. The frequency of PIK3CA

GAs was also elevated in most of the more aggressive histologies,

occurring in �20% of MEC, SDC, AD-NOS, and CA-NOS.

Unlike ERBB2, however, PIK3CA GAs were also seen in more in-

dolent cancers, though less frequently (P< 0.001). BRAF GAs

were seen infrequently (0%–5% per histotype, 2.7% overall).

Most BRAF GAs were short variants (SV; 46% of which were

V600E and 33% were activating non-V600E base substitutions)

and 12% were fusions retaining the kinase domain. The TP53 co-

GA frequency in the BRAF mutated SGC was 41%.

In addition to the aforementioned GAs, each lower grade histo-

logic subtype had a unique GA profile. ACC: There was a mean fre-

quency 1.6 total GA/tumor, with the characteristic MYB-NFIB

gene fusion identified in 23% of cases (Table 1; Figure 1A).

Overall, the frequency of potentially targetable GAs, including

PDGFRA and KIT, was low with no major genomic target present

in greater than 5% of cases. AciCC: There was a mean frequency of

2.8 GA/tumor (Table 1; Figure 1B). Noteworthy additional alter-

ations were in PTEN (9%), FBXW7 (8%), ATM (7%), and NF1

(5%). PLGA: There were 1.6 GA/tumor with only a single poten-

tially targetable GA in PTEN (Table 1; Figure 1C). Myoepit: The

median GA/tumor was 3.0. BRAF GA frequency was 5% and there

were limited GAs in the PI3K/MTOR pathway (PIK3CA mutation

and RICTOR amplification), the sonic hedgehog pathway

(PTCH1) and rare kinase growth factor GA (PDGFRB) (Table 1;

Figure 1D). MASC: There was a mean of 2.8 GA/tumor and all 12

(100%) of the cases featured the signature t(12;15) (q13;q25)

ETV6-NTRK3 gene fusion (Table 1; Figure 1E).

More frequently mutated SGCs also harbored unique GA pro-

files. MEC: The median was 4.2 GA/tumor and BRAF alterations

were discovered in 4% (Table 1; Figure 1F). Other clinically rele-

vant GAs included FGFR1, BRCA2, and PTEN each altered in 8%

of cases. SDC: There was a median 3.6 GA/tumor. Slightly >2%

of SDC featured an activating ERBB2 SV GA only and lacked evi-

dence of ERBB2 amplification (Table 1; Figure 1G). There were

also multiple additional clinically relevant GA involving PTEN
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(17%), RICTOR and CDK4 (7%), FGFR1 and BRAF (5%), and

RET (2%). Interestingly, only one ERBB2 amplified SDC har-

bored a PIK3CA mutation (Table 1; Figure 1H). AD-NOS: The

median GA/tumor was 4.1. Interesting GAs included EGFR (5%)

(Table 1; Figure 1H). CA-NOS: This group included SGCs that

could not be further subdivided based upon the submitted speci-

men, and had a median GA/tumor of 5.2 (Table 1; Figure 1I).

Potentially targetable GA included PTEN and NF1 involving the

MTOR pathway, each identified in 8% of the CA-NOS group. At

21%, the CA-NOS patients had the highest frequency of

TMB> 10 mut/Mb of all the mSG subtypes. Ca ex PA: There was

a median 3.0 GA/tumor (Table 1; Figure 1J). Noteworthy GAs

included alterations of PTEN (14%) and FGFR1 and FGFR2

(9%). One FGFR1 amplification co-occurred with ERBB2 ampli-

fication and the second FGFR1 GA was an FGFR1-PLAG fusion,

which is likely not activating.

Despite their relative rarity, there was evidence of targeted

therapy usage based upon NGS results, often with clinical benefit.

Examples are given in Table 2. One newly reported case is a 63-

year-old man with a MASC harboring an ETV-NTRK3 transloca-

tion. Before the development of NTRK3 inhibitors, he was placed

on study combining an oral PIK3 inhibitor and an oral EGFR

tyrosine kinase inhibitor. The patient had a minor response to

therapy (Figure 2) and was on therapy for 2.5 years after having

rapid progression before starting therapy. Unfortunately, tar-

geted therapy does not always work, as demonstrated by a patient

with an AciCC harboring an activating BRCA2 GA who did not

respond to olaparib, a PARP inhibitor.

Discussion

In this study of >600 SGCs, we identified mutation patterns be-

tween less and more aggressive histotypes, provided novel NGS

data for AciCCs, PLGAs, myoepi, and MASC, expanded NGS on

other tumors, and explored TMB in a broad range of SGCs. To

our knowledge, this is the largest comparison study of SGC gen-

omics to date.

The key finding of this study is the difference in mutation pro-

file between SGC histotypes more commonly associated with a

good prognosis (ACC, AciCC, PLGA, myoepi, and MASC) com-

pared with more clinically aggressive tumors (MEC, SDC, AD-

NOS, CA-NOS, Ca ex PA). In particular, less aggressive histo-

types had fewer GAs/tumor (2.1 versus 4.3) and less frequent

TP53 GAs. Functional loss of the tumor suppressor p53, which is

encoded by the TP53 gene, is extremely common in cancers of all

types [11]. Our study found similar ranges to reported TP53 mu-

tation frequency in COSMIC (17%) and other published litera-

ture (14%–60% depending upon histotype) [12, 13]. On a more

micro level, increasing frequency of TP53 mutations has been

implicated in the transition for pleomorphic adenomas to carcin-

omas and increasing grade of MECs [14, 15]. Based upon these

data, typical SGC prognosis may be explained, in part, by under-

lying mutational complexity.

In this study, more clinically indolent tumors have fewer

PIK3CA and ERBB2 GA. PIK3CA GAs range from 0% to 15% in

more indolent histologies, less than the aggressive histotypes

(20%–27%). While the PIK3CA mutation rate is not known from

many SGCs, the PIK3CA mutation rate in among all SGCs in
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COSMIC is 10% and among SDCs has been reported between

19% and 30% [12, 16, 17]. Moreover, certain histotypes in this

study, such as SDC and AD-NOS, had frequent GAs in other

PI3K pathway genes, including PTEN, RICTOR, TSC2, and NF1.

The PI3K pathway is involved in myriad cancer-promoting func-

tions and may be targeted by drugs such as everolimus [18, 19].

PI3K pathway inhibitors may be a valuable tool for certain SGCs

in the future. Similarly, there were no ERBB2 GAs in the more in-

dolent compared with the significantly higher ERBB2 amplifica-

tion and SV GA frequencies in several of the more rapidly

progressive tumors. Moreover, most (87%) of tumors with

ERBB2 GAs also carried a TP53 mutation. The frequency of

ERBB2 GAs, particularly in SDCs, is striking, as it has the highest

rate of ERBB2 amplification of any tumor [10]. Prior studies have

reported frequent HER2 staining or ERBB2 amplification, par-

ticularly in more aggressive SGCs [16]. Based upon the patient re-

port in this manuscript and prior reports of responses to HER2

targeted therapy in HER2-positive SGCs [16, 20], we encourage

further exploration of HER2 therapy in either basket- or SGC-

specific studies.

This study identified other noteworthy genomic targets in a

wide range of SGCs. For instance, though BRAF mutations were

not common in this study, they did tend to be activating and one

AciCC patient with a BRAF gene fusion responded to a multiki-

nase inhibitor targeting BRAF [21]. The BRAF GA rate in this

study (2.7%) was similar to the 2% observed in COSMIC, though

the rate reported here is a little lower than that reported in an-

other SDC study [12, 22]. Consistent with other studies, this

study found frequent MYB-NFIB fusions in ACC and supported

that ETV6-NTRK3 fusions are characteristic of MASCs [23].

In particular, the demonstration of ETV6-NTRK3 fusions in

SGCs is critical, as novel TRK inhibitors have started to demon-

strate efficacy in cancers harboring NTRK3 fusions [24]. Beyond

these, infrequent GAs were seen in potentially targetable genes

such as RET, BRCA1/2, FGFR, and PDGFR. We believe CGP may

allow for common and rare therapeutic targets to be identified in

these difficult to treat cancers.

For the first time, TMB was reported for many SGCs in this

study. TMB was lower (�5% of tumors featuring� 10 mut/Mb)

in the more clinically indolent ACC, AciCC, PLGA, myoepi, and

MASC groups compared with the more aggressive MEC, SDC,

AD-NO, CA-NOS and ca ex PA, though no tumor exceeded 21%

frequency for� 10 mut/Mb. TMB has been linked with benefit

from immune checkpoint inhibitors (ICPI) in several cancers [8,

25]. The validated hybrid capture–based NGS platform used in

this study to determine the TMB has consistently equaled or out-

performed other biomarker assessments for predicting ICPI re-

sponse and may have the advantage of objectivity over immuno-

histochemistry for PD-L1 expression [25–27]. For SGCs, the

TMB is significantly lower than the tumor types where ICPI are

approved such as NSCLC, melanoma, and bladder cancer, where

a cut-off of approximately 20 mutations/Mb tends to predict

long-term clinical benefit from the ICPI drugs [8, 25, 26]. Early

data from the Keynote-028 trials suggest modest activity (11.5%

response rate) in non-ACC SGCs treated with pembrolizumab.

We look forward to the results of Keynote 158, which enrolled a

large number of SGCs.

While this study has many strengths, there are limitations. The

greatest weakness is the lack of clinical correlations between iden-

tified GAs and disease characteristics or patients outcomes. As

this was a retrospective evaluation of samples submitted for clin-

ical care, data about cancer stage, response to therapies, and

Table 2. Examples of responses to targeted therapy for salivary gland cancers treated following next-generation sequencing

SGC type Genomic alteration Therapy Results

SDC ERBB2 Carboplatin/docetaxel/trastuzumab Partial response
SDC NCOA-RET Cabozantinib Partial response
AciCC BRAF duplication of exons 10-18 Regorafenib Partial response
AciCC BRCA2 Olaparib Progressive disease
MASC ETV6-NTRK3 fusion EGFR plus PI3K inhibitor Minor response, prolonged stable disease

Pre-treatment After 6 months

Figure 2. Computed tomography scans of a patient with mammary analog secretory tumor harboring an ETV6-NTRK3 gene fusion before
and after treatment with a PI3K and EGFR inhibitors.
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patient survival are not available. Moreover, certain GAs, such as

the MECT1-MAML2 translocation commonly identified in

MEC, are not assessed using this technique [28]. Androgen recep-

tor testing, an important tool in SDC diagnosis, is not available

using CGP [29]. Lastly, each histologic subtype was group for the

purpose this study, though we know tumor grade and mutations

can vary within each tumor type, such as MEC [14]. Despite these

limitations, this study contributes greatly to the understanding of

SGC’s genetic underpinnings.

In summary, this study of >600 clinically relapsed and meta-

static salivary gland cancers highlights the potential roles of a hy-

brid capture based CGP assay to simultaneously differentiate

among a wide variety of tumor histologies, identify genomic

driver alterations that can be exploited in targeted therapy strat-

egies, and measure the tumor mutational burden to identify po-

tential immune checkpoint inhibitor responsiveness.
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