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The DSM-5 definition of autism spectrum disorders includes sensory issues and part of
the sensory information that the brain continuously receives comes from kinesthetic
reafference, in the form of self-generated motions, including those that the nervous
systems produce at rest. Some of the movements that we self-generate are deliberate,
while some occur spontaneously, consequentially following those that we can control.
Yet, some motions occur involuntarily, largely beneath our awareness. We do not
know much about involuntary motions across development, but these motions typically
manifest during resting state in fMRI studies. Here we ask in a large data set from
the Autism Brain Imaging Exchange repository, whether the stochastic signatures of
variability in the involuntary motions of the head typically shift with age. We further ask
if those motions registered from individuals with autism show a significant departure
from the normative data as we examine different age groups selected at random from
cross-sections of the population. We find significant shifts in statistical features of typical
levels of involuntary head motions for different age groups. Further, we find that in autism
these changes also manifest in non-uniform ways, and that they significantly differ from
their age-matched groups. The results suggest that the levels of random involuntary
motor noise are elevated in autism across age groups. This calls for the use of different
age-appropriate statistical models in research that involves dynamically changing signals
self-generated by the nervous systems.

Keywords: autism spectrum disorder, involuntary motions, stochastic analyses, head motion analysis, resting
state – fMRI, Gamma distributed data

INTRODUCTION

The volitional control of physical movements, i.e., the control of our purposeful actions at will,
and the healthy preservation of this ability, are fundamental elements to generate well-coordinated
behaviors across the human lifespan. As the somatic-sensory-motor systems of human babies
mature and give way to several developmental milestones, spanning from infancy to the elderly
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stages of our life cycle, the patterns of variability in our motions
are bound to change (Torres et al., 2016b). These changes reflect
the outputs of our nervous systems and can be a valuable tool to
track healthy neurodevelopment and healthy aging in contrast to
neurodevelopmental differences and neurodegeneration.

One of the signs of motor dysfunction that appears later in
life is the abundance of undesirable involuntary motions. When a
person is asked to remain still, there is (inevitably) some level of
involuntary micro-motions across the body; yet if such levels are
persistently high in early neurodevelopment, they can interfere
with neuromotor control and forecast upcoming problems with
the nervous systems. They can predict problems with action
coordination and volitional control of goal directed behaviors
(Torres et al., 2013a; Wu et al., 2018), but these are difficult
to detect using traditional statistical analyses based on grand
averaging under assumed Gaussian distribution [as explained in
Torres et al. (2013a) situating autism within the broader context
of Precision Medicine].

The study of evolving trends in the self-generation of
undesirable involuntary motions at the periphery (Brincker and
Torres, 2013), along with their variable rates of change across
the human lifespan, requires age-appropriate adjustments of our
statistical analyses across different aging human populations.
This include for example, size-dependent (allometric)
standardizations of data harnessed from different anatomies
owing to different ages (Mosimann, 1970; Lleonart et al., 2000).
There is, however, a paucity of studies reflecting the cross-
sectional age-dependent evolution of the variability in motor
patterns contributing to volitional control for neurotypicals.
In the absence of such normative data to characterize patterns
of motor variability in healthy early neurodevelopment and
in the aging population, most statistical analyses of human
behaviors are performed under a one-size-fits-all approach that
uses parametric statistics and linear models. This treatment of
the problem may prevent us from considering the non-linear
complex dynamics of biorhythmic activities produced by the
developing and the aging nervous systems.

While other fields have considered various non-linear models,
e.g., of heart rate variability (Peng et al., 1995) and gait
patterns (Raffalt et al., 2018; Caballero et al., 2019), the
focus of that work has been on suitable methods to assess
both long-range and short-range correlations in non-stationary
and stationary systems. The data that interests us here is
brief, limited by the number of frames in a scanning fMRI
session, during resting state, when the person has been asked
to remain still. As such, our interest focuses on the nature
of the families of distributions that we could empirically
derive from fluctuations of involuntary bodily motions across
different age groups of the neurotypical and autistic populations.
More specifically, we assess the extent to which such families
of distributions may typically shift cross sectionally in the
neurotypical population. Our approach contrasts with traditional
approaches that make a priori theoretical assumptions on
the nature of such distributions and tend to obfuscate our
abilities to predict possible departures from normative states in
pathological states of the nervous systems, where asynchronous
attainment of developmental milestones abound. One such

example is evidenced in research involving autism spectrum
disorders (ASD).

Autism is a lifelong, highly heterogeneous, evolving condition
(Lord et al., 2000; Constantino and Charman, 2016) and yet, we
know very little about maturational patterns of somatic-sensory-
motor signatures, critical to scaffold the volitional control of the
brain over the body in motion. Understanding such differences
in the peripheral input to central motor control across the
population is important in more than one way. From the
research standpoint, such peripheral patterns have been revealing
of maturational stages and possible familial ties (Torres et al.,
2013a, 2016a; Wu et al., 2018) amenable to help us further
our understanding of the etiology of the condition, trace back
the individual contextual and environmental features of the
developmental trajectories of each person, and tailor treatments
and services according to family needs, in a personalized manner.
From the societal standpoint, it is important to know the ever-
changing needs of the person’s level of motor autonomy, to
advocate for public policies that help to effectively deploy and
manage resources that support the development of independent
living prior to and beyond school age (Figure 1). Given the
heterogeneity of ASD statistics (Torres et al., 2016a), there is
a critical need to stratify the affected population and design
interventions that are age-appropriate, personalized to the
person’s needs and congruent with the profound differences
that define the somatic-sensory-motor profiles characterizing the
autistic phenotype, e.g., (Lancaster et al., 2013; Torres et al.,
2013a; Marko et al., 2015; Mosconi and Sweeney, 2015; Mosconi
et al., 2015a; Sharer et al., 2015; Mahajan et al., 2016; Torres and
Denisova, 2016; Chuye et al., 2018).

Designing new ways to uncover self-emergent clusters of data
to stratify the heterogeneous ASD population has been rather
challenging, owing this in part to the lack of access by most
researchers to participants of diverse ages, and to the lack of data
that is inclusive of both sexes. The advent of open access ASD and

FIGURE 1 | Science has very limited knowledge of autism as a lifelong
condition. Research in autism has been focused on certain age groups
primarily involving children of school age. We know very little about
neurodevelopment preceding autism and virtually nothing about adults.
Parents ask, “what will happen to my child when the yellow bus stops
coming,” as in the US, services taper off as children transition into adulthood
(a phase that parents have coined “falling off the cliff”). No proper methods
have been designed to study neuromotor issues of aging adults with autism,
often presenting ataxia syndromes, loss of balance, frequent falls and
symptoms of Parkinsonism (Starkstein et al., 2015).
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typically developing (TD) data repositories addresses these issues
today and enables us to explore the question of age-dependent
shifts in the signatures of variability across the normative data
from the neurotypical population and the population with an
ASD diagnosis. One such open access databases is the Autism
Brain Imaging Data Exchange (ABIDE) repository (Di Martino
et al., 2014) an effort that has revealed several new features of
brain organization (Alaerts et al., 2014; Ray et al., 2014; Plitt et al.,
2015; Haar et al., 2016), new differentiating features of females
(Torres et al., 2017) and males (Supekar and Menon, 2015; Jung
et al., 2019), IQ and medication intake (Torres and Denisova,
2016) and patterns of scanner-dependent noise in the involuntary
head motions (Caballero et al., 2018). This has been part of a
general effort to understand neuromotor control in ASD (Ornitz,
1974; Minshew et al., 2004; Mandelbaum et al., 2006; Perry et al.,
2007; Jasmin et al., 2009; Kushki et al., 2011; Donnellan et al.,
2012; Torres et al., 2013a; Hannant et al., 2016). In ABIDE, it
is possible to use the imaging data and extract head motions
in the form of rotations and displacements (a routine step in
removing motor artifacts from the images) such that the extracted
involuntary head micro-motions when the person is trying to
remain still, can give us a sense of the amount of volitional control
that people typically have across different age groups. In turn,
given that ABIDE has age- and sex- matched participants with
ASD, we can interrogate the database across different age groups,
to learn about age-dependent shifts in the statistics of undesirable
involuntary head motions.

In this paper, we explore data in ABIDE, to characterize
statistical patterns of involuntary head motions across ages, as
the person is instructed to remain still and yet the data reveal
undesirable involuntary head motions. We compile the imaging
data to extract the patterns of head translation and rotation across
each session and use these time series (waveforms) of the linear
and angular speed to characterize differences in volitional control
as an inevitable feature, preventing the person from remaining
still at will. We ask if the stochastic signatures derived from
the patterns of head motion variability differ across ages in the
neurotypical population. We further ask if the participants with
ASD depart from the normative signatures.

MATERIALS AND METHODS

Demographics of ABIDE I and II
All datasets included in this study are from the Autism Brain
Imaging Data Exchange (ABIDE) databases: ABIDE I1 and
ABIDE II2. ABIDE obeys the following guideline on the use of
human subject’s data: “In accordance with HIPAA guidelines
and 1000 Functional Connectomes Project/INDI protocols,
all datasets have been anonymized, with no protected health
information included.”

The study includes two main comparisons:

(1) Autism Spectrum Disorder (ASD), and Typical Development
(TD), using estimation of stochastic signatures of

1http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
2http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html

involuntary head micro-movements of individuals with
a formal DSM-ASD (American Psychiatric Association,
2013) diagnosis of ASD and TD controls.

(2) Ranges of age. Each group (ASD and TD) was split in seven
different groups according to their age to assess how the
stochastic signature of involuntary head micro-movements
evolves with growth. The ranges of age used to that end
were the following: from 5 to 10 years old, from 11 to
15 years old, from 16 to 20 years old, from 21 to 25 years
old, from 26 to 30 years old, from 31 to 40 years old, and
from 41 to 65 years old.

Inclusion/Exclusion Criteria
This study includes all sites publicly available through ABIDE I
and ABIDE II. They were comprised of 1,127 TD and 1,017 ASD.
As we explained above, those groups were divided by age. Table 1
provides the number of participants with ASD or TD are in each
range of age in ABIDE dataset.

Bootstrapping Method
The analyses referring to the bootstrapping methods were
previously published but we will refer to them here for simplicity.

First, we uniformly resampled all data sets to avoid temporal
inconsistencies, since our focus is on fluctuations in signal
amplitude. To that end, we resample all data to ensure equally
spaced points for comparison across subjects and groups
(outcome can be seen in Supplementary Material of prior
work3). We use the MATLAB (version R2014a, The MathWorks,
Inc., Natick, MA, United States) function resample which
applies an antialiasing FIR low-pass filter to the time series and
compensates for the delay introduced by the filter. This function
resamples the input sequence, the raw head motion in our case, at
P/Q times the original sample rate [see Supplementary Table S1
of the previously published SM for more information about the
resampling factors used (P and Q)].

Second, we apply uniform data length by truncating the
uniformly resampled data to ensure the same length for all
the time series.

Given the inconsistent group sizes extracted from the
ABIDE datasets (see Table 1), we used a bootstrapping method
previously described to ensure uniform group numbers for
pairwise statistical comparisons across ages. To that end, we used
random sampling with replacement and created 100 subgroups
drawn from the original size group while considering the
minimum number n = 25 at a time. These 25 randomly selected
participants’ data contribute to a data point in the age group of
100 participants. Their head motion time series are pooled to
further create a standardized waveform, free of allometric effects
from different anatomical sizes and focusing on the variability
patterns relative to the overall empirically estimated mean speed
amplitude expressed by the group. We chose 25 as the size
to randomize because the smallest age’s sub-groups size was
n = 30. Thus, after dividing the groups by age, we extracted the
100 random sub-groups with replacement, using the same size
(n = 25) to make up 100 group sizes from all the age’s sub-groups.

3https://www.frontiersin.org/articles/10.3389/fnint.2018.00007/full
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TABLE 1 | t-test p-values comparing the cumulative linear and angular excursions for ASD vs. TD in each age group (yo stands for years old).

Age group 5–10 yo 11–15 yo 16–20 yo 21–25 yo 26–30 yo 31–40 yo 41–60 yo

Cum Lin Speed 1.00 10−12 1.00 10−12 1.00 10−12 1.00 10−12 1.00 10−12 0.70 10−12 1.00 10−12

Cum Ang Speed 1.00 10−4 1.00 10−4 1.00 10−4 1.00 10−4 1.00 10−4 0.44 10−4 1.00 10−4

Supplementary Material Figures A4, A5 show the results from
sampling without replacement.

Data Processing
Motion Extraction
Head motion patterns were extracted from imaging data
during (rs) fMRI experiments. Motion extraction was performed
using the Analysis of Functional NeuroImages (AFNI) software
packages (Cox, 1996). Single-subject processing scripts were
generated using the afni_proc.py interface4. Skull stripping was
performed on anatomical data and functional EPI data were co-
registered to anatomical images. The median was used as the
EPI base in alignment. Motion parameters, 3 translational (x-,
y-, and z-) and 3 rotational (pitch-about the x-axis, roll-about
the y-axis, and yaw- about the z-axis), from EPI time-series
registration was saved.

We note the caveat that different labs depositing data in
ABIDE may use different padding to restrain/dampen head
motion in general. However, each site of ABIDE has deposited
data from a similar scanner and padding method for controls
and autistics. We used the bootstrapping method to shuffle the
fluctuations in speed amplitude and emphasize here that these
fluctuations in speed amplitude that we examine are relative to an
empirically estimated mean head motion speed (linear mm/s or
angular rad/s). These data do not refer to the absolute value of the
speed which may be differentially affected by the type of padding.

Head Excursion
To obtain the head excursions we accumulate the distance
traveled per unit time (speed) and determine the pathlength of
the linear displacement. We also determine the full excursion
yielded by the accumulation of angular displacements. These
parameters give us a sense of the net amount of physical head
motion a person had while instructed to try to remain still. In
both cases, we used the same number of data points for each
participant, yet across those frames, each participant varied in the
rate of change of displacements and their accumulation over time.

Statistical Analyses
We describe two components of the analyses of the head motions:
(1) The standardized data type called micro-movement spikes,
MMS and (2) the statistical platform for individualized behavioral
analyses (SPIBA), both previously defined (Torres et al., 2013a)
and US Patented methods publicly available5.

In the present work, we assess the scan-by-scan speed-
dependent variations in the amplitude of the linear displacement

4https://afni.nimh.nih.gov/pub/dist/doc/program_help/afni_proc.py.html
5https://patents.google.com/patent/US10176299B2/en?inventor=Elizabeth+B.
+TORRES

(mm/s) and in the angular rotations (rad/s) of the head relative
to the empirically estimated mean of each person (personalized
method) during resting-state functional magnetic resonance
imaging (rs-fMRI) sessions. The analyses specifically refer to the
stochastic signatures of MMS [defined in prior peer reviewed
work including earlier versions of the ABIDE data and of others
data sets (Torres et al., 2016a, 2017; Torres and Denisova, 2016;
Caballero et al., 2018)].

Micro-Movement Spikes
The maximum amplitude of the speed (linear mm/s and angular
deg/s) was obtained from the raw data extracted from the head
motions (Figure 2A). The empirically estimated mean speed
of each person was also obtained and used as reference to
determine the maximal amplitude deviations from it (Figure 2B).
The time-series of these fluctuations in maximal amplitude
deviations from the empirically estimated mean provides the
waveform of interest for our analyses. These are the spike trains
of random fluctuations in signal amplitude (speed in this case).
The fluctuations in amplitude of those spikes are normalized
between [0,1] and used as continuous spike trains with amplitude
values in the real domain. More generally, they are treated as
an identically independent distributed (iid) continuous random
process using the time series forecasting analytical framework
(Hamilton, 1994), where events in the past may (or may not)
accumulate evidence toward prediction of future events.

In this work, to remove allometric effects of body-size across
ages in each trial we computed the normalized peak amplitude
(the peak speed amplitude is divided by the sum of the peak speed
amplitude and the averaged speed amplitude value comprising
points between the two speed minima surrounding the local
peak amplitude) (Mosimann, 1970; Lleonart et al., 2000). The
normalized fluctuations define the micro-movement spikes of
the original speed waveform. These are shown in Figure 2C.
Figure 2D shows the MMS as they occurred in the original
waveform, thus preserving the original number of frames. This
waveform is amenable to perform other analyses (e.g., pairwise
cross-coherence, pairwise cross-correlation, etc. to understand
the periodic behavior of the MMS of a given biorhythm).

In the specific case of rs-fMRI data here, the data types used
in this work are not the original head motions per se, but rather
derivative information pulled out from the original time series
that the head-motion extraction methods create. The commonly
used methods to estimate volume-to-volume head movement
from fMRI data were used here to obtain the original time
series of (raw) head motion data (see section on “Materials and
Methods” for head motion extraction above). Importantly ABIDE
has two versions of the data sets, one which has been cleaned from
artifacts and one which is raw (uncleaned). Since we are precisely
interested in the continuous acquisition of head motion, we used
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FIGURE 2 | Analytical pipeline. (A) Sample time series of involuntary head motion expressed as the linear speed (mm/s) derived from linear head displacements from
a representative typically developing (TD) participant (top) and a representative participant with ASD (bottom) with equal number of frames for all participants. (B)
Absolute amplitude deviations from the empirically estimated Gamma mean (empirically estimated shape × scale) amplitude. (C) Gamma micro-movement spikes,
MMS, obtained from the deviations from the mean by normalizing the waveform to account for allometric effects. Each peak is divided by the sum of the peak value
and the average value of the values comprised within the local minima adjacent to the peak (inclusive of the local minima). (D) All MMS embedded in the original
waveform across all frames. (E) The MMS peaks are gathered in a frequency histogram. (F) The maximum likelihood estimation method is used to determine the
continuous family of distributions best fitting both data sets; then the empirically estimated shape and scale values are plotted on the Gamma parameter plane. (G)
The corresponding Gamma moments are plotted on a parameter space that includes the mean, standard deviation, skewness and kurtosis to aid visualize the
signature of each participant and localize TD and ASD on these parameter spaces.

the uncleaned data sets. Note also that in an effort to reproduce
our results, every publication does report to ABIDE the indexes
of the data that has been used in the analyses. As such, we report
to ABIDE the indexes used in this work.

To ascertain the net physical head motions across all
participants, we compute the cumulative distance traveled per
unit time and this gives us the path length of the linear and
angular displacements (as explained above). The empirically
estimated mean was obtained using the continuous Gamma
family of probability distributions for every group [as in Torres
and Denisova (2016), Torres et al. (2017), Caballero et al. (2018)
because it gave the best fit according to maximum likelihood
estimation, MLE] (see Table 2 for information about the mean
head excursion for every group).

In our prior work, the MMS generally served as input to a
Gamma process under the general rubric of Poisson random
process. We more specifically adapted methods from cortical
spike analyses commonly used in the field of computational
neuroscience, to analyze fluctuations in biorhythmic data from
natural behaviors. Such data are lengthy time series of different
physical units registered using different instruments. A such, they
are disparate in frequency and timing, and no unifying platform
existed to enable the analyses of multiple levels of neuromotor
control co-registered with different instruments. We created a
unitless data type amenable to combine data from different
modalities (e.g., EEG in microVolts, ECG inter beat intervals in
ms, EMG in volts, kinematics in m, m/s, m/s2, rad, rad/s, rad/s2,
etc.) and paired this data type with methods to derive other
parameterizations of the nervous systems output under different
control regimes (voluntary, involuntary, and autonomic). These

regimes are grounded on our proposed phylogenetically orderly
taxonomy of neurodevelopmental maturation involving three
fundamental muscle types (skeletal muscle, smooth muscle, and
cardiac muscle) associated with specific genes and proteins that
would eventually enable us to stratify heterogeneous disorders of
the nervous systems using a combination of objective (digitally
obtained) behavioral and genetic information. Among these
disorders are Parkinson’s disease, the Ataxias, Traumatic Brain
Injury and Autism Spectrum Disorders, the latter being of
interest in the present work.

In this paper, we specifically focus on involuntary head
motions to assess the distribution fitting of the frequency
histograms of the time series of their peaks for each age group.
We used the stochastic characterization of fluctuations in peaks’
amplitude to characterize the signature of involuntary head
motions in the ASD vs. TD groups cross sectionally, across
different ages. The motivation here is to estimate the spike trains’
randomness and their levels of noise to signal ratio using the
family of distributions best fitting the frequency histograms of
the peaks accumulated from the MMS of each individual member
of an age group.

We used maximum likelihood estimation, MLE to
approximate the best fitting distribution encompassing all
cases. To that end, we compared different families of probability
distributions (e.g., the Gaussian, Lognormal, Exponential,
and Gamma, although the MLE selection criterion does not
penalize models with a larger number of parameters -in our case
Exponential having one parameter, and other distributions two).

The motivation for these distributions came from prior
work in our lab discovering the presence of the Exponential
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TABLE 2 | Glass Delta and Cohen d values to quantify disease effect.

Age group 5–10 yo 11–15 yo 16–20 yo 21–25 yo 26–30 yo 31–40 yo 41–60 yo

Head’s linear excursion (displacements)

Glass Delta 2.76 3.24 3.17 2.34 5.44 1.32 1.17

Cohen d 1.30 1.80 2.28 1.68 1.71 0.59 3.53

Head’s angular excursion (rotations)

Glass Delta 2.09 2.94 3.38 2.12 2.12 0.55 4.09

Cohen d 1.30 1.81 2.28 1.69 1.71 0.59 3.53

distribution in biorhythms of the autistic peripheral nervous
systems (Torres, 2011a,b). Controls up to then had been well
characterized by the Lognormal family using a multiplicative
random process (Ross, 1996), as heavy tailed distributions
were near symmetric after log transforming the original speed
data. The presence of the Exponential distribution in autistic
peripheral signals prompted us to use instead an additive random
process. We tried the continuous Gamma family of distributions,
which includes the Exponential case when the shape parameter
is 1 (as it was in Autism for linear speed peaks.) Another
distribution was the Gaussian, to compare the outcome of
MLE with the traditional assumption. In all cases, we estimated
as well the 95% confidence intervals for the shape and for
the scale parameters. The Supplementary Material from our
prior work with ABIDE data showed the use of MLE and our
finding that the continuous family of Gamma distributions was
the best fit. The reader can find these explanations in detail
within the Supplementary Material in those papers using these
ABIDE sets6.

The estimated parameters were plotted on a Gamma
parameter plane, where the x-axis represents the shape parameter
value and the y-axis represents the scale parameter value.
Figure 2E shows the frequency histogram of sample data from
two representative participants, while Figure 2F shows the
sample empirically estimated Gamma parameters plotted on the
Gamma parameter plane.

The Gamma scale value conveys the noise to signal ratio (NSR)
since the Gamma mean µ0 = a · b and the Gamma variance is
σ0 = a · b2, thus the scale is:

b =
σ0

µ0
=

/a · b/2

/a · /b

In this sense, the Gamma parameter plane allows us to infer
speed-dependent processes leading to higher noise levels vs.
lower noise levels. Further, since higher shape values tend toward
symmetric distributions and lower values tend to be skewed
distributions, with the extreme Exponential distributions at a =
1, we can also track processes that tend to the Exponential
(memoryless, most random) vs. processes that tend toward the
Gaussian distribution (more predictable at low NSR).

The scatter of points on the log–log Gamma plane uncovers
a power-law relation between the shape and the dispersion
of the distributions [the scale parameter or Noise-to-Signal
Ratio (NSR)]. The Supplementary Material Figure A7 (TD)

6https://www.nature.com/articles/srep37422#Sec26

and Supplementary Material Figure A8 (ASD) show this and
tabulates the fitting errors of the linear polynomial fit with the
slope and intercept estimated for each age group and for the
pooled data, with 95% approximated confidence intervals. We
note that this linear fit is only the case upon the normalization
presented here to account for allometric effects owing to different
anatomical sizes across different ages. If the raw speed peaks
are used instead, this power law relation does not hold. Further,
other normalizations (e.g., scaling by dividing by the maximum
amplitude) do not hold a power law either. In our experience the
ASD data has systematically higher fitting error than the TD data.

In addition, for visualization purposes and to quantify
differences in probability space, we compute the empirically
estimated Gamma moments (mean along the x-axis, standard
deviation along the y-axis, skewness along the z-axis and kurtosis
proportional to the size of the marker). These are then plot,
for each participant in each age group. Figure 2G shows an
example for the representative TD vs. ASD participants used
here to illustrate the analyses pipeline. We also plot the Gamma
Probability Density Functions (PDFs) using the empirically
estimated parameters.

Statistical Comparison
We used the Kruskal–Wallis non-parametric ANOVA to
compare groups pairwise and report in each pairwise comparison
the results for p < 0.01 and p < 0.05 in matrix form, without
correction for multiple comparisons. A 7 × 7 matrix of 7 age
groups provides the entries with p-values (see color bar in figures)
and indicates the level of significance: one asterisk for p < 0.05
and two asterisks for p < 0.01. There are three such matrices,
one for comparisons within the group of neurotypicals, one
within the group of autistics and one comparing autistic relative
to neurotypicals.

The distributions PDFs were also compared using the
Kolmogorov–Smirnov test for two empirically estimated
distributions and significance reported as above in matrix form.
As with the non-parametric ANOVA we report p-values as
entries of the matrix with one asterisk reflecting significance at
0.05, while two asterisks reflect significance at the 0.01 level.

Effect Size
In addition to the non-parametric one-way ANOVA (Kruskal–
Wallis test), to assess the statistical significance of the group
differences, we performed a t-test and ascertained the effect size
of the differences that these comparisons yielded. To that end,
we used the Cohen d test. We also used the Glass delta test, as
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the samples had equal size but significant differences in their
variances. We used the head excursions [the cumulative linear
(and the angular) speed] as the parameter of interest and set the
neurotypical participants as the control group. The motivation
for this parameter is that it is the parameter underlying the MMS
computation, as they are derived from the head linear speed and
the head angular speed, and we are interested in the cumulative
effects over time, along these time series data.

The Cohen d test has the following formula:

d = (M2 − M1)/SDpooled where M1 and M2 are the means of
each group,

SD1 and SD2 are the standard deviations of each group,

and SDpooled =

√(
SD2

1 + SD2
2
)
/2.

The Glass delta test is 1 = (M1 −M2)/SD2 where SD2 is the
standard deviation of the control group.

We obtained these measurements for each of the 7 age-groups
and within each case, compared ASD vs. TD, with TD set as
the control group.

The literature (Cohen, 1992; Sawilowsky, 2003) suggests the
following size effect ranges: 0.01 very small; 0.2 small; 0.5
medium; 0.8 large; 1.2 very large; and 2.0 huge.

RESULTS

Different TD Age Groups Show Different
Signatures of Involuntary Head Motion
Variability
The different age groups of TD participants showed differences in
statistical signatures of NSR, with trend shifting downward with
age. This result can be seen across all the age groups for the linear
speed in Figure 3 and for the angular speed in the Supplementary
Material Figures A1, A2 and Supplementary Table S2.

These differences in the involuntary head motions expressed
by the linear speed extend to other Gamma parameters and
moments in Figure 3. They reach statistical significance for all
groups, as shown by Figure 4, (p < 0.05) when comparing
pairwise each group. The NSR summarizing the variance to
mean ratio is significantly different for some groups at the
0.01 level. All groups differ in NSR evolution at p < 0.05.
In contrast the estimated PDF curves were only significantly
different for 5–10 and 11–15 groups when comparing them
to all the other groups; but the differences in PDF were not
significant for the groups above 16 years of age. Comparable
results for all parameters related to angular speed can be seen in
Supplementary Material Figure A1.

Different ASD Age Groups Show
Different Signatures of Involuntary Head
Motion Variability
The comparisons of the age-groups with ASD also show shifting
statistical signatures across ages (Figure 5) and they were

significant at the 0.05 level for all comparisons in the NSR. This
can be appreciated in Figure 5 for the linear speed parameter and
in the Supplementary Material Figures A1–A4 for the angular
speed parameter (Supplementary Table S2).

There Are Significant Differences
Between TD and ASD Groups Across
Each Age-Group
Differences between the age-dependent groups of TD and ASD
can be appreciated in Figures 4, 5, respectively, for the linear
speed. In particular, the shifts in the stochastic signatures of
linear speed variability can be traced cross-sectionally across
ages in the Gamma parameter space of moments, where the
participants with ASD show higher variability and overall higher
values of the head excursions (as quantified by the rates of linear
displacements). The statistical significance of these pairwise
age-group comparisons can be appreciated in the Figure 6.
Further Supplementary Material Figures A1, A4 show the
results corresponding to the angular speed parameter reflecting
the rates of fluctuations in head rotations. Supplementary
Material Figures A5, A6 further show the results for the two
types of bootstrapping methods, reflecting these trends with and
without replacement.

Size Effects
The t-test for head excursions based on cumulative linear
speed (head translations mm/s) yielded significant differences
(p << 0.001) when comparing ASD and TD age groups
pairwise. Likewise, the t-test for head excursions based
on cumulative angular speed (head rotations rad/s) yielded
significant differences (p << 0.001) when comparing ASD and
TD age groups pairwise. Table 1 shows the p-values.

Disease Effect
For the comparison of ASD vs. TD, the size effects for
the cumulative linear displacement of the head (head linear
excursions) were in the range of very large to huge, with Glass
Delta and Cohen d. The size effects for the cumulative angular
displacements of the head (head rotational excursions) were also
in the range of very large to huge, according to the Glass Delta and
Cohen d, with the exception of age group 31–40 years old with a
medium effect. Table 2 shows the effect sizes per age group.

Age Effects
The pairwise comparison of age groups yielded large to huge
size effects for the cumulative head excursions involving linear
displacements or angular rotations. These effects are depicted
in Figure 7 as colormaps whereby each entry of the matrix
represents a pairwise age group comparison.

DISCUSSION

This paper investigated age-dependent shifts in the statistical
signatures of typical levels of involuntary head motions using
rs-fMRI data from the ABIDE repository. We characterized
the stochastic signatures of involuntary head motions as TD
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FIGURE 3 | Characterization of the shifts in age-dependent stochastic signatures derived from involuntary head motion defined by linear speed (mm/s) (as in
Figures 2A,B) for each of the age groups under study. Each group has equal number of representative participants (100). Gamma moment parameters (mean,
standard deviation and skewness are represented by the x-, y-, and z-axis dimensions, respectively). The size of the marker is proportional to the kurtosis (smaller
being flatter probability density function and larger being peakier distributions). The color of the marker reflects the net amount of head excursion (HEx, mm) as
depicted by the colorbar gradient, while the marker’s edge color denotes the type of participant. Insets are the Gamma shape vs. scale parameter space, which we
also show in Supplementary Material Figures A7, A8 in log–log units for these linear speed cases for TD and ASD, respectively.

participants rested in the scanner. We uncovered age-dependent
transitions in the features of empirically estimated probability
distributions of the fluctuations in peak amplitudes of linear
and angular speed from involuntary head motions. We also
measured the departure from this normative data in different
age-groups of participants with ASD. We found that from 5 to
65 years of age, there were statistically significant differences
in the distribution parameters of standardized fluctuations in
speed amplitude relative to normative levels. They were paired
with differences in PDF skewness and differences in PDF overall
shape. We quantified mostly very large to huge size effects
of these differences for disorder and age effects. The findings
demonstrate that it is inadequate to assume or enforce normal
distributions in statistical analyses of developmental research,
including autism research. Both the linear speed and the angular
speed data revealed consistent results that point at high levels of
speed amplitude noise in ASD, thus making it hard to forecast
future from prior speed levels.

Our work strongly suggests the need to explore age-dependent
variations in noise and randomness levels in ASD motor
parameters and design separate, age-appropriate analyses for
young children, adolescents, and older adults. In future research,
we will need to more systematically explore the typical population
and build records of the age-dependent rates of change in

statistical parameters reflecting levels of neuromotor control, to
design new non-parametric models of normative age-shifting
data. Further, our results point to the importance of studying
autism as a lifelong condition that changes non-uniformly,
asynchronously within a given age group and dynamically as the
person ages, as compared to TD controls.

The present data set offers cross-sectional information from
the ASD and TD populations. These data sets are very
valuable as they revealed trends in the rates of change of
probability distributions derived from involuntary motor data
as the population ages. However, to truly characterize the
heterogeneous ASD, and to stratify the population into various
subtypes, we will need to deploy longitudinal studies that
better reflect individual differences over time. Such differences
could be tracked as the person aged and received treatments.
A longitudinal and dynamic characterization of neuromotor
development, including voluntary purposeful, goal-directed
motions will be very important to understand the evolution of
motor autonomy, action planning, action generation and action
adaptation in the context of the person’s agency over naturalistic
behaviors taking place in activities of daily life.

Some caveats of the ABIDE data sets are that there are
different sampling resolutions of the scanners that different labs
use. In recent work, we have characterized the types of noise
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FIGURE 4 | Non−parametric ANOVA Kruskal–Wallis pairwise statistical comparison for each TD age-group for the Gamma parameters and moments, derived from
the peak amplitudes of the involuntary head motions defined by the head displacements (linear speed measured in mm/s). Reported p-values are uncorrected for
multiple comparisons. *p < 0.05, **p < 0.01.

according to sampling resolution and shown, using these same
data sets, that the sampling resolution of the scanner does affect
the type of noise (Caballero et al., 2018). We have also shown that
the noise type can distinguish controls vs. autistic participants.
Here we employed the bootstrapping technique to shuffle the
speed amplitudes and randomize the possible biases that different
sampling resolutions introduce. We further took care of using
similar sample sizes for each age group and keeping the number
of frames equal for each representative data point in the 100
set. These precautions paired with the standardization of the
fluctuations deviating from an empirical estimated mean, to
avoid allometric effects due to anatomical differences within a
group, ensure proper comparisons. However, we also point out
that breaking the groups into 5-year intervals was somewhat
arbitrary, as a finer break down would have been ideal. This
grouping was motivated by prior work where we were able to
group medication intake and clinical scores for these groups and
reveal trends across the population (Torres and Denisova, 2016).
The main motivation there and here were the disparate sizes
of age groups in ABIDE. We emphasize that beyond pointing
out the trends in systematic shifts of probability families, we do
not claim anything else. The main message of the paper is that
we should not use a one size fits all model when performing
statistical analyses, because different distributions are present in
the normative groups, and in the autistic groups. Moreover, in
autism, these distributions differ relative to those of controls.
Levels of noise to signal ratio in these standardized waveforms
systematically shift cross sectionally with aging and this reflects
in a changing probability landscape that we should consider when
performing our statistical analyses.

Lastly, at a different level, the results from our work are
important to alert researchers, clinicians and policy makers
of the shifting issues that the autistic population faces and
the need for a highly flexible program that considers such
shifts as the person ages. Under such profound sensory-motor
differences at the periphery and excess of undesirable involuntary
movements, it will be important to understand and characterize
the types of feedback that the autistic central nervous systems
are getting from the peripheral nervous systems. Once we
understand these issues, we will be able to offer better support
to the autistic person across all ages by leveraging sensory
substitution/augmentation and noise cancelation techniques, etc.
from the field of Neuroscience.

At present, autism is defined and treated as a behavioral
problem reflecting issues with social interaction and
communication, yet those are “the tip of the iceberg.” Another
hidden layer of information contributing to those visible
problems are these irregular micro-motions invisible to
the naked eye of the diagnostician and/or the therapist.
While aiming at reshaping the autistic person’s behaviors
to conform to social expectations without considering
such intrinsic (concealed) sensory-motor issues, the current
interventions used to treat autism may unintentionally create a
bigger problem.

Our lab has found that in autism, under such high levels
of MMS noise across the peripheral nervous systems it is
difficult to develop proper motor control (Brincker and Torres,
2013). These conclusions are supported by prior work in the
field of motor control (Gidley Larson et al., 2008; Haswell
et al., 2009; Marko et al., 2015; Mosconi and Sweeney, 2015;
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FIGURE 5 | Non-parametric ANOVA Kruskal–Wallis pairwise statistical comparison for each ASD age-group for the Gamma parameters and moments, derived
from the peak amplitude of involuntary head motions defined by the head displacements (linear speed measured in mm/s). Reported p-values are uncorrected for
multiple comparisons. *p < 0.05 and **p < 0.01.

FIGURE 6 | Non-parametric ANOVA Kruskal–Wallis pairwise statistical comparison for each age-group comparing TD vs. ASD for each of the Gamma parameters
and moments, derived from the peak amplitude of involuntary head motions measured by the rate of displacement (linear speed mm/s). *p < 0.05 and **p < 0.01.
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FIGURE 7 | Size effects of aging according to the Cohen’s d (A) and the Glass delta (B) formulae applied pairwise to the age groups using the head excursion
parameter derived from the cumulative linear displacements or angular rotations.

Mosconi et al., 2015a) including issues with the motor cortex
(Muller et al., 2001; Theoret et al., 2005; Mostofsky et al.,
2007; Floris et al., 2016; Al Sagheer et al., 2018) and the
cerebellum (Mostofsky et al., 2009; Mosconi et al., 2013,
2015b). Such mounting evidence highlights the need for a
better characterization of the observable behaviors defining
autism in terms of underlying somatic sensory motor signatures.
A neurological model (e.g., Damasio and Maurer, 1978) to
explain the autistic behavioral symptoms would be more
adequate to leverage the wearable sensors revolution and
open a new field for objective behavioral analyses. Such a
field would considerably help advance the neuroscience and
the genetics of autism by providing new tools from AI and
machine learning to automatically stratify the various subtypes
of autism and guide the design of personalized treatments,
accommodations and support.

One of the main features of neurotypical development
is the emergence of neuromotor autonomy, which in turn

depends on central control. Central control depends on the
continuous peripheral feedback that kinesthetic reafferent input
provides (Kandel, 2013). In neurotypical systems with intact
kinesthetic feedback, mental intent matches physical action,
but this is not the case in age- and sex-matched autistics
(Torres et al., 2013b). This type of peripheral feedback is
important for motor learning and adaptation at all levels,
including socio motor behaviors, speech production via vocal
apparatus and communication through pointing gestures, and
gait maturation. Occupational therapists work on creating
adequate support and accommodations to complete simple
actions of daily living that TD individuals may take for granted,
but their therapies are not always covered by medical insurance.
Perhaps this type of evidence on core systemic, sensory motor
differences in the autistic peripheral nervous system could help
advance their programs and provide the types of objective
outcome measures of treatment effectiveness that insurance
companies require.
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In summary, we have shown the need for new, more dynamic
statistical approaches to neurodevelopment and natural aging, as
well as the need to provide normative scales to measure departure
from typical states in levels of motor noise, randomness and
excess involuntary micro-movements in ASD.
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