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Precision medicine has become a novel and rising concept,
which depends much on the identification of individual
genomic signatures for different patients. The cancer cell lines
could reflect the “omic” diversity of primary tumors, based on
which many works have been carried out to study the cancer
biology and drug discovery both in experimental and com-
putational aspects. In this work, we presented a novel method
to utilize weighted graph regularized matrix factorization
(WGRMF) for inferring anticancer drug response in cell lines.
We constructed a p-nearest neighbor graph to sparsify drug
similarity matrix and cell line similarity matrix, respectively.
Using the sparsified matrices in the graph regularization terms,
we performed matrix factorization to generate the latent
matrices for drug and cell line. The graph regularization terms
including neighbor information could help to exclude the noisy
ingredient and improve the prediction accuracy. The 10-fold
cross-validation was implemented, and the Pearson correlation
coefficient (PCC), root-mean-square error (RMSE), PCCsr, and
RMSEsr averaged over all drugs were calculated to evaluate the
performance of WGRMF. The results on the Genomics of Drug
Sensitivity in Cancer (GDSC) dataset are 0.64 ± 0.16, 1.37 ±
0.35, 0.73 ± 0.14, and 1.71 ± 0.44 for PCC, RMSE, PCCsr,
and RMSEsr in turn. And for the Cancer Cell Line Encyclopedia
(CCLE) dataset, WGRMF got results of 0.72 ± 0.09, 0.56 ± 0.19,
0.79 ± 0.07, and 0.69 ± 0.19, respectively. The results showed
the superiority of WGRMF compared with previous methods.
Besides, based on the prediction results using the GDSC data-
set, three types of case studies were carried out. The results
from both cross-validation and case studies have shown the
effectiveness of WGRMF on the prediction of drug response
in cell lines.
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INTRODUCTION
Benefiting from the development of high-throughput sequencing
technology and the improvement of bioinformatics, the precision
medicine has become a novel and burgeoning concept.1 The goal of
precision medicine is to effectively classify the different states and
processes for the same disease, and personally make accurate treat-
ment for the individual patient.2 It is critical for the success of preci-
sion medicine to identify individual genomic signatures for different
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patients.3 Cancer is one of the most threatening human complex
diseases. The cancer cell lines could reflect the “omic” diversity of pri-
mary tumors, which therefore could be considered as a promising
proxy to characterize the therapeutic response.4 Using cell lines,
many works have been carried out to study the cancer biology and
drug discovery both in experimental and computational aspects.5–7

As the basis of in-depth researches, tremendous genomic and phar-
macological data have been collected and categorized in large scale
for diverse cancer cell lines.4,8–12 The consequential mission is to
develop powerful methods to extract useful information from those
complicated datasets and find the connections between the cancer in-
formation and the drug response.

Because experiments are expensive and time-consuming, computa-
tional approaches have been developed for tumorous drug response
study, which are attracting more and more researchers’ atten-
tions.13–15 There are mainly two classes of computational models to
predict drug response in cancer cell lines. The first one is based on
machine learning algorithms, such as elastic-net regression,16 support
vector machine (SVM), and random forest (RF).17 For instance, Men-
den et al.18 proposed a machine learning method for drug sensitivity
inference, which utilized neural network and RF as predictors. In their
model, they combined cell line genomic features and drug chemical
structures to be the input features, and collected response data from
the Genomics of Drug Sensitivity in Cancer (GDSC) project as the
training samples. The prediction accuracy of the method in 8-fold
cross-validation was improved because of the integration of informa-
tion from both cell lines and drugs. Besides, Fersini et al.19 presented a
computational framework using the Consensus p-Median clustering
approach for drug response inference in tumor cell lines. They
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performed the Consensus p-Median clustering algorithm to create
homogeneous groups of tumor cell lines, based on which the relevant
genes that could be responsible for drug responses were selected to
characterize the cell line clusters. Then, the Bayesian networks were
constructed for the prediction of different drug responses for cell lines
with given genomic profiles. Geeleher et al.20 proposed a framework
that adopted only the before-treatment gene expression profile to
predict the drug response. After the gene expressions of cell line
and clinical trial were combined and homogenized, the linear ridge
regression was trained and tested, which could be implemented to
predict drug sensitivity for new cell lines. Furthermore, Tan et al.21

devised a classifier based on SVM with pairwise kernels for the
classification of drug responses. The chemical compound was repre-
sented with labeled undirected graph and fingerprint, whereas the cell
line was characterized using gene transcriptional profile, gene copy
number, gene mutational status, and microRNA expression informa-
tion. Based on diverse features of drug and cell line, several different
kernels, especially the pairwise kernel, were employed through
computing drug similarity and cell line similarity in different ways.
Similarly, combining various similarity information, Wang et al.22

presented a model called Predict Drug Response in Cancer Cells
(PDRCC) to infer novel drug responses in cancer cells. The PDRCC
calculated several drug similarities and cell line similarities based on
diverse feature information. Then, they calculated the Kronecker
product of any similarity of drug and cell line as the drug-cell line
pair kernel function, which was sequentially fed to SVM to predict
drug responses. Besides, based on SVM and a recursive feature selec-
tion tool, Dong et al.23 developed a predictor, using gene expression of
cancer cell and drug response data in the Cancer Cell Line Encyclo-
pedia (CCLE). They classified the cell lines into sensitive and resistant
subsets according to their responses to each drug. Then, a wrapper
method named Support Vector Machine Recursive Feature Elimina-
tion (SVM-RFE) was used for the feature selection. The classified re-
sponses and the selected features from CCLE data were finally input
to the SVM model for training and predicting.

As is known, the training dataset and the feature of samples are vitally
important to machine learning models. To solve the problem of
different source domains of the training and test datasets, Turki
et al.24 presented a transfer learner for inferring drug response in can-
cer cell lines, usingmean shift and Procrustes analysis. Honkela et al.25

proposed an approach that integrated differentially private learning
and Bayesian linear regression, for drug sensitivity prediction with
limited dataset. As a subtype of transfer learning, the multi-task
learning models have shown their capability for drug response infer-
ence. For example, Gönen et al.26 developed a Kernelized Bayesian
Multi-task Learning (KBMTL) for inference of drug response in cell
lines, which employed kernel-based dimension reduction. Besides,
Tan27 presented an approach using multi-task learning regularized
with trace-norm to improve the kernelized transfer learning for
anticancer drug response prediction. Similarly, Yuan et al.28 also
developed a multi-task learning method with trace-norm regulariza-
tion, in which an efficient optimization algorithm called alternating
direction method of multipliers (ADMM) was adopted.
Ensemble learning has been widely used in prediction problems of
bioinformatics such as disease-specific risk variant prediction29 and
disease-related non-coding RNA prediction.30–35 For drug response
prediction, Tan et al.36 proposed an Ensemble Learning for Drug
Activity Prediction (ELDAP), which incorporated elastic net regres-
sion, KBMLT, pairwise support vector regressor (PSVR), and neural
networks. Recently, Matlock et al.37 studied the effect of stacking three
different machine learning algorithms that included RF, deep learning
(DL), and k-nearest neighbor (KNN) for inference of drug response in
cancer cell lines. The results revealed the ability of the ensemble
models to improve the prediction accuracy.

Within machine learning methods, matrix factorization is an efficient
class of models for drug response inference. For example, Ammad-
ud-din et al.38 developed a method to extend quantitative structure-
activity relationship (QSAR) analysis of drugs in cancer cell lines,
which applied the kernelized Bayesian matrix factorization (KBMF)
algorithm. They calculated kernel matrices for each type of feature
for both drug and cell line through computing Jaccard coefficient
or Gaussian kernel. Moreover, Wang et al.39 recently proposed an
improved method for drug response inference in cancer cell lines,
which utilized the similarity regularized matrix factorization (SRMF).

Machine learning models could infer drug response in cell lines in
large scale, which often neglected the topological information of
drug similarity and cell line similarity. The network-based models
could remedy the limitation. Shivakumar et al.40 proposed a drug
structural similarity-based model to predict drug sensitivity in cell
lines, which assigned the sensitivity profile of the known drug to
the new drug if they were structurally similar. Zhang et al.41 estab-
lished a dual-layer network composed of cell lines and drugs, utilizing
the cell line similarity based on their gene expression profiles, and
drug similarity based on their chemical structures. On the basis of
the dual-layer network, they proposed a weighted method to predict
the response of a cell line to a drug. Moreover, Kim et al.42 predicted
the drug response of cancer cell lines using a network-based classifier
(NBC). In this method, a sensitive network and a resistant network
were respectively constructed using selected genes, based on which
linear and non-linear predictor functions were designed for gene
expression prediction, which could be used to classify a new cell
line via comparing the results from the sensitive and resistant
networks. Turki et al.43 utilized a link-filtering algorithm on the cell
line network followed with regression algorithms to predict the
cancer drug sensitivity. Moreover, Stanfield et al.44 integrated the in-
formation of genes, cell lines, and drugs to construct a heterogeneous
network, on which a link prediction with random walk with restart
(RWR) was performed to build the network profiles of cell lines
and drugs. Finally, the Pearson correlation coefficients (PCCs)
between drugs and cell lines were calculated for drug-cell line associ-
ation prediction. Recently, Zhang et al.45 developed a model of
Heterogeneous Network-based Method for Drug Response
Prediction (HNMDRP) through integrating five subnetworks,
including cell line similarity network, drug similarity network,
target similarity network, drug-cell line association network, and
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drug-protein network. An information flow-based algorithm was
then implemented on the heterogenous network to predict novel
drug-cell line associations. In addition, Le et al.46 also constructed a
heterogeneous network by combining omics-based cell line similarity,
drug structural similarity, and known drug responses of cell lines,
based on which a global method called GloNetDRP was implemented
for drug response prediction. The RWR algorithmwas adopted in this
model to compute the response value of test cell lines to test drugs.

Previous computational methods often have their own limitations.
For instance, some machine learning-based models predict only
binary results; i.e., they classify cell line-drug pairs into sensitive or
resistant groups. Some network-based models could be used to pre-
dict new drug-cell line associations, but cannot give the precision
response values. And some other models have the need to improve
their prediction accuracy. In this paper, we presented a novel
approach to infer drug response in cancer cell lines using the weighted
graph regularized matrix factorization (WGRMF) algorithm. For
drug similarity and cell line similarity, a sparsification technique
was operated using the p-nearest neighbor graphs that were con-
structed for drug and cell line, respectively, based on the KNN algo-
rithm. The sparsified similarity matrices were then used to regularize
the latent matrices learnt from matrix factorization together with Ti-
khonov regularization. Consequently, the latent drug vectors and
latent cell line vectors could be obtained, respectively, through an
alternative update operation. The predicted response matrix was
finally computed via multiplying the two low-rank latent matrices.
The performance of our model was evaluated in the 10-fold cross-
validation through calculating the PCC and root-mean-square error
(RMSE) between predicted values and observed values in two data-
sets, CCLE and GDSC. The results demonstrated the superiority of
WGRMF compared with SRMF, which directly used the drug similar-
ity and cell line similarity as regularization terms in the matrix factor-
ization model.39 In the case studies, we compared the predicted values
of missing drug responses and the known response values in GDSC to
investigate the correlation between drug sensitivity and several gene
variations, such as lapatinib sensitivity and erlotinib sensitivity to
the Epidermal Growth Factor Receptor (EGFR) gene, PD-0332991
sensitivity to Cyclin Dependent Kinase Inhibitor 2A (CDKN2A)
gene, as well as pazopanib resistance of KRAS Proto-Oncogene,
GTPase (KRAS). Moreover, we found that the results of WGRMF
could help to identify new sensitive genes of drugs through combining
predicted data with existing data. The association between MET
Proto-Oncogene, Receptor Tyrosine Kinase (MET) gene, and
PHA-665752 was an example for this. Besides, we applied WGRMF
to the discovery of sensitive drugs for non-small cell lung cancer
(NSCLC).

RESULTS
Performance Evaluation

We utilized 10-fold cross-validation to evaluate the performance of
the proposed method in the CCLE dataset and GDSC dataset,
respectively. Specifically, the known response values were
randomly divided into 10 subsets with equal size. Then, one subset
166 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
was left in turn as the test set and the other nine were combined as
the training set. We can get the predicted response values of the
test set through implementing WGRMF learnt from the training
set. As soon as the loop ends, each of the 10 subsets was considered
as the test sample one after another, and we could obtain the pre-
dicted value as the counterpart of each known response value. To
improve the reliability of the results, the whole process of cross-
validation was repeated a hundred times to estimate the average
performance of the model. Based on the predicted and observed
response data, we calculated the PCC and RMSE for each drug
to estimate the capability of WGRMF on predicting drug response
in cell lines. The PCC value indicates the extent of correlation be-
tween the predicted and observed response profiles of a drug,
which could be formulated as

PCC=

Pnd
i= 1ðri � rÞ

�bri � br�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnd
i= 1ðri � rÞ2Pnd

i= 1

�br i � br�2
r ; (Equation 1)

where r and br indicate the original and predicted response values,
respectively; r and br denote their mean values, respectively; and nd
is the total number of known response values for the query drug.
The larger the PCC value is, the more accurate the prediction is.
The RMSE stands for the deviation of predicted values from observed
values, which is expected to be small. The RMSE for a drug could be
calculated as

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnd
i= 1ðri � br iÞ2

nd

s
: (Equation 2)

After the PCC and RMSE were calculated for all drugs, we corre-
spondingly computed the average PCC and average RMSE over
drugs.

In further estimation of theWGRMF performance, we focused on the
sensitive and resistant cell lines for each drug. First, we ranked cell
lines for each drug according to the response values and split them
into four equal parts. Then the first and last parts were selected to
compose the sensitive and resistant cell line set of each drug. Conse-
quently, we could obtain the PCC and RMSE of sensitive and resistant
cell lines for each drug, as well as the average values of PCC and
RMSE.

For convenience, we used PCC and RMSE to indicate the results from
all cell lines, and PCCsr and RMSEsr to indicate the results from sen-
sitive and resistant cell lines. As a result, the WGRMF got PCC,
RMSE, PCCsr, and RMSEsr averaged over 23 drugs in CCLE as
0.72 ± 0.09, 0.56 ± 0.19, 0.79 ± 0.07, and 0.69 ± 0.19, respectively.
For data in GDSC, the results of WGRMF are 0.64 ± 0.16, 1.37 ±

0.35, 0.73 ± 0.14, and 1.71 ± 0.44 for PCC, RMSE, PCCsr, and
RMSEsr averaged over 135 drugs. To make a comparison with
SRMF, the same process of 10-fold cross-validation was carried out
using SRMF on both CCLE and GDSC datasets. It is worth noting
that all of the above results refer to the average values and the
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corresponding SDs for a hundred experiments of cross-validation.
The overall results of comparing WGRMF with SRMF can be seen
from Table 1, which shows that the performance of WGRMF is
superior to SRMF based on all indicators for both CCLE and GDSC
datasets.

Furthermore, in order to inspect how the WGRMF performed on in-
dividual drugs, we selected drugs targeting genes in the phosphatidy-
linositol-4,5-bisphosphate 3-kinase (PI3K) pathway from the GDSC
dataset as examples. PI3K is well known as a signaling component
downstream of receptor tyrosine kinases (RTKs), which plays impor-
tant roles in various biological responses.47,48 The comparisons be-
tween WGRMF and SRMF on PCCsr and RMSEsr were illustrated
in Figures 1 and 2, respectively. From the histograms, we can see
that the results of WGRMF are better than that of SRMF for most
of the PI3K pathway drugs.

Case Studies

In this work, we have used all existing response values in the GDSC
dataset to train the model, which was sequentially adopted to predict
the response values for those drug-cell line pairs without known
response values. Then, we ranked the cell lines for each drug in
GDSC according to the predicted response values, and the top 20
most likely sensitive cell lines were selected for each drug. The ranked
and selected result could be obtained from Table S1. This prediction
result was released to provide some assistance for further experi-
mental research. Furthermore, based on the whole predicted response
of the GDSC dataset, we have conducted three types of case studies,
including consistency identification for drug sensitivity of gene muta-
tion, novel drug-gene association discovery, and drug reposition on
specific cancer type.

In the first case of consistency identification, we made a compara-
tive analysis between the predicted and the observed responses of
four drugs, based on several gene mutation profiles of cell lines. La-
patinib, known as a small-molecule kinase inhibitor, could target
the EGFR gene and Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2)
gene, which was approved by the US Food and Drug Administra-
tion (FDA) in 2007 for the therapy of breast cancer patients.49

Dual inhibition of EGFR and ERBB2 tyrosine kinases plays a clin-
ical biological role in suppressing the proliferation and survival of
those cancer cells that are promoted by signaling pathways.50–52

For lapatinib, the responses in 310 cell lines are known, whereas
Table 1. The Comparison Results between WGRMF and SRMF under the 10-Fo

Drug-Averaged PCC, RMSE, PCCsr, and RMSEsr

Dataset Model Drug-Averaged PCC Drug-Averag

CCLE
WGRMF 0.72 ± 0.09 0.56 ± 0.19

SRMF 0.71 ± 0.09 0.57 ± 0.18

GDSC
WGRMF 0.64 ± 0.16 1.37 ± 0.35

SRMF 0.61 ± 0.16 1.52 ± 0.36
342 cell lines are without known responses. The EGFR mutation
profile of cell lines was used to investigate the association between
the gene mutation and the response to lapatinib. The predicted
responses to lapatinib were classified into the EGFR mutation
group and EGFR wild-type group, and similar operation was
exerted on the observed responses. All of the four groups of
responses were plotted in one figure to identify the consistency
between predicted and existing datasets for lapatinib sensitivity
in EGFR mutation cell lines. The comparative result was shown
in Figure 3A, from which we can see that EGFR-mutated cell lines
are more sensitive to lapatinib for both predicted and observed
data. Erlotinib, a kind of OSI Pharmaceuticals, has been
reported as an inhibitor of the tyrosine kinase activity of
EGFR,53,54 which is efficiently used to prolong the lifetime of the
previously treated patients with NSCLC.55,56 In the GDSC dataset,
there are 286 out of 652 cell lines with known response values to
erlotinib. In this work, we also verified the sensitivity of EGFR
mutation to erlotinib. The same trend could be observed
between the predicted and existing data, which was shown in Fig-
ure 3B. Furthermore, PD-0332991, also named palbociclib, with
590 existing response values in cell lines in GDSC, is an effective
drug in the treatment of several cancers including breast cancer,
as a cyclin-dependent kinase 4/6 inhibitor.57–59 The CDKN2A
mutation was selected to investigate its contribution to the PD-
0332991 sensitivity. By comparing the predicted result of WGRMF
with the existing data, we can identify the consistency between
them, which is given in Figure 3C. Besides, the resistance of gene
mutation to drug also could be predicted by the WGRMF. Taking
the response of KRAS mutated cell lines to pazopanib as an
example, we can see the resistant tendency both from the known
and the predicted results, which is shown in Figure 3D. In order
to show the comparison results more distinctly, the rank-sum
test was performed between the mutated and wild groups for
both predicted and observed datasets. The calculated p values
have been shown in each panel of Figure 3. From the results of
the case study for drugs mentioned above, we could observe the
agreement of the predicted responses to the known responses in
the GDSC dataset, based on the drug sensitivity of gene mutation
profiles.

In the second case study, we used the predicted responses of
WGRMF integrated with the known data in GDSC to infer poten-
tial drug-cancer gene associations. For instance, PHA-665752 was
ld Cross-Validation in CCLE and GDSC Datasets, Indicated by

ed RMSE Drug-Averaged PCCsr Drug-Averaged RMSEsr

0.79 ± 0.07 0.69 ± 0.19

0.78 ± 0.08 0.74 ± 0.22

0.73 ± 0.14 1.71 ± 0.44

0.71 ± 0.14 1.79 ± 0.45
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Figure 1. The Comparison Histogram of PCCsr for

the Drugs That Target Genes in PI3K Pathway

The comparison histogram of PCCsr between WGRMF

and SRMF under the 10-fold cross-validation for the

drugs that target genes in the PI3K pathway.
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such a small molecule that it could act as the ATP competitive
inhibitor of the catalytic activity of c-Met kinase.60,61 It has been
reported that PHA-665752 could act on the growth and motility
of multiple cancer cell lines.62–64 In the GDSC dataset, the number
of cell lines with known response to PHA-665752 is 381, out of
which only two cell lines are related to MET amplification. It is
difficult to observe the tendency of drug sensitivity based on the
scarce available data. After combining the newly predicted re-
sponses and the existing data, we could obtain the sensitivity of
MET amplification to PHA-665752 (see Figure 4). The p values
obtained from the rank-sum test were also given in Figure 4.
The extreme susceptibility of MET amplification to the PHA-
665752 has been experimentally confirmed in gastric cancer cell
lines.65

Furthermore, as the third case study, we used the predicted
responses of WGRMF to reposition drugs on specific cancer
through combining the existing responses. For a given drug, we
compared the responses of cell lines with a specific tissue type
with the responses of other cell lines, which would help to find
some useful information of the drug sensitivity on the specific
cancer type. Lung cancer is one of the most common malignant
tumors in the world, of which about 80% is NSCLC.66 Gefitinib
is the common drug to treat NSCLC patients with mutated
EGFR.67 Based on the predicted results of WGRMF combined
with known responses in GDSC, we screened drugs for drug
reposition on NSCLC. For example, through analyzing the
response difference between NSCLC cell lines and other cell lines
to PHA-665752, we found that NSCLC cell lines were more sensi-
tive to PHA-665752 based on the integrated result, which could
not be observed by considering only the existing data. The
comparison among predicted, existing, and combined results
and the p values that were computed using the rank-sum test
between the NSCLC group and the other group were
illustrated in Figure 5. It has been reported that the PHA-665752
168 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
could act as a c-MET inhibitor to prevent
K-ras mutant NSCLC60,68 or to treat NSCLC
by cooperating with rapamycin.69

DISCUSSION
The work to investigate drug response in cancer
cell lines is crucial for the precision therapy of
cancer patients. In this work, we presented a
novel method to utilize WGRMF for inferring
anticancer drug response in cell lines, which
combined the information of drug similarity,
cell line similarity, and known drug responses
in cell lines. A sparsification technique was employed on
the similarity matrices to construct the p-nearest neighbor graphs
for drug and cell line, respectively. Then based on the low-
rank approximation (LRA), together with Tikhonov regularization,
drug graph regularization, and cell line graph regularization, the
objective function of WGRMF was constructed, which could be
solved through an alternative update rule to obtain the latent feature
matrices for drug and cell line. The predicted response matrix was
finally composed by the two latent matrices. To evaluate the
performance of WGRMF, we implemented 10-fold cross-validation
on two different datasets, GDSC and CCLE. The averaged PCC,
RMSE, PCCsr, and RMSEsr over all drugs in each dataset
were calculated as the measurement of model performance. In addi-
tion, several case studies based on the GDSC dataset were carried out.
Just like its good performance on other issues, the WGRMF method
has shown its excellent activity in predicting novel drug responses in
cancer cell lines, which is better than SRMF in comparison.

There are several factors that could contribute to the superior
performance of WGRMF. First of all, WGRMF was constructed
on the local invariance assumption; that is, two close points in
the original space will be close in the learnt manifolds in latent
space. The postulate was guaranteed by the graph regularization
with p-nearest neighbor graphs of drug and cell line. Besides,
WGRMF took full advantage of neighborhood information via
performing graph regularization. Furthermore, the sparsification
process could help to eliminate the redundant and noisy informa-
tion in the similarity matrices. Finally, the introduction of weight
matrix into the objective function made it possible to consider
the contribution from known responses only rather than from
those unknown ones.

There are still some limitations existing in the current model. For
example, the sparsification process and the LRA-based graph reg-
ularization have many parameters to choose or confirm. It is still



Figure 2. The Comparison Histogram of RMSEsr for

the Drugs That Target Genes in PI3K Pathway

The comparison histogram of RMSEsr between WGRMF

and SRMF under the 10-fold cross-validation for the

drugs that target genes in the PI3K pathway.
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difficult to optimize these parameters, which limits the application
of this method. In addition, the cell line similarity was constructed
only on the information of gene expression. If more genomic infor-
mation of cell lines is incorporated in the cell line similarity, the
prediction efficiency will be improved. In fact, some studies have
demonstrated the effectiveness and robustness of the network
framework based on diverse cancer hallmarks in cancer re-
searches.70,71 Thus, in future study, employing more cancer hall-
marks to effectively construct the feature network of cell lines is
imperative for drug response prediction. Recent researches indi-
cated that both proteins and long non-coding RNAs (lncRNAs)
could be used as a drug target.72–76 Therefore, making full use of
predicted and experimentally validated drug-target interactions
involving both protein targets and non-coding RNA targets would
benefit the prediction of drug response. Third, the lack of known
responses for some drugs also restricts the performance of
WGRMF. We expect that more response data can be collected
from experimental results, which will improve the accuracy of
the model. Besides, the optimal solution obtained from the alterna-
tive iteration is not the analytic solution, which may affect the pre-
diction precision. In addition, predicting the response of drug
combination would be an interesting and important direction for
future studies.77 Finally, the results in case studies were confirmed
by only some published literature, which limited the scale of
verification on the prediction results. In further research, more
independent datasets derived from different databases should be
applied to the validation of prediction results. This will make it
more feasible and more authentic to evaluate the model
performance.

MATERIALS AND METHODS
Genomic of Drug Sensitivity in Cancer Project

The first dataset we used was collected from Genomic of
Drug Sensitivity in Cancer project (release-5.0, https://www.
cancerrxgene.org/downloads), including 652 cancer cell lines, 135
Molecular Therap
drugs, and 70,676 known response values.11,12

The distribution of known responses for all
drugs has been shown in Figure S1, from
which we can see that most of the drugs
have more than 90% observed values, and
only 40 drugs have known responses in less
than 50% of cell lines. In GDSC, the drug
sensitivity in the cancer cell line is measured
by log-transformed IC50 value that indicates
the drug concentration for 50% inhibition
in vitro. The more sensitive cell lines will get
lower IC50 values to a drug. Furthermore,
for the involved drugs and cell lines, we need to characterize
them with some features. Thus, we adopted the PubChem
fingerprint descriptors as the features of the 135 drugs, which
could be acquired from https://pubchem.ncbi.nlm.nih.gov. For
those 652 cell lines, the gene expression profiles were taken to
characterize them. Then, based on the features of drugs and cell
lines, we can compute the drug similarity matrix and the cell
line similarity matrix, respectively. Motivated by the method
used in SRMF,39 the Jaccard coefficient was utilized to calculate
the drug similarity, and the PCC was computed to indicate the
cell line similarity.

CCLE

The second dataset was collected from the CCLE (https://portals.
broadinstitute.org/ccle), which contains 23 drugs and 491 cell lines
with 10,870 known responses.4 Figure S2 gives the distribution of
known responses over the 23 drugs. It is obvious that most of
the drugs except 4 have more than 450 known responses. In
CCLE, the response value of cell line to drug represents the area
over the drug response curve, which is called the activity area.
The larger values of activity area stand for more sensitive re-
sponses. Similar to the method used in GDSC, we then calculated
Jaccard coefficients between drugs to measure the drug similarity
based on the drug fingerprints. And for cell lines, the similarity
was computed using PCC between gene expression profiles of
cell lines.

WGRMF

In this paper, inspired by the work of Ezzat et al.,78 we have proposed
a novel method usingWGRMF for inferring anticancer drug response
in cell lines (see Figure 6). We first represented the drug similarity,
cell line similarity, as well as drug response in cell lines with matrix
form, which were indicated by Sd˛Rn�n, Sc˛Rm�m, and R˛Rn�m,
respectively. Before we implemented the WGRMF, we conducted a
sparsification technique for the drug similarity matrix and cell line
y: Nucleic Acids Vol. 17 September 2019 169
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Figure 3. The Results for Consistency Identification

between Predicted and Existing Data for Four Drug-

Gene Pairs Based on the GDSC Dataset

(A) The responses of EGFR mutated and wild-type cell

lines to lapatinib are shown. (B–D) EGFR mutation and

erlotinib (B), CDKN2Amutation and PD-0332991 (C), and

KRASmutation and pazopanib (D). The p values obtained

from the rank-sum test have been shown in each panel.
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similarity matrix, respectively. For drugs, a matrix Nd representing
the p-nearest neighbor graph was constructed from drug similarity
as follows:

Ndði; jÞ=
8<: 1; if j˛N pðiÞ & i˛N pðjÞ

0; if j;N pðiÞ & i;N pðjÞ
1=2; otherwise

; (Equation 3)

where N pðiÞ represents the set of p nearest neighbors of drug di.
Similarly, a matrix Nc corresponding to the p-nearest neighbor
graph of cell line was constructed from the cell line similarity.
Consequently, we could use the p-nearest neighbor graphs to spar-
sify the drug similarity, Sd , and cell line similarity, Sc, respectively, as
follows:

bSdði; jÞ = Ndði; jÞ,Sdði; jÞ (Equation 4)

bScði; jÞ = Ncði; jÞ,Scði; jÞ; (Equation 5)
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where bSd and bSc stand for the sparsified
similarity matrices of drug and cell line,
respectively.

Based on the sparsified similarity matrices of
drug and cell line, WGRMF was carried out
for the prediction of drug response in cell lines.
The fundamental ofWGRMF is LRA, which can
be formulated as follows:78

min
A;B

kR� ABT k 2
F ; (Equation 6)

where the drug response matrix R was decom-
posed into two low-rank latent feature matrices
A˛Rn�k and B˛Rm�k, for drug and cell line,
respectively. The variables n, m, and k indicate
the number of drugs, cell lines, and latent fea-
tures in turn. The operator k, k F means the
Frobenius norm.

In order to eliminate the effect of overfitting
and exclude the contribution from unknown
responses in matrix R, we added the Tikhonov
and graph regularization terms, and intro-
duced the weight matrix W into Equation 6 to obtain the objective
function of WGRMF as follows:

min
A;B

kW1
�
R� ABT

� k 2

F
+ ll

�kA k 2
F + kB k 2

F

�
+ ld

Xn

i;r = 1

bSdði; rÞkai � ar k 2 + lc
Xn

j;q= 1

bScðj; qÞkbj � bq k 2
;

(Equation 7)

whereW has the same shape with R, if there is a known response value
in R(i, j), W(i, j) = 1, otherwise W(i, j) = 0; ll , ld , and lc are positive
parameters; and ai and bj indicate the ith and jth rows of latent
matrices A and B, respectively. Each term in the objective function
reflects a different goal of the problem. The first term is to make
the predicted result close to known response data. The second one,
called Tikhonov regularization, is to minimize the norms of latent
matrices A and B. The third one indicates the graph regularization
of drugs, with the purpose to make two neighbor drugs nearest in
the latent space. The last term has the similar meaning to the third
one, which is the graph regularization of cell lines. According to



Figure 4. The Responses of MET-Amplified and Wild-Type Cell Lines to

PHA-665752 for Predicted, Existing, and Combined Data in GDSC

The sensitivity of MET amplification to PHA-665752 could be obtained through

combining the newly predicted responses and the existing data. The p values ob-

tained from rank-sum test were given for predicted, existing, and combined data,

respectively.

Figure 5. The Reposition of PHA-665752 on NSCLC Based on the

Combination of the Newly Predicted Responses and the Existing Data

The figure shows that NSCLC cell lines are more sensitive to PHA-665752 based on

the integrated result (p value of rank-sum test is 3.7044� 10�2), which could not be

observed based only on existing data.
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some previous studies,78,79 the objective function in Equation 7 can be
transformed into the following equation:

min
A;B

kW1
�
R� ABT

� k 2

F
+ ll

�kA k 2
F + kB k 2

F

�
+ ldTr

�
ATLdA

�
+ lcTr

�
BTLcB

�
;

(Equation 8)

where Trð ,Þ is the operator to calculate the trace of a matrix, and Ld

and Lc indicate the graph Laplacians of sparsified similarity matricesbSd and bSc, respectively, which are defined as follows:

Ld = Dd � bSd (Equation 9)

Lc = Dc � bSc; (Equation 10)

where Dd and Dc are two diagonal matrices derived from bSd and bSc:
Ddði; iÞ=

X
r

bSdði; rÞ (Equation 11)

Dcðj; jÞ=
X
q

bScðj; qÞ: (Equation 12)

In order to improve the performance of the method, we utilized the
normalized graph Laplacians to replace the unnormalized ones in
Equation 8, which can be computed as follows:78

~Ld =D�1=2
d LdD

�1=2
d (Equation 13)
~Lc =D�1=2
c LcD

�1=2
c : (Equation 14)

Thereby the final objective function can be rewritten as follows:

min
A;B

kW1
�
R� ABT

� k 2

F
+ ll

�kA k 2
F + kB k 2

F

�
+ ldTr

�
AT ~LdA

�
+ lcTr

�
BT ~LcB

�
:

(Equation 15)

The optimal solutions of the above equation can be obtained by
solving ðvL=vaiÞ= 0 and ðvL=vbjÞ = 0, where L denotes the objective
function in Equation 15, which finally results in two alternative up-
date formulas:78

ci = 1.n; ai =

Pm
j= 1Wði; jÞRði; jÞbj � ld ~LdðiÞAPm

j= 1Wði; jÞbTj bj + llIk
(Equation 16)

cj = 1.m; bj =

Pn
i= 1Wði; jÞRði; jÞai � lc~LcðjÞBPn

i= 1Wði; jÞaTi ai + llIk
: (Equation 17)

We can get the latent matrices A and B row by row when the updates
are converged. The predicted response matrix can be correspondingly
computed as follows:

bR =ABT : (Equation 18)

Parameter Settings

We now show how to set the hyper-parameters used in the
method in cross-validation and prediction. For the GDSC dataset,
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 171
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Figure 6. The Flowchart of the WGRMF for

Prediction of Drug Response in Cancer Cell Lines

The flowchart of the WGRMF for prediction of drug

response in cancer cell lines, based on the drug chemical

structure similarity, cell line gene expression similarity, and

known response data.

Molecular Therapy: Nucleic Acids
the sparsification parameter p was set to p = 20 for both drug and cell
line. The dimension parameter of latent matrix k was chosen from
{50, 100, min(n, m)}. The three parameters, ll , ld , and lc, could be
set using the grid search method, from the following values:
ll : f2�2; 2�1; 20; 21g, ld : f2�5;.; 20; 21g, lc : f2�5;.; 20; 21g. As
for the CCLE dataset, the value of p in the sparsification process
was set as p = 10 for both drug and cell line. The latent space dimen-
sion k was set as k = min(n, m), because the value of min(n, m) was
<50.78 ll , ld , and lc were set in the same way as in the GDSC dataset.
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