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HIV-specific antibodies (Abs) can reduce viral burden by blocking new rounds of infection or by destroying
infected cells via activation of effector cells through Fc–FcR interaction. This latter process, referred to as
antibody-dependent cellular cytotoxicity (ADCC), has been associated with viral control and improved clinical
outcome following both HIV and SIV infections. Here we describe an HIV viral-like particle (VLP)-based sorting
strategy that led to identification of HIV-specificmemory B cells encoding Abs that mediate ADCC from a subtype
A-infected Kenyan woman at 914 days post-infection. Using this strategy, 12 HIV-envelope-specific monoclonal
antibodies (mAbs)were isolated and threemediated potent ADCC activitywhen compared towell-characterized
ADCC mAbs. The ADCC-mediating Abs also mediated antibody-dependent cell-mediated virus inhibition
(ADCVI), which provides a net measure of Fc receptor-triggered effects against replicating virus. Two of the
three ADCC-mediating Abs targeted a CD4-induced (CD4i) epitope also bound by the mAb C11; the third anti-
body targeted the N-terminus of V3. Both CD4i Abs identified here demonstrated strong cross-clade breadth
with activity against 10 of 11 envelopes tested, including those from clades A, B, C, A/D and C/D, whereas the
V3-specific antibody showed more limited breadth. Variants of these CD4i, C11-like mAbs engineered to
interrupt binding to FcγRs inhibited a measurable percentage of the donor's ADCC activity starting as early as
189 days post-infection. C11-like antibodies also accounted for between 18–78% of ADCC activity in 9 chronically
infected individuals from the same cohort study. Further, the two CD4i Abs originated from unique B cells,
suggesting that antibodies targeting this epitope can be commonly produced. Taken together, these data provide
strong evidence that CD4i, C11-like antibodies develop within the first 6 months of infection and they can arise
fromunique B-cell lineages in the same individual. Further, thesemAbsmediate potent plasma IgG-specific ADCC
breadth and potency and contribute to ADCC activity in other HIV-infected individuals.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Antibodies (Abs) can prevent viral infection through two key
mechanisms: neutralizing cell-free virus and targeting virally-infected
cells for destruction through either antibody-dependent cellular
cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis
(ADCP) (reviewed in Ackerman and Alter, 2013). While considerable
effort has been placed on characterizing broadly neutralizing
antibodies (bnAbs) due to their protective capacity in non-human
primates, far less is known about ADCC-mediating Abs (reviewed in
ed Hutchinson Cancer Research
, United States.

. This is an open access article under
Ackerman and Alter, 2013; Mascola and Montefiori, 2010; Burke and
Barnett, 2007; West et al., 2014).

Abs that facilitate ADCC or antibody-dependent cell-mediated viral
inhibition (ADCVI) activity, a related metric that quantifies multiple
Ab-specific effects on viral replication including ADCC, develop in
most infected individuals within the first year following infection and
facilitate activity through effector cell mechanisms (Forthal et al.,
2001a; Chung et al., 2011a; Alpert et al., 2012; Dugast et al., 2014a).
Landmark experiments conducted by Hessell et al. effectively demon-
strated a role for antibodies mediating Fc receptor (FcR)-driven effector
function by proving that administration of a variant of monoclonal anti-
body (mAb) b12 thatwas unable to engage FcRswas 50% less protective
against both a high- and low-dose SHIV challenge than mAb b12 with
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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complete effector function, suggesting that bothAbADCC and neutraliz-
ing activity contribute to protection (Hessell et al., 2007, 2009a). Indeed,
multiple studies conducted in HIV-infected populations (reviewed in
Lewis, 2014), SIV-infected macaques (Banks et al., 2002; Asmal et al.,
2011; Sun et al., 2011) and HIV-infected humanized mice (Bournazos
et al., 2014) have similarly established a relationship between HIV-
specific ADCC or ADCVI antibodies and disease pathogenesis, including
reduced viral load (Forthal et al., 2001a; Baum et al., 1996; Ahmad
et al., 2001; Nag et al., 2004; Lambotte et al., 2009, 2013; Johansson
et al., 2011; Wren et al., 2013), increased CD4 T cell counts (Ahmad
et al., 2001, 1994; Chung et al., 2011b) and slower disease progression
(Forthal et al., 2001a; Baum et al., 1996; Ahmad et al., 2001; Chung
et al., 2011b). These findings suggest that early ADCC responses gener-
ated against a new infection may help control virus levels following
acquisition. Moreover, Milligan et al. (2015) demonstrated that in-
creased levels of passively acquired HIV-specific ADCC antibody activity
in infants correlate with survival, providing evidence for a protective
effect of pre-existing antibodies on clinical outcome (Milligan et al.,
2015). There is also evidence that ADCC antibodies may impact trans-
mission. Mabuka et al. (2012) correlated higher breast milk IgG ADCC
activity that was independent of neutralizing activity with a reduced
risk of vertical transmission between mother–infant pairs, providing
evidence for a potentially unique role for ADCC in the index case in
reducing transmission risk (Mabuka et al., 2012). However, other stud-
ies have not detected a significant effect on protection with ADCC-
mediating mAbs in either human cohort or macaque model studies
(Florese et al., 2006; Dugast et al., 2014b), and it is unclear whether
these observations reflect differences in the protective efficacy of the
antibodies tested or other methodological factors.

Vaccine studies conducted in both non-human primate models
(Alpert et al., 2012; Gómez-Román et al., 2005; DeVico et al., 2007;
Hidajat et al., 2009; Xiao et al., 2010; Brocca-Cofano et al., 2011; Barouch
et al., 2012) and humans (Forthal et al., 2007; Haynes et al., 2012) have
also suggested that ADCC activity may provide some protection against
infection. Early evidence from the Vax004 Phase III efficacy study iden-
tified an inverse correlation between ADCVI activity and infection
(Forthal et al., 2007). Most recently, an immune-correlates analysis of
the RV144 vaccine trial showed a correlation between higher ADCC ac-
tivity and protection from infection among vaccinees with low plasma
IgA, lending additional support for the potential of ADCC-mediating
antibodies to protect (Haynes et al., 2012; Tomaras et al., 2013).

ADCC-mediating antibodies target a wide range of epitopes on the
envelope (Env) protein, as well as epitopes on Gag (Grunow et al.,
1995), Pol (Isitman et al., 2012), Nef (Yamada et al., 2004) and Vpu
(Wren et al., 2013; Tiemessen et al., 2009) proteins, though the signifi-
cance of ADCC activity directed against proteins other than Env remains
unclear.Within Env, ADCC-mediating antibodies target epitopes similar
to neutralizing antibodies, including the membrane proximal external
region (MPER), CD4 binding site (CD4bs) and V1-V2 and V3 regions as
well as unique epitopes on the gp120 inner domain naturally occluded
by gp41 and exposed following CD4 binding (CD4-induced [CD4i]
epitopes) (reviewed in (Pollara et al., 2013; Gach et al., 2011)).
A detailed study by Guan et al. (2013) finely mapped three unique
clusters (A, B and C) of CD4i-specific antibodies using a competition-
based ELISA approach (Guan et al., 2013). Cluster A epitopes become
exposed following the conformational change resulting from Env
binding to cellular CD4 that occurs during viral entry or following infec-
tion and subsequent cell–cell spread when CD4 and the viral envelope
are co-expressed on the surface of the same cell (Finnegan et al.,
2001; Acharya et al., 2014; Veillette et al., 2014). Prototypic Cluster A
mAbs A32 and C11 bind to similar epitopes on gp120 but only weakly
cross-compete with each other, suggesting they have unique specific-
ities (Guan et al., 2013). Fab inhibition experiments have demonstrated
that A32-like antibodies frequently constitute the majority of the ADCC
activity observed in chronically-infected (Ferrari et al., 2011) and
RV144-vaccinated (Bonsignori et al., 2012) individuals. The Cluster B
epitope is defined by only one antibody, N12-i15, and targets a confor-
mational epitope on gp120 that requires CD4 binding and involves the
V1–V2 loop. Cluster C antibodies recognizing the co-receptor binding
sites (CoRBS) are the only CD4i antibodies capable of neutralizing cell-
free virus and are further sub-categorized into 4 groups as specified
by competition with either 17b or 19e mAbs. Among these ADCC-
mediating antibodies, the A32 and C11 mAbs from cluster A are the
most potent (Guan et al., 2013), and these CD4i mAbs have non-
overlapping specificities. Few studies have examined ADCC mAb
breadth or the ability to recognize diverse envelopes from different
HIV-1 clades.

Recently, two studies identified epitope breadth (Wren et al., 2013)
and increased cross-clade ADCC activity (Madhavi et al., 2014) as
characteristics associated with superior ADCC-mediating antibody
responses. Despite this work, we still know very little about the features
defining a protective ADCC-mediating immune response or the optimal
methods required to dissect this response at the monoclonal level.
Further, few studies have attempted to define the contribution of
epitope-specific mAbs other than A32 to the overall ADCC response or
to determine the kinetics of ADCC Ab development following infection.
While considerable progress in identifying HIV-specific bnAbs has
been made using high-throughput methods such as protein-specific
screens and microneutralization assays, no high-throughput, functional
methods for isolating ADCC-mediating antibodies have been described.

In this report, we screened peripheral blood mononuclear cells
(PBMCs) approximately 2.5 years post infection (PI) from an individual
who demonstrated cross-clade ADCC and neutralizing Ab responses
(Piantadosi et al., 2009; Bosch et al., 2010). Memory B cells that
expressed B cell receptors (BCRs) that bound HIV envelope protein
were isolated using HIV virus-like particles (VLPs). Using this approach,
we identified three ADCC-mediating antibodies with cross-clade
activity that targeted two distinct epitopes: the C11-like epitope,
and the V3 region.

2. Methods

2.1. Ethics Statement

The Fred Hutchinson Cancer Research Center's, University of
Washington's and University of Nairobi's Institutional Review
Boards approved this study. Study participants provided written
consent prior to enrollment.

2.2. Human PBMC and Plasma Samples

Study participants were enrolled as HIV naïve into a prospective
cohort of HIV-1 negative high-risk women in Mombasa, Kenya and
monitored by HIV serology and RNA testing to define the time of
infection (Lavreys et al., 2002). Peripheral blood mononuclear cells
(PBMCs) and plasma sampleswere obtained at regular intervals follow-
ing seroconversion. All study participants were treated according to
Kenyan National Guidelines and did not receive ARVs at any point
during the period in which samples were analyzed for this study.
QA255 seroconverted after 4.8 years of follow-up and had a setpoint
viral load of 4.8 log copies/mL. Peripheral blood mononuclear cells
(PBMCs) were obtained at regular intervals, including 914 days post
HIV-infectionwhen her CD4 countwas 368 cells/mm3. IgGwas purified
from plasma samples using Melon Gel (Pierce), buffer-exchanged
following manufacturer protocol (Zeba filter, Pierce) and quantified
using Nanodrop. IgG was purified from 6 plasma samples obtained
from QA255 between 89 and 914 days post-infection (dpi) and from
10 plasma samples obtained from cohort participants at a single time
point 3 years PI. These additional 10 women were randomly selected
from a subset of seventy women whose Nab breadth was characterized
in a previous study (Piantadosi et al., 2009).



1466 K.L. Williams et al. / EBioMedicine 2 (2015) 1464–1477
2.3. Monoclonal Antibodies and Peptide Reagents

The Consensus A peptide library was obtained from the AIDS
Research and Reference Reagent Program (NIAID, NIH). Ab C11 was
kindly provided by J. Robinson (Tulane University), Abs 17b and A32
by B. Haynes (Duke University) as well as the AIDS Research and
Reference Reagent Program (NIAID, NIH) and the influenza-specific
negative control FI6v3 by J. Bloom (Fred Hutchinson Cancer Research
Center). Ab A32 originated from a Clade B-infected individual (Moore
et al., 1994a); the donor subtype from which Ab C11 originated has
not been described (Moore et al., 1994b). MAbs b12, b6, PG9, and
Den3 were kindly provided by D. Burton (TSRI). MAbs 2G12 and
1F7 were donated by Dietmar Katinger (Polymun Scientific) and mAbs
VRC01 and VRC03 were kindly provided by J. Mascola. Q461.d1 linear
peptides were provided by N. Sather and L. Stamatatos (Seattle Biomed).

2.4. Viral Like Particle Production

Viral like particles that include GFP fused to Vpr and expressing
Q461.d1 Env and QA255.21P Env were generated in a similar manner
as that described in (Hicar et al., 2010). Briefly, T-Rex 293 cells were
transfected with plasmid pcDNA4/TO Gag (Zeocin resistance) and
pcDNA5/TO encoding either QA255.21P or Q461.d1 Env (puromycin
resistance) under a tetracycline-controlled cytomegalovirus promoter
and then selected in Zeocin and puromycin to generate stable,
doxycycline-inducible cell lines. Cell clones that exhibited optimal Gag
and Env expression and complete cleavage of gp160 to gp120 and
gp41 were selected, and subsequently transfected with pcDNA5-TO
Vpr-GFP plasmid (hygromycin resistance) to generate Vpr-GFP-
expressing cells. GFP-labeled VLPs were harvested after three days
of doxycycline induction, centrifuged at low speed, filtered and
pelleted via ultracentrifugation through a 20% sucrose cushion and
purified on a second linear 20–60% sucrose gradient.

2.5. Sorting of Memory B Cells and Reconstruction of Antibodies

PBMCs were obtained 914 days post HIV-infection from study
participant QA255. Approximately 6 million cryopreserved PBMCs
were thawed in a 37 °C water bath and re-suspended in 5 mL of
pre-warmed RPMI 1640 medium (Invitrogen) containing 10% FBS,
followed by centrifugation at 300 ×g for 10 min. CD19+ B cells
were first enriched by negative depletion using magnetic particles
coated with antibody complexes recognizing CD2, CD3, CD14,
CD16, CD36, CD43, CD56, CD66b, glycophorin A and dextran according
to the manufacturer's instructions (StemCell) before they were stained
on ice for 30min using a cocktail of anti-CD19–PE–Cy7 (BD Bioscience),
anti-CD27-APC (BD Bioscience), and 50 μL of a 1:1 mixture of concen-
trated QA255.21p.A17 and Q461d1 GFP-VLPs. In total, 192 memory B
cells (CD19+, CD27+) that bound to VLPs were sorted based on GFP
expression directly into 96-well PCR plates containing 20 μL of lysis
buffer/well (0.5 μL RNase Out (Invitrogen, 5 μL of 5× first strand buffer
(Invitrogen), 1.25 μL of 0.1 M DTT (Invitrogen) and 0.0625 μL of Igepal
(Sigma)) at a density of 1 cell/well. Plates were frozen immediately on
dry-ice before storage at −80 °C.

The variable region of the heavy chain and the light chain immuno-
globulin genes were amplified by RT-PCR as previously described (Tiller
et al., 2008; Scheid et al., 2011). Briefly, cDNA was generated using
Superscript III with random hexamers (Invitrogen), which provided
templates for five independent PCRs. Three independent, semi-nested
PCRs amplified the Igγ variable genes and two independent nested
PCRs amplified Igκ and Igλ variable genes. PCRs for the heavy chain
were performed as described by (Scheid et al., 2011) and (Wu et al.,
2011) and for the light chain as described by (Tiller et al., 2008). Primer
sets used to amplify the heavy chain variable regions were reported in
(Georgiev et al., 2013) and the light chain variable regions were speci-
fied in (Tiller et al., 2008). Products from positive PCRs were sequenced
before cloning into the corresponding Igγ1, Igκ and Igλ expression
vectors (kindly provided by Michel Nussenzweig). Cloned inserts
were verified by sequencing. Final sequences were characterized by
gene family, percent mutation from germline and CDR3 length
using the IMGT database (www.imgt.org). LALA variants were
generated by overlap extension PCR to introduce the L234A and
L235A mutation into the Igγ1 expression vectors (Hezareh et al.,
2001; Shields et al., 2001).

Paired heavy and light chain plasmids cloned from the same well
were combined in all possible pairings if there was more than one
heavy or light chain isolated. Paired heavy and light chain clones were
co-transfected in equal ratios into 293F cells (1 × 106 cells/1 μg of
total DNA) with a 4:1 293Fectin: DNA ratio. Antibodies were harvested
72 h following transfection, and IgG was purified using Protein G resin
in hand-packed, gravity flow columns (Pierce) or Protein G spin
columns (Pierce). Antibody concentration was determined using either
a total IgG ELISA or protein absorbance at 280 nM (Nanodrop).
2.6. VLP, gp120 and Peptide ELISAs

2.6.1. VLP ELISA
VLP ELISA was adapted from (Hicar et al., 2010). In brief,

Immunolon 2-HB plates were coated with 100 μL of VLPs diluted to
1 × 108 particles/mL in 0.1 M sodium bicarbonate coating buffer
(pH 7.4) overnight at 4 °C. Plates were thoroughly washed with PBS-
0.05% Tween wash buffer and blocked with 10% non-fat dry milk
(NFDM) diluted into wash buffer. After at least 1 h, the milk block was
removed, and 100 μL primary antibody diluted into the NFDM added
for 1 h at 37 °C. The plates were thoroughly washed a second time,
and 100 μL anti-IgG-HRP (Sigma, 1:2500 dilution) diluted in NFDM
added for one hour incubation at room temperature. The plates were
washed a third time, and 50 μL Ultra-TMB (Thermo Scientific) substrate
was added for 10min. The reactionwas stopped by adding an equal vol-
ume of 0.1 M H2SO4 and the absorbance read within 30 min using
450 nM optical density. The endpoint titer was defined as the average
Ab concentration with binding 2-fold greater than Influenza-specific
Ab FI6v3 negative control.
2.6.2. Gp120 and Peptide ELISAs
The gp120 and peptide ELISAs were performed as described above,

where the only modification was the type and amount of bound antigen:
gp120 protein was used at a final concentration of 0.5 μg/mL (50 ng
coated per well), and the linear peptides were used at a final concentra-
tion of 2 μg/mL (200 ng coated per well). The limit of detection (LOD)
was defined as two times the binding measured with Influenza-specific
Ab FI6v3.
2.6.3. Competition ELISAs
For competition binding assays, the competitor antibody was

serially diluted 4-fold at a starting concentration of 20 μg/mL and
added to gp120-coated plates for 15 min before addition of 1.5 μg/mL
biotinylated (BT)-C11 or 0.625 μg/mL BT-A32, both pre-defined limiting
concentrations for an additional 45min. Plateswerewashed in between
each step and before addition of Ultra TMB-substrate and 0.1 M H2SO4

as described above. Relative BT-C11 binding was calculated by dividing
Bt-C11 binding in the presence of each competitor Ab by the average
Bt-C11 binding in the presence of Influenza Ab FI6v3.
2.7. TZM-bl Neutralization Assay

Neutralization assays were performed as previously described (Goo
et al., 2012). Reported IC50 values are the average of two or three
independent experiments performed in duplicate.

http://www.imgt.org
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2.8. Fab Fragment Preparation

Fab fragments were generated following protocol instructions using
the papain digestion kit (Pierce). In brief, 125 μg of IgG1 antibody was
buffer exchanged into digestion buffer, and incubated with papain-
coated agarose beads at 37 °C on a nutator for 5–7 h. The antibody
was removed from the coated papain-coated beads and the F(ab)
fragment was separated from Fc or undigested antibody using a Protein
G column (Pierce) and buffer-exchanged (Zeba filter, Pierce).

2.9. Rapid and Fluorometric ADCC Assay (RF-ADCC)

The RF-ADCC assay was performed as described (Mabuka et al.,
2012; Gómez-Román et al., 2006). In brief, CEM.NKr cells (AIDS
Research and Reference Reagent Program, NIAID, NIH) were double
labeled with a PKH26-cell membrane dye (Sigma Aldrich) and a
cytoplasmic-staining CFSE dye (Vybrant CFDA SE Cell Tracer Kit, Life
Technologies) and coated with gp120 protein (Immune Tech) for 1 h
at room temperature at a ratio of 1.5 μg of protein (1 μg/μL) per
1 × 105 double-stained target cells. Coated target cells were washed
once with complete RPMI media (Gibco) supplemented with 10% FBS
(Gibco), 4.0 mM Glutamax (Gibco) and 1% antibiotic-antimycotic (Life
Technologies). Monoclonal antibodies or plasma samples were diluted
in complete RPMI media and mixed with 5 × 103 target cells for
10 min at room temperature before PBMCs obtained from an HIV-
negative donor were added at a ratio of 50 effector cells: 1 target cell.
Coated target cells, antibody dilutions and effector cells were
co-cultured for 4 h at 37 °C before being fixed in 150 μL 1% parafor-
maldehyde (Affymetrix). Eighty percent (80%) of the cell volume
was acquired by flow cytometry (LSR II, BD) and ADCC activity
was defined as the percent of PE+, FITC-cells where background
(Ab-mediated killing of uncoated cells) was between 3–5% as
analyzed using FlowJo software (Treestar).

Relative ADCC activity was calculated by dividing the percent ADCC
activity at each dilution minus background by the maximum percent
ADCC activity measured across all dilutions. The data were plotted
with relative ADCC activity on the y-axis and log10 antibody concentra-
tion on the x-axis. The effective concentration 50 (EC50) was deter-
mined by fitting a sigmoidal dose–response curve to the data and
identifying the concentration responsible for 50% ADCC activity
(Graphpad Prism v6.0f).

2.9.1. Cross-clade Analysis
In the cross-clade ADCC assays, all antibodies including QA255 914

plasma IgG were tested at a single concentration. This concentration
was chosen based on experiments that defined peak ADCC activity
against Q461.d1-coated cells using a range of dilutions of the IgG.
Percent ADCC activity was reported if activity was 2-fold greater than
that measured in the presence of an influenza-specific Ab (FI6v3) after
subtracting away background (Ab-mediated killing of uncoated cells).
Antibodies that did notmediate activity against specific gp120swere in-
dicated to have no activity (NA).

2.9.2. Fab Blocking
In the Fab blocking experiments, gp120-coated target cells were

incubated with 25 μg/mL A32 or 17b Fab or 50 μg/mL C11 Fab for
10min at room temperature prior to addition of full-length antibody di-
luted to a concentration responsible for peak ADCC activity as described
above. Gp120-coated cells incubated with A32 or 17b Fab fragments
were washed once prior to addition of the competitor antibody and
the assay completed as described above. In order to maintain sufficient
reduction of autologous ADCC activity, C11 Fab was not washed away
prior to addition of full-length antibody. Relative ADCC activity is
defined as Ab-specific ADCC activity minus background in the presence
of each Fab as compared to Ab-specific ADCC activity in the absence of
the Fab. Average ADCC activity for each Ab in the absence of Fab was
set to 1.0.

2.9.3. LALA Inhibition
In order to ensure complete inhibition of autologous mAb controls,

the Q461.d1 gp120 protein was diluted to 37.5 ng/μL before coating
CEM cells. As in the C11 Fab experiments, gp120-coated CEMs were
incubated with 25 μg/mL LALA antibodies for 10 min prior to addi-
tion of full-length, wildtype effector antibodies. Plasma IgG was
mixed with coated, double-stained target cells at 2.5 μg/mL. Relative
ADCC activity is defined as autologous Ab, QA255.914 IgG or A32
activity minus background in the presence of the specified LALA
variant as compared to Ab-specific ADCC activity in the absence of
the LALA variant.

2.10. Antibody-dependent Cellular Viral Inhibition (ADCVI) Assay

1×107 CEM.Nkr.CCR5 cellswere spin-infectedwithQ461.d1 virus at
anMOI of 1 in the presence of 10 μg/mL polybrene at room temperature
for 2 h at 2300 rpm. Cells were then re-suspended in additional RPMI
medium plus 10 μg/mL polybrene and cultured for 72 h at 37 °C.
After cell-free virus was removed by three subsequent washing steps
5× 104 cellsweremixedwithHIV-specific Abs in triplicate 96-Ubottom
wells at a final concentration of 50 μg/mL in conjunction with effector
cells (PBMCs) at an effector: target cell ratio of 10:1. The mixture of in-
fected cells, antibody and effector cells were incubated together for
7 days. Virus production in the supernatantwas subsequentlymeasured
by p24 ELISA (Zeptometrix) according to the manufacturers protocol.
Percent ADCVI activity is expressed as the reduction in virus production
compared to a non-specific Ab control (Den3). Data are the average of
two independent experiments.

2.11. Graphics

Figures were prepared using Graphpad Prism (v6.0f).

3. Results

3.1. Isolation of Memory B Cells That Bound VLPs and Amplification of
HIV-specific Abs

WeusedHIVVLPs labeledwithGFP to isolate HIV-specificmemory B
cells from a study participant, QA255, who developed early cross-clade
neutralizing activity (Piantadosi et al., 2009; Bosch et al., 2010). We
used an equal mixture of two different VLPs to maximize our chances
of capturing both autologous and cross-reactive mAbs. VLPs generated
in this manner present primarily cleaved trimeric Env (Hicar et al.,
2010). One VLP population expressed the envelope from Q461.d1,
a clade A Kenyan strain that is recognized byQA255's contemporaneous
plasma, as well as HIV-specific mAbs directed against the CD4 binding
site, V1/V2 regions of gp120 protein and the MPER (Goo et al., 2012;
Blish et al., 2008). The second VLP expressed QA255.21P, an Env identi-
fied from the individual under investigation at 21 days post-infection.
One hundred and ninety-two VLP-binding memory B cells were
obtained from approximately 129,000 CD19+, CD27+ B cells isolated
from QA255 PBMCs at 914 dpi and sorted into individual wells of a
96-well plate.

Either a heavy or light chain variable region was amplified from 59%
of wells and both were amplified from 30% of wells. Multiple unique
heavy or unique light chain variable regions were amplified in 3 wells
and in one of these cases two unique heavy and two unique light
chain variable regionswere amplified. Thus, all combinations of the var-
iable heavy and light chains were tested from these three wells. Heavy
and light chain pairings resulted in 48 antibodies from 43 distinct
wells that expressed detectable IgG by ELISA (data not shown).
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One of the two VLPs used to sort B cells, Q461.d1 VLP, was used
to examine the antibodies for their ability to bind HIV Env protein. All
antibodies were screened for binding against both enveloped and
non-enveloped particles to discriminate HIV envelope-specific binding
from non-specific VLP binding. Twelve of the 48 (25%) antibodies
bound uniquely to the Q461.d1 VLP with endpoint titers (EPT) ranging
from 24 ng/mL to 10,000 ng/mL, the highest concentration tested
(Fig. 1A & B), and were thus considered to be HIV Env-specific.

Eight antibodies (17%) bound to both the enveloped and non-
enveloped VLP (Fig. 1A) with EPTs ranging from 0.61 to 10,000 ng/mL
and 0.70 to 7083 ng/mL for enveloped and non-enveloped VLPs,
respectively (Table S1). Further analysis of these eight antibodies
indicated that all of them bound to p24 protein as did anti-p24 specific
Ab 71-31, which also bound equally well to the enveloped and non-
enveloped VLP (Table S1). In contrast, two control antibodies that
were Env-specific (QA255.157 and QA255.105) did not bind to either
the p24 protein, or to the non-enveloped VLP (Table S1). Taken togeth-
er, these data suggest that this second subset of Abs (n = 8, 17%) were
HIV gag-specific.

No binding to either form of the Q461.d1 VLPs was detected with
28 of the 48 antibodies (58%; Fig. 1A), suggesting that they likely
originated either from B cells that were strain-specific and bound only
to QA255 VLPs (binding not tested) or were not HIV-specific, but were
still captured in the sorting process. A third explanation is that these
non-HIV specific Abs could have resulted from pairing of VH and VL

chains that were amplified from two unique B cells captured in the
same well that failed to reconstruct an HIV-specific mAb.

3.2. Three Antibodies Demonstrated Modest Neutralization Activity

All 48 antibodies were screened for neutralization activity against
Q461.d1. Among the 48 Abs tested, three neutralized Q461.d1 with
IC50 values ranging from 1.4 to 15.7 μg/mL (Table S2). Two of the
three antibodies, QA255.087 and QA255.187, demonstrated modest
cross-clade neutralization (IC50 1.6–10.8 μg/mL) against a second
neutralization-sensitive clade B variant SF162 (Table S2). However,
none of the three antibodies neutralized any of the 7 Tier 2 viruses at
the highest concentration tested (20 μg/mL) (Table S2).

3.3. Three Antibodies Demonstrated Potent ADCC Activity

We next screened the antibodies for ADCC activity using the Rapid
and Fluorometric ADCC (RF-ADCC) assay (Mabuka et al., 2012;
Gómez-Román et al., 2006). The lysis of gp120-coated target cells
measured by this assay reflects both the destructive activity of natural
Fig. 1. Specificity and binding properties of mAbs from QA255. (A) The percentage of
antibodies that bind only to Env VLPs, both Env and non-Env VLPs or neither VLP are
shown in a pie chart. The average endpoint titer for each of the 12mAbs that bound solely
to EnvVLPs are recorded inpanel (B). Endpoint titers represent the average of two or three
independent experiments.
killer cells as well as phagocytic activity of monocytes (Kramski et al.,
2012) and has been associated with clinical outcome in HIV infections
(Milligan et al., 2015). Since all of the variable heavy chain genes were
expressed in an IgG1 vector, an effector portion that is capable of
ADCC, any differences we observed in ADCC-activity would be due to
the binding interaction with the Ab VH & VL regions. Three antibodies,
QA255.105, QA255.157 and QA255.253, demonstrated ADCC activity
against Q461.d1 Env at least 2-fold higher than background mediated
by an influenza-specific monoclonal control, FI6v3 (Corti et al., 2011)
(data not shown). All three Abs were HIV envelope-specific based
on VLP binding results (Fig. 1B). Antibody QA255.105 bound the
Q461.d1 VLPs with an average EPT of 79 ng/mL, while QA255.157
and QA255.253 demonstrated more modest binding, with EPTs of
4170 ng/mL and 2500 ng/mL, respectively (Fig. 1B). QA255.105 also
demonstrated modest neutralizing activity (Table S2). Examination
of the endogenous IgG constant region sequence indicated that
QA255.157 and QA255.253 were originally encoded as an IgG1 isotype
(Table 1). Sequence datawas unavailable to identify the original isotype
of QA255.105.

To determine the potency of these three antibodies, we next
quantified both the concentration of antibody required for 50%
ADCC activity (50% effective concentration, or EC50) andmaximumper-
cent killing and compared these data to potent, well-characterized
ADCC-mediating Abs A32 (Moore et al., 1994a) and C11 (Moore et al.,
1994b). The average EC50 values of the three QA255 Abs ranged from
6.3 to 11.2 μg/mL, which were within 2–5 fold of A32 and C11 (average
EC50 2.2 and 3.3 μg/mL, respectively; Fig. 2A, B). All five antibodies
demonstrated similar maximum ADCC activity (Fig. 2C).
3.4. Antibodies That Demonstrated ADCC Also Mediated ADCVI Activity

While the RFADCC assay is of high relevance because its activity is
associated with improved outcomes in HIV, it mainly measures activity
to monomeric gp120, and not to the trimer found on virions and
infected cells. Therefore, to determine whether the mAbs identified
in the RF-ADCC assay also target envelope in its native state on infected
cells, we next tested the Abs in the ADCVI assay, which uses replication-
competent HIV (Forthal et al., 2007, 2001b). The activity in this assay
has also been linked with reduced viral levels (Hidajat et al., 2009;
Xiao et al., 2010; Brocca-Cofano et al., 2011; Florese et al., 2009),
suggesting it too measures a biologically relevant antibody activity.
We compared Abs QA255.157 and QA255.105 to a panel of nine mAbs,
some of which have previously been reported to mediate ADCVI,
including (i) CD4bs mAbs b12 (Hessell et al., 2007; Rosenberg
et al., 2013), b6 (Pantophlet et al., 2003), VRC01 (Rosenberg et al.,
2013; Wu et al., 2010), VRC03 (Wu et al., 2010), and 1F7 (Gach
et al., 2013), (ii) CD4i mAbs A32 (Moore et al., 1994a), and 17b
(Thali et al., 1993), (iii) V1–V2-dependent quaternary mAb PG9
(Walker et al., 2009) and (iv) glycan-dependent mAb 2G12 (Rosenberg
et al., 2013; Hessell et al., 2009b). Among all mAbs tested, the average
reduction in Q461.d1 virus output in the presence of mAb compared to
cultures with Den3, a dengue-specific anti-NS1 antibody (Hessell et al.,
2009b), ranged from 0–44.5%. MAbs QA255.105 and QA255.157 reduced
virus production on average by 43.7% and 40.9%, respectively, whichwas
equivalent to the average ADCVI activity of mAbs with the most
impressive activity, 17b (44.5%) and VRC01 (42.3%) (Fig. 3).

To further validate the utility of the results obtained with the
RF-ADCC assay, we also tested three mAbs that bound to the VLP, but
that did not mediate either neutralizing or RF-ADCC activity. Two
of the mAbs tested, QA255.016 and QA255.133 did not mediate
ADCVI activity greater than background levels obtained by Den3,
and QA255.006mediated modest ADCVI activity (21.9%) comparable
to PG9 (29.9%) and 1F7 (21.1%) (Fig. 3). Overall, the ADCVI assay
demonstrated that the mAbs identified with RF-ADCC assay, QA255.105
and QA255.257, demonstrate robust antibody-specific cell cytotoxic



Table 1
V,D and J gene characteristics for QA255 antibodies with neutralizing or ADCC activity.

Antibody Function
Original
isotype

Heavy chain Light chain

VH

gene

Percent
mutation from
germlinea

DH

gene
JH
gene

Percent
mutation from
germlineb

CDR3
length

Light
chain
gene

VL

gene

Percent
mutation from
germlinea

JL
gene

Percent
mutation from
germlineb

CDR3
length

QA255.087 Neutralization IgG1 1-69 6.94 4-11 6 14.52 28 Kappa 3-20 5.32 2 15.79 9
QA255.105 Both NAc 3-15 9.18 2-21 6 12.9 17 Kappa 3-20 7.45 2 5.26 9
QA255.157 ADCC IgG1 1-69 7.32 6-13 6 12.9 21 Kappa 3-20 3.94 5 0 8
QA255.187 Neutralization IgG1 1-69 8.74 2-2 5 5.88 18 Kappa 1-39 9.24 3 8.57 9
QA255.253 ADCC IgG1 1-69 8.63 3-3 5 3.92 25 Kappa 3D-20 7.8 3 5.26 10

a Percent mutation at the nucleotide level for the V gene as determined by imgt.org.
b Percent mutation at the nucleotide level for the J gene as determined by imgt.org.
c Sequence required to determine isotype was not available (NA) for this antibody.
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activity. Additional mAbs that mediate more moderate activity may also
be identified with the ADCVI assay.

3.5. Antibody QA255.105 Targeted a V3-specific Linear Epitope

ADCC-mediating antibodies target both linear and discontinuous
epitopes on gp41 and gp120, including CD4i epitopes, the CD4bs,
and V1–V2 and V3 regions (Pollara et al., 2013; Guan et al., 2013).
To determine the epitope specificity for each of the three mAbs,
we first tested whether any bound to linear peptides representing the
V1 (N-terminal, V1–V2 junction), V2 (N-crown, C-crown, C-terminal) or
V3 (N-terminal, C-terminal) regions of Q461.d1 (Blish et al., 2010).
None of the antibodies reacted against linear peptides representing the
V1 and V2 peptides or the V3 C-terminal region (data not shown). How-
ever, mAb QA255.105 demonstrated strong binding with an EPT of
2.4 ng/mL to the N-terminal peptide of V3 as did a V3-peptide specific
control, mAb 447-52D (EPT 156 ng/mL, Fig. 4A). To narrow down the
Fig. 2.QA255mAbADCC potency. (A) The relative ADCC activity of three QA255mAbs, A32 and
average EC50 (ng/mL) value fromall experiments is recorded for eachmAb in (B). C)Maximump
representative data from 3–5 independent experiments and error bars represent the standard
region targeted by mAb QA255.105, we measured antibody binding
against 14-mer linear peptides spanning the V3 N-terminal region from
the Consensus A peptide sequence (NIH AIDS Repository, Fig. 4B).
While QA255.105 did not bind peptides 072, 073 or 075,
it demonstrated strong binding with an EPT of 39 ng/mL against peptide
074 (Fig. 4C–F). The V3-specific, positive control mAb 447-52D bound
peptide 073 with an EPT of 2500 ng/mL and weakly bound peptide 074
(EPT 10,000 ng/mL) but not peptides 072 or 075 (Fig. 4C–F). These obser-
vations are expected based on the accessibility of the 447-52D target epi-
tope within each peptide (Stanfield et al., 2004; Cardozo et al., 2009).

To determine whether QA255.105 V3-specific binding was present
as a significant fraction of QA255 plasma, we also examined QA255
plasma IgG from 914 dpi. The plasma IgG bound to the Q461.d1 V3
N-terminus but not the V3 C-terminus peptide (EPT 2500 ng/mL,
Fig. 4A and data not shown), supporting the presence of QA255.105-
like Abs in this plasma. Additionally, the plasma bound uniquely to
Consensus A peptide #074 and did not demonstrate measurable
C11 is shown on the y-axis versus log10 antibody concentration (ng/mL) on the x-axis. The
ercent ADCCactivity is reported for eachmAbas indicated on the x-axis. Panels A and C are
deviation from duplicate measurements.

http://imgt.org
http://imgt.org


Fig. 3.QA255 mAb ADCVI activity. Percent ADCVI activity for QA255 mAbs and 10 control
mAbs is shown on the y-axis. These data are the average of triplicate measurements
combined from two independent experiments performed using unique PBMC donors
where error bars indicate the standard deviation. MAbs from QA255 that mediate ADCC
are shown in green and those that bound VLPs but did not mediate ADCC are shown in
yellow. All control mAbs are shown in gray.
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binding against the other three peptides (Fig. 4C–F), suggesting that
QA255.105-like Abs constitute the majority of QA255 plasma IgG
V3-specific binding activity.

3.6. Antibodies QA255.157 and QA255.253 Targeted a CD4-induced,
C11-like Epitope

As neither QA255.157 nor QA255.253 bound to any of the linear
peptides, we considered the possibility that these Abs targeted a
conformationally-dependent epitope. Given their potency, we hypoth-
esized that the Abs may target a CD4-induced epitope. To test this hy-
pothesis, we performed a competition ADCC assay using Fab
fragments generated from mAbs A32, C11 and 17b, where A32 and
C11 target non-overlapping regions within CD4i Cluster A and 17b tar-
gets CD4i Cluster C.While bothA32 and 17b Fab inhibited ADCC activity
mediated by the autologous variant with complete effector function by
at least 90%, neither Fab inhibited ADCC activity of any of the three an-
tibodies (Fig. 5A, B). In contrast, C11 Fab, when tested at a concentration
resulting in 69% average inhibition of autologous ADCC activity, was ca-
pable of inhibiting between 83% and 88% of QA255.157 and QA255.253
ADCC activity, respectively (Fig. 5C). The ADCC activity of the V3-
specific Ab QA255.105 was unaffected by pre-incubation with A32,
17b or C11 Fab (Fig. 5A–C). C11-like antibody activity was confirmed
when pre-incubation of Q461.d1 gp120-coated plates with serial dilu-
tions of Abs QA255.157 or QA255.253 inhibited binding of biotinylat-
ed, full-length C11 antibody (Bt-C11) by 80% and 72%, respectively, at
the highest concentration tested, suggesting that the binding and inhi-
bition pattern between QA255.157, QA255.253 and C11 is reciprocal.
As observed in the Fab blocking experiments, pre-incubation with Ab
QA255.105 did not inhibit Bt-C11 binding (Fig. 5D).

3.7. CD4-induced, C11-like Antibodies Demonstrated Strong Cross-clade
ADCC Activity

In addition to potency, breadth is likely a critical characteristic of a
protective ADCC-mediating antibody due to the extensive diversity of
HIV. Because the cross-clade ADCC breadth of CD4-induced antibodies
remains incompletely defined, we evaluated ADCC activity of the
two C11-like Abs and the one V3-specific Ab identified here against a
panel of 11 gp120 proteins from clades A, B, C, A/D and C/D. We also
examined the prototype CD4i Ab C11 as the breadth of this mAb has
not been well characterized. The envelope panel encompassed 3 clade
A gp120s, including the QA255 autologous gp120 obtained 21 days
post infection, 3 clade B, 2 clade C, 1 clade A/D and 1 clade C/D gp120
and SIVmac239 gp120 as a negative control. Because PBMC donor
variability can affect percentADCCkilling, we have reported the average
of experimental duplicates from two separate donors. Two of the three
antibodies tested, QA255.157 and QA255.253, as well as CD4i mAb C11,
demonstrated ADCC activity against all clade A and A/D gp120s, both
clade C and C/D gp120s and two of three clade B gp120s using PBMCs
from both donors (Fig. 6). Neither mAbs QA255.157, QA255.253 nor
C11 could mediate activity against cells coated with clade B YU2
gp120. Antibody QA255.105 demonstrated consistent ADCC activity
against clade A gp120 BG505, clade A/D gp120 BL035 and one clade C
gp120 CAP210. None of the antibodies demonstrated measurable
activity against SIVmac239 gp120-coated CEM cells (Fig. 6).

3.8. QA255.17 and QA255.253-like Abs Contributed to QA255
Plasma-mediated ADCC Activity

To determine whether the mAbs we isolated accounted for the
breadth of ADCC activity in QA255, we screened QA255 plasma IgG
obtained 914 dpi – the same time point at which the mAbs were
isolated – against the panel of 11 envelopes. The dilution used for
QA255 plasma IgG was identified as the concentration resulting
in peak ADCC activity against cells coated with Q461.d1 and
QA255.21P.A17 gp120s (Fig. S1). Similar to Abs QA255.157 and
QA255.253, QA255 plasma IgG mediated consistent ADCC activity
against two of three clade A gp120s, all three clade B gp120s,
both clade C gp120s as well as Clades A/D and C/D gp120 proteins
(Fig. 7A). Modest ADCC activity was detected against the third
clade A gp120 protein, BG505, using one of two PBMC donors
(Donor 2). Overall, mAbs QA255.157 and QA255.253mediated activ-
ity against 10 of the 11 gp120s targeted by QA255.914 dpi plasma.

Because QA255.157 and QA255.253 recapitulated the majority of
QA255 plasma breadth, we next addressed whether QA255.105 or
QA255.157-like antibodies contributed to QA255 plasma potency and
how quickly these mAbs may have developed following infection.
To address this question, we generated a LALA mutation in the CH2
region of all three antibodies to eliminate binding to FcRs and comple-
ment (Hezareh et al., 2001; Shields et al., 2001) and tested whether
these LALA variants could inhibit QA255 plasma IgG isolated from 6
time points ranging from 89 dpi to 914 dpi. As expected, introduction
of the LALA change did not affect binding to Q461.d1 gp120 protein
(Fig. S2A) but did abrogate ADCC activity at all Ab concentrations tested
(Fig. S2B). Additionally, pre-incubation of Q461.d1 Env-coated target
cells with each of the LALA variants resulted in almost complete
inhibition of autologous Ab-mediated ADCC activity but had no effect
on Ab A32 ADCC activity thus demonstrating the LALA Abs' specificity
(Fig. S2C & S2D). When the LALA variants were used in competition
with QA255 plasma IgG, pre-incubation with QA255.157 LALA reduced
ADCC activity by 23–47% across all time points beginning at 189 dpi.
Similarly, pre-incubation with QA255.253 LALA inhibited ADCC ac-
tivity by 15–38%. Neither LALA variant reduced ADCC activity at the
first 89 dpi time point despite measurable ADCC activity (Fig. 7B).
Pre-incubation with QA255.105 LALA had no effect on QA255 914 dpi
plasma IgG ADCC activity (Fig. S2D, right panel). Thus, these data
indicate that C11-like Abs developed within the first six months
following infection and were maintained through at least 914 dpi.

3.9. QA255.157 and QA255.253-like ADCC Activity is Common in
HIV Infection

Little is known about whether ADCC-mediating, C11-like
antibodies routinely contribute to ADCC activity. To determine
how commonly these responses develop following HIV infection,
we examined plasma obtained ~3 years post infection from 10 chroni-
cally infected individuals from the Mombasa cohort for ADCC-
mediating antibodies targeting the same C11-like epitope. Plasma
from 9 of the 10 women demonstrated measurable ADCC activity.
Among the 9 women, QA255.157- and QA255.253-like antibodies
contributed between 29–75% and 18–78%, respectively, of total ADCC



Fig. 4.QA255mAbbinding to V1, V2 andV3 linear peptides. Panel (A) showsQ461.d1V3-N terminal peptide binding expressed as optical densitymeasured at 450nMon the y-axis versus
log10 antibody concentration (ng/mL) on the x-axis. These data are representative of two independent experiments where each antibody was run in duplicate and error bars indicate the
standard deviation. (B) Alignment of Q461.d1 and Consensus A V3 peptides. Q461.d1 V3 N-terminal linear peptide (22-mer) is colored in pink, V3 C-terminal linear peptide (22-mer) is
colored in blue and the overlap contained in both peptides colored in purple. Residue changes between theConsensusA Peptide sequence andQ461.d1 V3peptide are noted for each of the
four linear peptides. (C–F) Binding to 14-mer Consensus A peptides #072 (C), #073 (D), #074 (E), #075 (F), expressed as optical density measured at 450 nm, is shown on the y-axis
relative to log10 antibody concentration (ng/mL) on the x-axis. In all panels, data are representative of two independent experiments and error bars indicate the standard deviation
from duplicate measurements. The limit of detection (LOD) is shown as a dotted line.
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activity (Fig. 7C). Taken together, these data suggest that among ADCC-
mediating antibodies, C11-like antibodies are routinely produced and
may account for as much as 78% of an individual's ADCC-mediating
antibody repertoire.

3.10. QA255.157 and QA255.253 Originated From Unique B Cells

Gene usage for the five antibodies identified in this study demonstrat-
ed patterns compatible with previous reports (Bonsignori et al., 2012;
Hicar et al., 2010; Scheid et al., 2011; Stanfield et al., 2004; Li et al.,
2012). Four of the five neutralizing and ADCC-mediating antibodies
were encoded by IgVH gene VH1-69. Ab QA255.105, which mediated
both modest neutralizing and ADCC activity, was instead encoded by
IgVH gene VH3-15, as are other V3-specific antibodies, including Ab
447-52D (Stanfield et al., 2004). Despite being encoded by the same
VH gene, both ADCC-mediating Abs QA255.157 and QA255.253 that
targeted the same epitope use different DH and JH genes and have
unique CDR3 regions, suggesting that they originated from different B



Fig. 5. CD4i Fab inhibition of QA255mAb ADCC activity. (A–C) Relative ADCC activity for mAbs specified on the x-axis is shown in the presence (lightly shaded bars) and absence (darker
shaded bars) of A32 Fab (A, green), 17b Fab (B, blue) and C11 Fab (C, purple). Data represent the average of two independent experiments and error bars indicate the standard deviation
from duplicate measurements. (D) Relative Bt-C11 activity is expressed on the y-axis versus log10 antibody concentration (ng/mL) of the competitor mAb on the x-axis. Data are
representative of two independent experiments and error bars indicate the standard deviation from duplicate measurements.
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cells (Table 1). Thus, these data provide evidence that the epitope
stimulating development of these C11-like antibodies is able to induce
similar antibody production from B cells of unique clonal lineages.
The percent mutation from the predicted germline sequence was
9.2%, 7.3% and 8.6% for QA255.105, QA255.157 and QA255.253
respectively (Table 1), consistent with previous observations for
ADCC-mediating and weakly neutralizing Abs but in contrast to the
significant somatic hypermutation observed with many bnAbs such
as the VRC01/VRC03, CH30–CH34 and PGT families (reviewed in
(Corti and Lanzavecchia, 2013)).

4. Discussion

Adetailed understanding of the epitope specificity of ADCC-mediating
antibodies is a pre-requisite for developing effective immunization strat-
egies that optimize protection by these antibodies. In comparison to the
wealth of data characterizing bnAbs, surprisingly little is known about
the characteristics defining a broad and potent ADCC-mediating immune
response. In this study, we describe a method to identify memory B cells
producing ADCC-mediating antibodies fromHIV-infected individuals.We
applied thismethod to isolatemAbs from an individualwith a cross-clade
ADCC and neutralizing Ab response (Bosch et al., 2010). The three ADCC
antibodies identified heremediate potent ADCC activity, and competition
studies suggest that two target a CD4-induced epitope that resembles the
epitope bound by the C11 antibody. Subsequent analysis determined that
these two mAbs, QA255.157 and QA255.253, demonstrated impressive
cross-clade breadth, mediating activity against 10 of 11 envelopes tested
from clades A, B and C.When expressed as LALA variants, Abs QA255.157
Fig. 6. QA255mAbADCC breadth. ADCC activity ofmAbs indicated at the top of each panel was a
one Clade A/D (purple), one Clade C/D (yellow) and one SIV-macaque gp120 variant(s) as spec
PBMCs from two unique donors (Donor 1 & Donor 2) and are an average of duplicate measurem
not mediate ADCC activity against the specific gp120 protein.
and QA255.253 inhibited QA255 plasma IgG activity consistently beyond
189 dpi. Thus, these data provide evidence that CD4i antibodies that
target an epitope also bound by mAb C11 constitute a substantial ADCC
response and that these antibodies contribute to ADCC activity within
the first six months of infection.

Previous reports using VLP screening strategies identified 0.2 to 1.8%
of PBMCs as HIV-specific B cells (Hicar et al., 2010; Li et al., 2012).
Similarly, we identified 1.44% of CD19+, CD27+ cells to bind VLPs.
Among the 192 VLP-binding B cells, functional antibodies were rescued
from 48, 12 of which were confirmed to be HIV-envelope specific.
Surprisingly, 8 of 48 antibodies were specific for Gag p24 and bound
to both the non-Env VLP and Env VLPs. The isolation of Gag-specific
mAbs may be the result of some low level Gag protein on the VLP sur-
face or some partial disruption of the lipid envelope of the purified
VLPs. Further characterization of the functional activity of anti-gag
specific antibodies may be warranted, as early reports have suggested
that Gag proteins may accumulate on the surface of infected cells
(Ikuta et al., 1989; Nishino et al., 1992) though anti-p24 ADCC activity
has been sparsely studied to date (Grunow et al., 1995).

The assay used to define the breadth and potency of these ADCC-
mediating antibodies is particularly relevant because it has been
shown to measure activity that correlates with protection in multiple
studies, including both human cohorts (Milligan et al., 2015; Mabuka
et al., 2012) and macaques (Gómez-Román et al., 2005; Hidajat et al.,
2009; Xiao et al., 2010; Barouch et al., 2012). Although the relevance
of this assay for predicting important outcomes is relatively well
established compared to other ADCC assays, the mechanistic basis for
killing in the RF-ADCC assay remains somewhat poorly defined. All
ssessed using gp120s from three Clade A (blue), three Clade B (green), two Clade C (pink),
ified on each x-axis. Percent ADCC activity is shown on the y-axis. Data are reported using
ents with error bars indicating the standard deviation. ‘NA’ indicates that the antibody did
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three antibodies, irrespective of epitope specificity, demonstrated com-
parable potency in the RF-ADCC assay to Abs A32 and C11 — two Abs
identified as the most potent ADCC Abs in a study of 41 CD4i-specific
Abs (Guan et al., 2013). Both the CD4i-specific and V3-specific mAbs
isolated here mediated ADCVI activity that was superior to A32 and
most othermAbs known tomediate ADCVI, indicating potent inhibitory
activity against replicating virus. Interestingly, the two mAbs that
targeted the C11-like epitope, QA255.157 and QA255.253, demonstrat-
ed weak binding to the enveloped VLP. Prior studies have shown that
CD4i-directed mAbs capable of ADCC generally bind poorly to the solu-
ble envelope trimer (Moore et al., 2006; Tong et al., 2013; Ray et al.,
2014) presumably due to epitope inaccessibility in the absence of
cellular CD4 (Acharya et al., 2014; Veillette et al., 2014; Pancera et al.,
2010). Nonetheless, these mAbs showed activity in the ADCVI
assay where reduction in virus outgrowth is the result of blocking
virus spread, thus suggesting these mAbs can indeed target trimer-
expressing cells. Given the heterogeneity observed within envelope
variants present on the surface of virions and VLPs alike (Moore et al.,
2006; Tong et al., 2013; Poignard et al., 2003), it remains to be
determined what envelope structure bound to the BCRs encoding the
CD4i Abs identified in this study.

Because median genetic variation within the Env glycoprotein is
estimated to be 25% between subtypes (Korber et al., 2001; Gaschen
et al., 2002), ADCC-mediating antibodies must be able to target cells
infected with genetically distinct viruses in order to adequately pre-
vent infection. Thus, antibody breadth is likely to be important for a
protective ADCC-mediating response. Recent data has suggested that
HIV controllers demonstrated ADCC activity against a broader range
of envelopes (median of 8 different gp120 proteins) than HIV
progressors (median of 1 gp120) (Madhavi et al., 2014). Of the 10
envelope proteins we tested, Abs QA255.157, QA255.253 and C11
were able to mediate activity against all of the gp120-coated target
cells except the cells coated with one clade B virus, YU2. These latter
data were unexpected as C11 binding to both YU2 gp120 monomer
(Kwong et al., 2002) and CD4-bound YU2 trimer expressed on cells
have been reported (Veillette et al., 2014). It is unclear whether
these discrepancies reflect differences in assay conditions or in the
protein preparations tested. When compared with data from QA255
914 dpi plasma IgG, QA255.157 and QA255.253 were each able to
recapitulate 91% of ADCCbreadth. Interestingly, a number of gp120pro-
teins against which both CD4i antibodies were able to mediate activity
included Tier 2 viruses BG505.W6M.C2 (clade A), WITO4160 (clade
B), DU422.1 (clade C) and Cap210.2.00.E8 (clade C) that are less suscep-
tible to neutralizing antibodies. Few reports have tested large-scale
panels of envelopes to determine the ADCC breadth of either mAbs or
infected plasma. Of the antibodies produced from vaccine recipients,
only one of 21 mAbs were able to mediate ADCC activity against four
chronically infected cell lines expressing envelope from distinct HIV
clades (Bonsignori et al., 2012). Thus, the study presented here provides
strong evidence that mAbs targeting CD4i epitopes can mediate broad
cross-clade ADCC activity, suggesting that such antibodies could be
valuable as part of a vaccine response.

The third ADCC-mediating antibody identified through our sorting
strategy, QA255.105, targets the N-terminus of V3. This Ab exhibits
stronger binding to Env VLPs, comparable ADCC potency but less
breadth in comparison to the two CD4i Abs. Our data coincides with
data reported in Bonsignori et al. (2012), where they also identified
one V3-specific Ab from a vaccine recipient (Bonsignori et al., 2012).
This Ab similarly demonstrated strong ADCC potency with limited
breadth and weak nAb activity. Because the V3 N-terminal region is a
fairly heterogeneous region of epitope specificity, it is perhaps not
surprising that Ab QA255.105 displayed limited ADCC breadth.

A32-like ADCC responses have been reported to comprise at least
50% of the ADCC-mediating antibody response in most chronically
infected and vaccinated individuals (Ferrari et al., 2011; Bonsignori
et al., 2012). Here we observed that most individuals, including
QA255, also produce Abs similar to C11 that target a distinct CD4i
epitope, suggesting that a combination of Abs with different CD4i spec-
ificities may be contributing to plasma-mediated ADCC activity. Both
A32 and C11 recognize discontinuous epitopes within close proximity
to each other— specifically A32 to the conformational interface between
gp120 and gp41 (Guan et al., 2013; Acharya et al., 2014; Pancera et al.,
2010; Finzi et al., 2010) and C11 to the seven-stranded B-sandwich and
N- and C-terminus of gp120 (Guan et al., 2013; Pancera et al., 2010;
Gohain et al., 2015). Because of their close proximity, both epitopes
are found on the electronegative face of gp120 that is obscured by
gp41 and only becomes exposed subsequent to CD4 binding via HIV
entry or cell-to-cell fusion (Guan et al., 2013; Finnegan et al., 2001;
Mengistu et al., 2015). Recent observations using fluorescence correla-
tion spectroscopy have identified that both A32- and C11-like epitopes
become exposed within minutes of incubation of HIV and target cells,
further validating that these CD4i epitopes are opportune targets of the
humoral immune response at extremely early stages of HIV infection
(Mengistu et al., 2015). Further studies to identify differences in epitope
conformation that result in the production of A32-like or QA255.157-
and QA255.253-like antibodies therefore may be useful in guiding effec-
tive vaccine design.

Vaccination strategies designed to induce consistent production
of bnAbs currently face a number of concerns, including the length of
time required to develop the Abs, the amount of somatic hypermutations
required todevelop strongneutralizing activity, and the relative rarity of B
cells capable of inducing bnAb progenitors. We, and others, have clearly
demonstrated that ADCC activity can be measured within the first few
months following HIV infection in humans, and as early as 3 weeks in
some NHP studies (Alpert et al., 2012; Dugast et al., 2014a; Chung et al.,
2011b). Regarding QA255.157 and QA255.253, the amount of somatic
hypermutation recorded for the two CD4i Abs was b10%, similar to that
reported from ADCC-mediating Abs identified from RV144 recipients
(Bonsignori et al., 2012), but significantly less than the 21% to 37%
required for potent bnAbs such as the CD4bs-specific VRC and CH30-34
(Wu et al., 2011; Wu et al., 2010) and the complex V3 glycan-specific
PGT families (Walker et al., 2011; Mouquet et al., 2012). Finally, both
QA255.157 and QA255.253 were derived from VH1-69 genes but use dis-
tinct DH, JH and light chain genes, implying that each antibody originated
froma unique B cell, rather than somatic variants of the sameB cell. Taken
together, these observations suggest that development of a strong ADCC-
specific Ab response may be less affected by the challenges associated
with development of a robust bnAb response.

In conclusion, we propose that VLPs that express multiple forms of
envelope protein may be a novel method for identifying memory B
cells producing ADCC-mediating antibodies. We have found that two
Abs with broad and potent ADCC activity originated from unique B
cells and showed lessmutation from germline than bnAbs. These obser-
vations, along with our finding that these responses can be detected
within sixmonths of infection and are common amongHIV-infected in-
dividuals, suggest that this epitope is a versatile target for HIV-specific
ADCC-mediating antibodies. Further, eliciting such broadly reactive
ADCC Abs may not pose some of the challenges associated with the
development of bnAbs. Because ADCC-mediating antibodies target
infected cells, therapeutic vaccine strategies designed specifically to
elicit ADCC-mediating Abs may be helpful in augmenting approaches
to reduce viral reservoirs. Future studies streamlining methods to char-
acterize both the host and viral factors governing the development of
ADCC-mediating antibodies will be critical in guiding vaccine strategy
to elicit broad ADCC-mediating antibodies.
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