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Abstract
The mountains of subtropical China are an excellent system for investigating the pro-
cesses driving the geographical distribution of biodiversity and radiation of plant popu-
lations in response to Pleistocene climate fluctuations. How the major mountain ranges 
in subtropical China have affected the evolution of plant species in the subtropical 
evergreen broadleaved forest is an issue with long-term concern. Here, we focused 
on Cercis chuniana, a woody species endemic to the southern mountain ranges in sub-
tropical China, to elucidate its population dynamics. We used genotyping by sequenc-
ing (GBS) to investigate the spatial pattern of genetic variation among 11 populations. 
Geographical isolation was detected between the populations located in adjacent 
mountain ranges, thought to function as geographical barriers due to their complex 
physiography. Bayesian time estimation revealed that population divergence occurred 
in the middle Pleistocene, when populations in the Nanling Mts. separated from those 
to the east. The orientation and physiography of the mountain ranges of subtropical 
China appear to have contributed to the geographical pattern of genetic variation be-
tween the eastern and western populations of C. chuniana. Complex physiography plus 
long-term stable ecological conditions across glacial cycles facilitated the demographic 
expansion in the Nanling Mts., from which contemporary migration began. The Nanling 
Mts. are thus considered as a suitable area for preserving population diversity and large 
population sizes of C. chuniana compared with other regions. As inferred by ecologi-
cal niche modeling and coalescent simulations, secondary contact occurred during the 
warm Lushan–Tali Interglacial period, with intensified East Asia summer monsoon and 
continuous habitat available for occupation. Our data support the strong influence of 
both climatic history and topographic characteristics on the high regional phytodiver-
sity of the subtropical evergreen broadleaved forest in subtropical China.
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1  |  INTRODUC TION

High physiographical heterogeneity is suggested to prompt rapid 
diversification in montane habitats because of the increased eco-
logical opportunities afforded by frequent episodes of geographical 
isolation (Colin & Ruth, 2006; Muellner-Riehl, 2019; Simpson, 1964). 
Subtropical China comprises a geographically and climatically het-
erogeneous mid-elevation montane region bordered by the Qinling 
Mountains–Huai River (~34°N) in the north, the tropical region 
(~22°N) in the south, the Qinghai–Tibetan Plateau in the west, and 
the coastline in the east (Wu, 1980; Wu et al., 1987). Many stud-
ies have identified the mountains of subtropical China as one of the 
main centers of phytodiversity and endemism in the country and 
globally, with much higher diversity than the other regions in the 
Northern Hemisphere (López-Pujol et al., 2011; Qian et al., 2005). 
The high biodiversity of subtropical China is due in large part to the 
extreme physiographical heterogeneity of its mountain ranges (Fan 
et al., 2018; Xu et al., 2017; Yang et al., 2016). Generally oriented in 
north–south or northeast–southwest directions (Hou, 1983; Wang, 
1992a, 1992b; Ying, 2001), these topographically diverse ranges 
have been suggested to serve as either geographical barriers or 
colonization corridors for various plant species (Gong et al., 2016; 
Tian et al., 2018; Xiong et al., 2019). The uniqueness of their local 
habitats has been attributed to complex topography correlated with 
longitudinal or steep elevational gradients (Qiu et al., 2013; Wang 
et al., 2012). The primary vegetation type of these mountains is sub-
tropical evergreen broadleaved forest (STEBF), one of the largest 
continuous such forests in the world and well known for harboring 
ancient relictual elements of the north temperate biota (Qiu et al., 
2011; Wang et al., 2012). Many of their plant species, predominantly 
endemics, exhibit high rates of local and rapid radiation (Hou et al., 
2017; López-Pujol et al., 2011) presumably arising within the last 
5  million years, in line with both orogenic events and Pleistocene 
glacial cycles (Li et al., 1979; Liu et al., 2013; Shi et al., 1998; Wang 
et al., 2010). These characteristics make subtropical China an excel-
lent system for investigating the processes driving the geographical 
distribution of biodiversity and radiation of plant populations in re-
sponse to Pleistocene climate fluctuations.

Climatic oscillations associated with glacial cycles during the 
Pleistocene are also considered an important factor driving the 
distribution pattern of biodiversity and shaping the demographic 
history of populations, particularly in montane regions (Bueno de 
Mesquita et al., 2018; Hewitt, 2004; Li, Kong, et al., 2019; Li, Zhang, 
et al., 2019; Svenning et al., 2009). Although still under debate, con-
siderable data are now available to support four glacial periods in 
eastern China (east to 105ºE) during the Pleistocene, that is, the 
Poyang, Dagu, Lushan and Tali glacials (Duan et al., 1980). In sub-
tropical China, the degree of habitat connectivity is thought to have 
decreased during glacial periods, with vegetation belts lowering in 
latitude and contracted geographical ranges, allowing geographi-
cal isolation and genetic divergence to occur (Harrison et al., 2001; 
Shi et al., 2006). Multiple glacial refugia correlated with centers of 
genetic diversity have been identified in subtropical China, out of 

which subsequent localized or rapid range expansions have been in-
ferred (Chen et al., 2012; Gong et al., 2008; Li et al., 2012; Qiu et al., 
2011; Tian et al., 2015). Previous research has elucidated the scenar-
ios involved with the evolutionary history of plant species thought 
to be affected by glacial and postglacial cycles in subtropical China 
(Gong et al., 2016; Liu et al., 2012; Tian et al., 2020). This research 
suggests that climate change is considered the main driver in trigger-
ing genetic differentiation and population divergence in subtropical 
China (Chen et al., 2020; Qiu et al., 2011; Wang et al., 2015, 2017). 
However, the extent to which topographic heterogeneity and the 
major mountain ranges of subtropical China may have affected the 
evolution of endemic species has been less studied. The studies that 
have been done on this issue suggest that topographic heterogene-
ity is as important as climate fluctuations in driving the evolution 
of species diversity in subtropical China (Li, Kong, et al., 2019; Li, 
Zhang, et al., 2019; Liu et al., 2014; Zhang et al., 2018; Zhu et al., 
2019).

Cercis chuniana F.P. Metcalf (Fabaceae: Cercidoideae; Azani et al., 
2017) is a small tree or shrub endemic to the STEBF of southern 
China. In comparison with its congeners, including C. canadensis L., 
C. glabra Pamp. and C. siliquastrum L., which have wide-ranging dis-
tributions with large population sizes, C.  chuniana has a relatively 
narrow geographical distribution. It occurs in the major mountain 
ranges in subtropical China, extending from the Wuyi and Eastern 
China Mountains westward to the Nanling Mountains. As with its 
congeners in China, it exhibits an adaptation to mesic environments 
by its acuminate leaf blade apex (Fritsch & Cruz, 2012; Fritsch et al., 
2018; Isely, 1975; Wunderlin et al., 1981). Unique among Cercis spe-
cies, it has an asymmetrical leaf blade (Chen et al., 2010; Metcalf, 
1940), which makes it easily identifiable morphologically. The spe-
cies is resolved near the base of the Cercis phylogenetic tree, and 
the species diversification time is estimated to be 2.40  Ma based 
on fossil-calibrated divergence time analysis in Cercis (Fritsch et al., 
2018; Liu et al., unpublished data, 2020). Therefore, we considered 
C. chuniana as a strong candidate for investigating the influence of 
both climatic history and topographic characteristics on the high 
regional phytodiversity of the subtropical evergreen broadleaved 
forest in southern China.

Genotyping by sequencing (GBS) is a streamlined workflow for 
generating reduced representation libraries for Illumina sequenc-
ing (Heffelfinger et al., 2014; Ilut et al., 2014; Melo et al., 2016) and 
has been widely used as a genomic approach for investigating ge-
netic diversity and population structure (Chen et al., 2017; Metzker, 
2010; Niu et al., 2019). Because it is based on genomic reduction 
with restriction enzymes, GBS does not require a reference genome 
to detect single nucleotide polymorphisms (SNPs). In combination 
with marker discovery and genotyping, GBS provides a rapid, high-
throughput, and cost-effective tool for a genome-wide analysis for 
nonmodel species (Andrews et al., 2016; Davey et al., 2011; Scheben 
et al., 2017). Here, we used GBS and collected genome-wide SNPs 
for population genetic analyses of C. chuniana. We aimed to (1) in-
vestigate genetic diversity and population structure of the species, 
(2) elucidate its demographic history, and (3) use the data to test the 
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relative influence of topographic heterogeneity versus Pleistocene 
climatic fluctuations in driving population diversification and geo-
graphical distribution within the STEBF in subtropical China.

2  |  MATERIAL S AND METHODS

2.1  |  Population sampling

We collected 11 populations and 112 individuals of C. chuniana from 
throughout the current geographical distribution of the species 
(Figure 1, Table 1). Anywhere from one to five populations were col-
lected from each of the mountain ranges in subtropical China. The 
sampled populations are located in the southern Yandang Mts. (YDS), 
the northern Wuyi Mts. (WYS), the southern Luoxiao Mts. (LXS1 and 
LXS2), the eastern Nanling Mts. (NLE1 and NLE2), and the western 
Nanling Mts. (NLW1 through NLW5; Figure 1, Table 1). Some popu-
lation sizes are very small with limited numbers of living individuals 
because of the destruction of habitat. Therefore, less than ten in-
dividuals were collected in five small populations, including YDS, 
WYS, LXS1, NLW2, and NLW5. We also collected 20 individuals from 
one population of C. chingii Chun located in Chichengshan, Zhejiang 
Province (CCS), which were used as the outgroup. The reason that 
we chose C. chingii as the outgroup is mainly based on the ML tree 
constructed for Cercis based on GBS data, which shows that C. chuni-
ana is at the basal branch followed by C. chingii. Therefore, we chose 
C. chingii as the outgroup as the other congeneric species are phylo-
genetically much most distant. Additionally, we tested the result of 
the ML tree by randomly choosing one individual of C. chingii, which 
did not change the final topology.

2.2  |  Ecological niche modeling

We used ecological niche modeling (ENM; Soberón & Peterson, 
2005) to characterize the spatial distribution of suitable conditions 
for C. chuniana and locate potential distributional areas in conjunc-
tion with historical biological inferences. We based the analysis on 
high-resolution paleoclimate data inferred for the Last Interglacial 
(LIG, 0.14~0.12 Ma), Last Glacial Maximum (LGM, ≈ 0.02 Ma), Middle 
Holocene (MH, ≈ 0.006 Ma), and current. Bioclimatic variables were 
downloaded from the WorldClim database (http://world​clim.org/
download; Fick & Hijmans, 2017) for the four different stages with 
2.5-minute spatial resolution. The LIG, LGM, and MH data were ob-
tained from circulation model simulation of the Community Climate 
System Model (CCSM; Collins et al., 2006), which provides down-
scaled high-resolution estimates of the climate parameters (Hijmans 
et al., 2005). We used the maximum entropy modeling method with 
Maxent v3.3.2 (Phillips et al., 2006). Herbarium specimen records 
of C.  chuniana from nine herbaria (A, IBEC, IBK, IBSC, KUN, LBG, 
NMNH, PE, and SCFI) and our sample collection locations were used 
to determine the locations of populations considered to occur at 
present. The analysis pipelines and parameter settings, including the 

occurrence points, current/past bioclimatic variables and the con-
vergence threshold and maximum number of iterations, were all as 
in Dai et al. (2011) and Gong et al. (2016). Model accuracy was as-
sessed by evaluating the area under the curve (AUC) of the receiver 
operating characteristic (ROC) plot (Phillips et al., 2006), where 
scores higher than 0.70 were considered to show good model per-
formance (Fielding & Bell, 1997). This approach is thus conservative, 
identifying the minimum predicted area possible while maintaining 
zero omission error in the training dataset (Pearson et al., 2007). We 
added a layer of GIS-based vegetation map for comparison in each 
period of LIG, MH, LGM and current (Allen et al., 2020; Ray & Adams, 
2001). The most influential climate factors were also compared, in-
cluding precipitation and temperature in each month or on average.

2.3  |  DNA extraction, genotyping by sequencing 
(GBS), SNP calling, and quality filtering

Fresh leaves of C. chuniana and C. chingii were sampled and placed 
into centrifuge tubes, which were instantly immersed in liquid nitro-
gen and stored at −80℃. Leaf tissue was ground in tubes with glass 
beads with the tissue homogenizer TissueLyser-96 (Shanghai Jingxin 
Industrial Development Co., Ltd). Total genomic DNA was extracted 
with the modified cetyl trimethyl ammonium bromide (CTAB) 
method (Doyle & Doyle, 1986). DNA concentration was quantified 
with a NanoDrop spectrophotometer (Thermo Scientific), and a final 
DNA concentration of >30 ng/µl was used.

The genomic DNA was digested with a combination of MseI and 
NlaIII enzymes. Subsequent ligation to barcodes after multiplex 
amplification was constructed, and the desired fragments were 
selected for GBS library construction in Novogene Co., Ltd. The 
Illumina HiSeq sequencing platform (Illumina) was used for paired-
end (PE) 150 sequencing. Further analyses and DNA library assem-
bly were performed to remove low-quality reads. Reads in fastq 
format were assembled by using STACKS v2.2 (Catchen et al., 2013) 
with one individual of Cercis glabra as reference and up to six base 
mismatches allowed. BWA v0.7.8 (Li & Durbin, 2009) was used for 
sequence mapping and sorting with the following settings: mem -t 
4 -k 32 -M. The alignment files were converted to bam files with 
SAMtools v1.3.1 (Li et al., 2009). We used 132 individuals for SNP 
calling with Stacks. For population analysis, we extracted SNPs with 
a minor allele frequency (MAF) of at least 0.05 and a genotyping rate 
of at least 80% of individuals within populations. We also specified a 
maximum observed heterozygosity of 50% and a minimum number 
of five populations per locus.

2.4  |  Phylogenetic analysis and divergence 
time estimation

Using the SNPs extracted from the GBS dataset, we employed 
maximum likelihood (ML) to reconstruct phylogenetic relation-
ships among the 11 populations of C. chuniana. We used C. chingii 

http://worldclim.org/download
http://worldclim.org/download
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to root the trees based on FastStructure analysis showing a close 
relationship between C. chuniana and C. chingii (Figure 4) and Mega 
analysis showing no remarkable differences in genetic distances be-
tween C.  chuniana and other species. Therefore, we consider that 
C. chingii is sufficiently close to the ingroup for the purpose of root-
ing the tree in the ML analysis. Analyses were performed on the 
high-performance computer cluster available in the CIPRES Science 
Gateway 3.3 (www.phylo.org; Miller et al., 2015). The ML analyses 
were performed simultaneously with 1000 ML bootstrap pseudor-
eplicates in RAxML v8 (Alexandros, 2014). The model of nucleo-
tide substitution was selected with the Akaike information criteria 
(AIC; Akaike, 1974) in PhyML-SMS (http://www.atgc-montp​ellier.fr/
phymL/; Lefort et al., 2017).

We used fossil calibrations for the estimation of divergence time 
in Cercis. The fossil age of Cercis was originally estimated as 34 Ma 
(Lavin et al., 2005), but recently updated to 36  Ma (Fritsch et al., 
2018). We conducted divergence time estimation based on all Cercis 
species using the fossil calibration of 36 Ma at the crown node of the 
genus. The result indicated that the root age for Cercis is 33.53 Ma 
and the crown age for C. chuniana is 2.39 (Figure S2; Liu et al., unpub-
lished data, 2020), the latter of which was used for further analysis 
of time divergence for all the C. chuniana populations. Therefore, to 
estimate the divergence time within C.  chuniana, we used BEAST 
v2.4.7 (Bouckaert et al., 2014) and applied the age of 2.4 Ma as the 
secondary calibration point with a normal prior distribution and stan-
dard deviation of 0.2 Ma, which covered the 95% HPD range. The di-
vergence time analyses were conducted with the GTR + G + I model 
and four rate categories, a Coalescent Constant Population prior, and 
the Strict Clock setting with uncorrelated and log-normal-distributed 
rate variation across the branches. We ran the MCMC simulations 
in BEAST for 10 million generations with parameters sampled every 
1000th generation. We used Tracer v1.6 (Rambaut et al., 2014) to 
assess convergence and to check that the effective sample size (ESS) 
was >200 for each parameter. We discarded the first 10% of trees 

as burn-in with the mean node heights option, and then generated 
the maximum clade credibility (MCC) chronogram from the remain-
ing trees with nodal mean heights and 95% confidence time intervals 
with TreeAnnotator v2.4.7 (Bouckaert et al., 2014) in BEAST. The 
final trees were edited with FigTree v.1.4.3 (http://tree.bio.ed.as.uk/
softw​are/figtr​ee/; Rambaut, 2014).

2.5  |  Genetic diversity, population 
assignment, and admixture

The number of alleles and allele frequencies for the selected SNPs 
were calculated with vcftools 0.1.16 (Danecek et al., 2011). To meas-
ure genetic diversity, we estimated expected heterozygosity (He) 
and observed heterozygosity (Ho). We used Arlequin v3.5 (Excoffier 
& Lischer, 2010) to estimate genetic differentiation by calculating 
pairwise values of differences among populations (Fst). To compare 
molecular diversity between and within populations, we used anal-
ysis of molecular variance (AMOVA) and a hierarchical analysis of 
subdivision (Excoffier et al., 1992; Weir, 1996; Weir & Cockerham, 
1984). Altogether, seven groups were defined on the basis of 
FastStructure analysis.

We estimated population genetic structure with a Bayesian 
Markov chain Monte Carlo (MCMC) model implemented in 
FastStructure v1.0 (Raj et al., 2014). We used the default setting 
with 10-fold cross-validation on the 112 individuals of C. chuniana, 
testing for subpopulations (K) ranging from 1 to 11. The python 
script Choose K in FastStructure was used to choose the optimal 
K, that is, the value that maximizes the marginal likelihood. Results 
were graphically represented and edited with Adobe Illustrator. We 
performed principal component analysis (PCA) using the PCA func-
tion in SNPRelate (Zheng et al., 2012) and visualized the results using 
the scripts of Tanya Lama (https://github.com/ECOtl​ama/SNPRe​
late.git) in the R package.

F I G U R E  1  Map of subtropical China, 
showing the sampling locations of Cercis 
chuniana populations used in this study. 
The mountain ranges involved in the study 
are shown in orange frames. Populations 
sampled in the Nanling Mts. are indicated 
with black circles; populations in the east 
are indicated with triangles. Vicariance 
events detected with S-DIVA are shown 
with blue lines. The key at bottom right 
indicates elevational ranges. Latitudes 
and longitudes are shown on the right 
side and top side, respectively. Additional 
accession information is given in Table 1
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2.6  |  Inference of demographic history

For ancestral area reconstruction, we used seven groups of C. chu-
niana for S-DIVA (statistical dispersal–vicariance analysis) analysis 
implemented in RASP v3.2 (Ronquist, 1997; Yu et al., 2015). The 
analysis was based on the BEAST MCMC trees and the maximum 
clade credibility tree derived from the Bayesian analysis with BEAST 
and TreeAnnotator (Matuszak et al., 2016). With this method, the 
frequencies of an ancestral area at a node in the ancestral recon-
structions are averaged over all trees. Dispersal or vicariance events 
were also detected with S-DIVA.

We applied coalescent simulations with the program fastsim-
coal2 (FSC2; Excoffier et al., 2013) to provide model evidence of di-
vergence, secondary contact, bottleneck effects, and demographic 
expansion. The populations in the Nanling Mts. (NL), which formed 
a monophyletic group and were distinct geographically, were delim-
ited as one group, and the remaining populations as another, that 
is, the eastern populations (ES). We used easySFS (https://github.
com/isaac​overc​ast/easySFS) to transform SNPs into a folded site 
frequency spectrum (SFS) based on the construction of 10 demo-
graphic models with the two groups (Figure S3). The models are as 
follows: without isolation (NIS), isolation only (IS), isolation followed 
by migration (MIG), bottleneck effect (BOT) or secondary contact 
(SEC). Models including ancient (AMIG) or recent migration (RMIG), 
bidirectional or one-way migration, and demographic expansion 
(EXP) were also applied. In each model, NL or ES were alternatively 
used as the split source that was subjected to each scenario. We 
estimated effective population size (Ne), time (T) and migration rates 
in individual migrants per generation (MNL-ES and MES-NL) for the two 
groups in each model from posterior distributions. To scale param-
eter estimates into real values, we calculated the substitution/site/
generation mutation rate based on phylogenetic analysis and diver-
gence time estimate of Cercis (Liu et al., unpublished data, 2020), 
because the genomic mutation rate has not been calculated for this 
genus. The clock rate was firstly estimated as 2.32 × 10−8 substitu-
tions/site/year for nine species and 241 individuals of Cercis with 
Tracer v1.6 (Rambaut et al., 2014). With a generation time of five 
years as based on congeners (Aldworth, 1998; Chen & Mao, 1999), 
the mutation rate was calculated as 1.16 × 10−7 substitutions/site/
generation. As compared to some other plants such as Arabidopsis, 
Prunus, and Silene that show ~7 × 10−9 substitutions/site/year, the 
substitution rate for C.  chuniana appears to be faster. However, 
the substitution/mutation rates vary in a wide range among differ-
ent plant species and are strongly associated with the life history 
traits and generation time (Smith & Donoghue, 2008). We ran 100 
replicate FSC2 analyses under each model with 10,000 simulations 
for optimal parameters and composite likelihood estimation. All 10 
demographic models were compared (Figure S3, Tables S2–S4). The 
composite likelihood of arbitrarily complex demographic models 
under the given SFS was calculated by using best-fit models based 
on the Akaike information criterion (AIC). The models with the low-
est AIC were chosen as the best fit of the data (Akaike, 1974).

3  |  RESULTS

3.1  |  Ecological niche modeling

Evaluation of model performance based on both training and test 
sample data indicated that the models had high predictive power 
(AUC = 0.9976 and 0.9966, respectively). Results yielded a con-
tinuous geographical distribution of C.  chuniana across several 
mountain ranges in subtropical China during the Last Interglacial 
(LIG) period, under higher temperature than current (Figure 2a). In 
contrast, during the Last Glacial Maximum (LGM) the geographi-
cal distribution contracted into three fragmented areas, when 
the temperature was ~5–10℃ lower than current (Figure 2b). We 
compared these data with a vegetation map of the LGM (http://
intar​ch.ac.uk/journ​al/issue​11/2/map/downl​oad_page_js.htm), 
finding that the three fragmented distribution areas were located 
mainly inside forest steppe (number 7) and partially in semi-arid 
temperate woodland or scrub (number 3; Ray & Adams, 2001). The 
geographical distribution of C. chuniana was inferred to have ex-
panded widely during the Middle Holocene (MH), occupying most 
of the Chinese subtropical region. No changes in the geographical 
distribution were evident between MH and current. Precipitation 
in April, May, and June was revealed to be the most influential 
climate factor for the suitable distribution range of C.  chuniana 
(Table S1).

3.2  |  Characterization and distribution of SNPs

GBS produced 200  Gb clean reads after filtration. High-quality 
tags were identified from 10,761,958 Gb-PE reads. The sequence 
data were high quality with Q20 ≥ 92.23% and Q30 ≥ 85.00%. 
The mean G + C content was 37.84%. We detected 61,748 SNPs 
for C. chuniana with C. chingii as outgroup, among which 32,890 
SNPs agreed with the SNP extraction criteria. The data have 
been deposited in Figshare (https://doi.org/10.6084/m9.figsh​
are.15283395).

3.3  |  Phylogenetic relationships and 
divergence times

The phylogenetic analysis yielded monophyly for most populations 
with mostly high bootstrap values, except YDS (Figure 3 and Figure 
S1). YDS was revealed to be positioned at the first-diverging branch, 
followed by the populations WYS, LXS2, and LXS1. The populations 
in the Nanling Mts. formed a monophyletic group, with NLE2 and 
NLE1 in the eastern Nanling Mts. forming a clade separate from the 
others in the western Nanling Mts. The time of origin for C. chuni-
ana was estimated as 2.39 (95% HPD  =  1.97–2.74) Ma during the 
early Pleistocene (Figure S2). YDS was first divergent from the re-
maining populations, followed by WYS diverging from the rest ca. 

https://github.com/isaacovercast/easySFS
https://github.com/isaacovercast/easySFS
http://intarch.ac.uk/journal/issue11/2/map/download_page_js.htm
http://intarch.ac.uk/journal/issue11/2/map/download_page_js.htm
https://doi.org/10.6084/m9.figshare.15283395
https://doi.org/10.6084/m9.figshare.15283395
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0.78 Ma during the end of the Poyang Interglacial period. The di-
vergence occurring between LXS2 and the remaining populations 
was estimated as ca. 0.74  Ma, and the divergence between LSX1 

and the populations in the Nanling Mts. as ca. 0.65  Ma. Both di-
vergence times arose within the third glacial period in China in the 
Middle Pleistocene, although the exact glacial and interglacial time 

F I G U R E  2  Potentially suitable areas for Cercis chuniana predicted by ecological niche modeling (ENM) and corresponding variation in 
temperature for four different periods of LIG (a), LGM (b), MH (c), and Current (d). Suitable and unsuitable habitats are indicated in red 
and gray, respectively, where red represents the habitat suitability (occurrence probability) higher than 44.93%. Each map is shown in 
comparison with a layer of GIS-based vegetation map for each period. Numbers 1‒13 represent different vegetation types: 1, tropical 
thorn scrub and scrub woodland; 2, open boreal woodland; 3, semi-arid temperate woodland or scrub; 4, steppe-tundra; 5, polar and alpine 
desert; 6, temperate desert; 7, forest steppe; 8, dry steppe; 9, temperate broadleaved evergreen forest; 10, warm temperate woodland; 
11, temperate mixed forest; 12, shrub tundra, and 13, boreal evergreen coniferous forest. Gray boxes enclose the temperatures for that 
time interval. The y-axis shows the temperatures compared with the current one (CT). The temperature during secondary contact (TSEC) is 
indicated in LIG (a). The most influential factors are listed in Table S1
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ranges are still under debate (Figure 4). Within the Nanling Mts., the 
eastern NLE1/NLE2 populations diverged from the western NLW1‒
NLW5 populations ca. 0.55 Ma, and NLW1 from the rest of the west-
ern populations ca. 0.48  Ma, both during the Dagu Glacial period 
(Figure 4). Population diversification within the Nanling Mts. ranges 
from 0.19 to 0.27 Ma in the western populations and from 0.33 to 
0.35 Ma in the eastern populations, the former during the Lushan 
Glacial period and the latter during the Dagu–Lushan Interglacial 
period. Population diversifications in the east (YDS, WYS, LXS1 
and LXS2) range from 0.34 to 0.47 Ma, spanning the Dagu–Lushan 
Glacial and Interglacial periods (Figure 4).

3.4  |  Genetic diversity and differentiation

The highest He was detected in NLW2 (0.38) followed by NLW5 
(0.35); the lowest was detected in LXS2 (0.31; Table 1). The high-
est H0 was detected in NLW1 (0.34) followed by NLW2 (0.33); the 
lowest was detected in LXS2 (0.19). On average, He and Ho in the 
Nanling Mts. (He = 0.33; Ho = 0.29) were comparable to those of 
the other populations in the east (He = 0.32; Ho = 0.27). In the 
FastStructure analysis, YDS separated from the remaining popula-
tions when K = 2. When K = 3, WYS and LXS2 clustered as one 
group and this group was separated from the remaining groups. 

F I G U R E  3  Phylogenetic tree of Cercis 
chuniana populations based on maximum-
likelihood (ML) analysis. Bootstrap 
percentages (>50) in the ML tree are 
indicated above the branches. NL refers to 
the populations in Nanling Mts., whereas 
ES refers to the populations in the east. 
All other abbreviations are population 
abbreviations from Table 1. Cercis chingii 
was used as the outgroup
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Seven subpopulations (K = 7) were determined as the optimal 
clustering for C.  chuniana (Figure 4). PCA results showed similar 
groupings except that LXS1 and LXS2  clustered together, and 
were distinct from WYS and from the Nanling Mts. populations 
(Figure 5). Considering the FastStructure, PCA, and phylogenetic 
results together with the geographical locations of populations, 
we ultimately circumscribed seven groups of C. chuniana popula-
tions for further analyses: YDS, WYS, LXS1, LXS2, [NLE1 + NLE2], 
NLW1, and [NLW2 through NLW5]. Analysis of the molecular vari-
ance based on the GBS data indicated significant genetic differ-
entiation among populations (Fst = 0.99, p = 0.00), of which the 
variation among the seven groups accounted for 96.28% of the 
total variation (Table 2).

3.5  |  Geographical isolation, secondary 
contact and demographic expansion

Six vicariance events (V1‒V6) among the geographical regions were 
inferred from the S-DIVA analysis (Figure 1). V1 is between YDS and 
the rest of the populations. V2 is between WYS and LXS2, located 
in the western Wuyi Mts. and southern Luoxiao Mts., respectively. 
V3 is between WYS/LXS2 and the rest of the populations, including 
LXS1 and the populations in the Nanling Mts. V4 is between LXS1 

and the rest of the populations. V5 is between the eastern and west-
ern Nanling Mts., separating [NLE1 + NLE2] and [NLW1 through 
NLW5], whereas V6 is between NLW1 and [NLW2 through NLW5]. 
Across the six vicariance events, the eastern populations diverged 
from the rest of the species first, and the western populations later.

The best-fit model for the demographic analysis with FSC2 is 
SECEXP, indicating isolation followed by secondary contact (SEC) 
and demographic expansion (EXP; Figure 6 and Figure S3, Tables 
S2–S4). In combination with the time tree given by BEAST, the 
timescale of 548,000 generations (2.74 Ma) was confirmed by the 
program fastsimcoal2 from the lowest AIC value. Based on the mu-
tation rate, we converted the genome-wide estimates of nucleotide 
diversity into effective population sizes. Nucleotide diversity per 
population is listed in Table 1. The current effective population sizes 
of the Nanling Mts. (NL) and eastern regions (ES) are NeNL = 57,495 
and NeES = 14,955, respectively. From the current effective popu-
lation size, the ancestral effective population size was calculated as 
NeANC = 755,955 (Figure 6, Table S3). Using the ancestral effective 
population size, we converted the divergence time between NL and 
ES into the number of generation times, TDIV = 319,472 generations 
ago, that is, about 1.6 Ma. Secondary contact (SEC) was estimated 
at ca. TSEC = 0.10 Ma. This date is within the Lushan–Tali Interglacial 
period in China (Duan et al., 1980; Zhu et al., 2004), when tempera-
ture increased and was ca. 5℃ higher than at present (Figure 2). The 

F I G U R E  4  Chronogram of the Bayesian tree for divergence time estimates, population structural clustering and ancestral area 
reconstruction. Branch lengths were transformed via Markov chain Monte Carlo (MCMC) simulations in the Bayesian time estimation. The 
light gray bars indicate 95% confidence intervals. The key glacial and interglacial periods are indicated by the braces, with GL standing for 
glacial period, IG for interglacial period, and PG for periglacial period. Individuals assigned to different clusters in FastStructure are shown in 
corresponding colors with K = 2, 3, and 7, with 7 as the optimal value. In the S-DIVA analysis, color legends indicate different geographical 
regions and ancestral areas. The individuals from the same population are represented in one colored circle. Vicariance events (V1–V6) with 
high probabilities (p ≥ 0.70) are shown for nodes. Populations in the Nanling Mts. are distinguished within the dotted line frame. Timescale 
bar is shown at the bottom. The population abbreviations are from Table 1
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ancestral effective population size of NL was estimated to be much 
smaller (Ne-pre-exp = 866) than at present. In contrast, the ES popula-
tion sizes remained more or less constant (Figure 6). The migration 
rate MNL-ES (2.14) was much higher than MES-NL (0.33), with migration 
occurring after NL and ES divergence.

4  |  DISCUSSION

4.1  |  Geographical isolation associated with 
Pleistocene climatic oscillations and mountain ranges

As based on ML analysis (Figures 1, 3), populations of C. chuniana are 
mostly monophyletic and closely aligned with geographical regions 
except YDS suggesting that they evolved mostly via local diversifi-
cation. This is thought to occur especially when geographical isola-
tion plays a dominant role (Harrington et al., 2018; Hughes, 2017; 
Hughes & Atchison, 2015; Kadereit, 2017; Nevado et al., 2018; Xing 
& Ree, 2017). Analysis of the molecular variance with significantly 

high population divergence (Fst = 0.99, p = 0.00) also indicates low 
inter-population gene flow (Table 2). Mountain ranges sometimes 
are considered as poorly conducive for facilitating long-distance 
dispersal, thus contributing to limited gene flow and geographical 
isolation (Oyama et al., 2018). In our study, isolation between YDS 
and WYS (V1) was attributed to the Wuyi Mts. acting as geographi-
cal barrier to separate the populations from each other (Figures 1, 
4). The rise of the Wuyi Mts. during the early Pleistocene is thought 
to have caused geographical isolation and genetic divergence for 
many species in subtropical China (Liu, 1984; Yan et al., 2013). 
Notably, the central Luoxiao Mts., with a north–south orientation, 
are assumed to have served as a geographical barrier particularly 
for east–west colonization. This appears to apply to LXS1 and 
LXS2 in the Luoxiao Mts., which are currently isolated from each 
of their eastern or western populations (V2 and V3; Figures 1, 4). 
We infer that the geographical isolation between the populations 
of the Nanling Mts. and those to the east (V4) has arisen through 
the lack of geographical corridors. Vicariance events also exist be-
tween the western and eastern (V5) and the middle and northwest 

F I G U R E  5  Principal component analysis (PCA) of Cercis chuniana populations. Different colors and shapes refer to each of the 11 
populations of C. chuniana and one outgroup population of C. chingii
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TA B L E  2  Analysis of molecular 
variance (AMOVA) results for global Fst 
statistics of Cercis chuniana
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(V6) populations within the Nanling Mts. The Nanling Mts. present a 
general north–south orientation, which we infer as disadvantageous 
for east–west colonization, thus contributing to vicariance involving 
V5. Unlike the populations NLW2~5, NLW1 is isolated on one ridge 
of the Nanling Mts. and geographically distant from the remaining 
populations, thus resulting in the vicariance involving V6. Therefore, 
the geographical barriers formed by the associated mountain ranges 
including the Wuyi, Luoxiao, and Nanling Mts. have directly limited 
long-distance colonization and are considered a major factor con-
tributing to the historical isolation of C. chuniana populations (Jiang 
et al., 2019; Li, Kong, et al., 2019; Li, Zhang, et al., 2019; Yang et al., 
2019). Similar patterns have been found in many other plant species 
with a wide distribution range in subtropical China, such as Machilus 
pauhoi (Zhu et al., 2017), Loropetalum chinense (Gong et al., 2016), 
and Liriodendron chinense (Shen et al., 2019).

Our study suggests that population divergence of C. chuniana 
occurred in the Pleistocene and has been affected by the glacial 
cycles. These cycles periodically changed suitable habitat and are 
thought to have promoted range contraction and expansion cou-
pled with geographical isolation (Knowles, 2001; Qu et al., 2011). 
Based on Bayesian estimation, the time of divergence (0.65  Ma) 
between the populations in the Nanling Mts. and those of the east 

coincides with the third (last) glacial period in China in the Middle 
Pleistocene (Figure 4). The time may fall in the Naynayxungla 
Glacial period (0.5–0.7 Ma; Zheng et al., 2002; Zhou & Li, 1998) or 
Poyang–Dagu Interglacial period (0.6–0.8 Ma; Duan et al., 1980). 
Although the precise time for the glaciations is under debate, it is at 
least clear that primarily the third (last) glaciation drove the genetic 
divergence between populations in the Nanling Mts. and those to 
the east, and shaped the geographical patterns of genetic varia-
tion. The estimated divergence time of the best-fit model in FSC2 
is older, that is, 1.60 Ma (Figure 6), which overlaps with the earliest 
known Quaternary glacial of the Xixiabangma Glacial period ca. 
1.6 Ma (Wan et al., 2016), or the Sizishan Periglacial period (1.5–
2.1 Ma; Duan et al., 1980), when the temperature was 10℃ lower 
than at present. The discrepancy between the results of Bayesian 
time estimation and FSC2 may be partially attributed to the wider 
time range under the log-uniform setting in FSC2. The secondary 
calibration used in BEAST is thought to generate smaller time es-
timates (Foster et al., 2017; Kong, Condamine, et al., 2017; Kong, 
Zhang, et al., 2017). The climate during glacial periods tended to be 
dry and cool, which would favor the populations shifting to lower 
elevations or latitudes with contracted distribution ranges due 
to the reduced subtropical evergreen broadleaved forest during 
the glacial period. The glacial period in the Middle Pleistocene 
has been shown to have driven spruce fir forests to lowlands in 
northern China (Liu, 1988). In our study, the geographical distri-
bution of C. chuniana in subtropical China is also associated with 
the Pleistocene glacial cycles (Figure 4). The Dagu Glacial period 
(0.5–0.6 Ma; Duan et al., 1980) primarily affected the population 
divergence between the east and west, whereas the Dagu–Lushan 
Interglacial period (0.3–0.5  Ma; Duan et al., 1980) and Lushan 
Glacial period (0.2–0.3  Ma; Duan et al., 1980) primarily affected 
population diversification. The dominant role for Pleistocene gla-
cial cycles affecting the geographical distribution of populations is 
also apparent in ecological niche modeling (ENM), where several 
isolated glacial refugia were identified during the LGM, although 
the climatic conditions may not be analogous to those of other gla-
cial cycles.

4.2  |  Genetic divergence between eastern and 
western populations

The population divergence in the eastern portion of the geographi-
cal range of C. chuniana is estimated to be older (0.47‒0.34 Ma) and 
with smaller population sizes than within the Nanling Mts., where 
more recent and rapid population diversification occurred (0.35‒
0.19  Ma) with larger population sizes (Figure 4). The phylogenetic 
analysis also revealed that populations of the Nanling Mts. formed 
a monophyletic group and were distinctly separated from the east-
ern populations. This pattern agrees with the general pattern of ge-
netic divergence observed between eastern and western China in 
other plant species with wide distributions (Chen et al., 2018; Gong 
et al., 2008; Ha et al., 2018; Hohmann et al., 2018; Lu et al., 2018; 

F I G U R E  6  Schematic representation of the best-fit demographic 
model investigated in our study. Model parameters correspond to 
those in Tables S2 and S3, respectively. The left vertical line shows 
time (Ma), which progresses from top to bottom (current time). 
Time of divergence (TDIV) and secondary contact (TSEC) are indicated 
as dashed lines, with the corresponding glacial or interglacial 
periods shown on the right. Vertical black bar represents a period 
of isolation of lineages before migration initiates at the secondary 
contact. The spanning time of this period is shown in dashed 
line on the left vertical timeline, which is shortened for visual 
purposes. The migration directions and corresponding rates (MES) 
in individual migrants per generation are shown between NL and 
ES. Demographic expansion is indicated by the increasing areas of 
the gray ladder shapes. The current effective population sizes are 
shown at the bottom after the split between the Nanling Mts. (NL) 
and the eastern mountains (ES)
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Qiu et al., 2009). One main factor contributing to the differences in 
population divergence time and level of diversification between the 
east and west is likely to be the different orientations of mountain 
ranges (Chen et al., 2018). The southwest–northeast orientation of 
the Wuyi Mts. and East China Mts. is thought to present geographi-
cal barriers that blocked southward migrations in times of cooler 
climate or northward postglacial population expansion, which is 
disadvantageous for increasing population size and diversification, 
and may have contributed to an older divergence as is seen in the 
eastern populations (YDS, WYS, LXS1 and LXS2). Conversely, the 
north–south orientation of the Nanling Mts., allowing various eleva-
tional shifts of plant species, can facilitate gradual retreat from north 
to south and short-distance migrations during glacial and interglacial 
periods, thus promoting population diversification, larger popula-
tion size and younger divergence as is seen in the populations of 
the Nanling Mts. (NLE1 and NLE2, and NLW1 through NLW5). The 
Nanling Mts. form a geographical boundary between the south- and 
the mid-subtropical regions and possess complex topography and 
diverse habitats favoring population diversification. The orientation 
and physiography of the mountain ranges appear to have critically 
contributed to the geographical pattern of genetic variation be-
tween the eastern and western populations of C. chuniana.

4.3  |  Postglacial demographic expansion from the 
Nanling Mts. and secondary contact

FSC2 analyses yield a best-fit model of isolation followed by de-
mographic expansion and secondary contact (Table S4, Figure 6). 
Demographic expansion in the Nanling Mts. was inferred with nota-
bly increased effective population size (Table S4, Figure 6), indicating 
high local population diversification as is seen in Figure 3. The Nanling 
Mts., which are composed of five distinct ridges, has a long history of 
subtropical evergreen broadleaved forest (STEBF) in southern China 
(Fan et al., 2018; Xu et al., 2017). Its vegetation is characterized by 
highly varied elevational or longitudinal shifts, varying aspects of 
slope directions, high heterogeneity of soils, and abundant micro-
habitats (Huang et al., 2012; Qiu et al., 2011; Shen et al., 2019; Tang 
et al., 2006; Zhu et al., 2017), which together served as a buffer from 
climatic change and thus helped to confer relatively stable ecological 
conditions to these mountains during glacial periods. The Nanling 
Mts. are suggested to never have been glaciated and have main-
tained a nearly constant level of annual precipitation during the last 
glacial period as current (Xiao et al., 2007), making it more suitable 
for C. chuniana than other regions of subtropical China. Therefore, 
complex physiography plus long-term stable ecological conditions in 
the Nanling Mts. across glacial cycles are thought to have preserved 
population genetic diversity, ultimately resulting in population size 
increase and opportunity for demographic expansion. Similar cases 
have been documented in widespread species in subtropical China, 
such as Eurycorymbus cavaleriei, Loropetalum chinense, and Eomecon 
chionantha (Gong et al., 2016; Tian et al., 2018; Wang et al., 2009).

The estimated time of secondary contact from our analy-
sis (0.10  Ma) coincides with the Lushan–Tali Interglacial period 
in China (0.10–0.20  Ma; Duan et al., 1980), when a continuous 
geographical distribution of C. chuniana along the mountain 
ranges in subtropical China was detected by ecological niche 
modeling (ENM; Figure 2a). Because the Lushan–Tali Interglacial 
period somewhat overlaps with the last interglacial period (LIG; 
0.12~0.14 Ma), its climate and environment was similar to that of 
the last interglacial period in China, when temperature increased 
and was estimated to be even higher than the present (Duan 
et al., 1980; Zhu et al., 2004). This suggests that the secondary 
contact may have occurred during this warmer time. Moreover, it 
is thought that the East Asia summer monsoon intensified during 
that time (Liu et al., 2018; Meng et al., 2018; Wang et al., 1999, 
2007, 2012), thus providing more suitable habitat, especially con-
sidering that C. chuniana is adapted to mesic environments and 
most influenced by precipitation (Table S1).

Subtropical China has been long known as an area preserv-
ing higher species diversity than other regions of the Northern 
Hemisphere (Qian et al., 2005; Xiang et al., 2004). Such regional 
diversity bias is thought to be attributable to the high physio-
graphical heterogeneity and diverse climate in the montane re-
gions of subtropical China, which are advantageous for population 
colonization accompanied by repeated coalescence of popula-
tions through glacial cycles and postglacial increase. Our data 
may provide an explanation for higher species diversity of Cercis 
in subtropical China relative to any other part of its range in the 
Northern Hemisphere.

Additionally, our FSC2 analysis indicated bidirectional migra-
tions occurring after the divergence of populations between the 
Nanling (NL) and eastern (ES) mountains, with the migration rate 
MNL-ES (2.13) higher than MES-NL (0.33; Table S3, Figure 6). The mi-
grations in C. chuniana appear to have proceeded primarily from 
the Nanling Mts. to the east. Many examples of plant species 
in East Asia exhibit a similar distribution pattern and migration 
route, such as Tetrastigma hemsleyanum and Eomecon chionantha 
(Tian et al., 2018; Wang, 1992a, 1992b; Wang et al., 2015). The 
question arises as to why the direction of contemporary migra-
tion is inferred from the Nanling Mts. toward the east, whereas 
the populations from the Nanling Mts. diverged more recently 
than those to the east. The Nanling Mts., with distinct phytoge-
ography and long-term stable ecological condition, are thought 
to be one of the glacial refugia for C. chuniana. Populations of C. 
chuniana are present at relatively higher elevations in the Nanling 
Mts. (>600  m) than the eastern ones (from 264–727  m). Seeds 
of Cercis are supposedly dispersed primarily by wind during the 
fall and winter (Dickson, 1990; Robertson, 1976). The moun-
tains’ close proximity to each other may have facilitated west-
to-east migration when the wind periodically blows most of the 
fruits from the branches straight across to the next mountain 
ranges from higher elevations to lower ones via closely adjacent 
stepping-stone areas.
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5  |  CONCLUSIONS

We aimed to advance understanding of the roles of mountain ranges 
and glacial cycles on the geographical distribution pattern of ge-
netic variation for the plant species within the subtropical evergreen 
broadleaved forest (STEBF) in southern China. The orientation and 
physiography of the mountain ranges and the climate fluctuations 
across glacial cycles in this region appear to correlate with the geo-
graphical pattern of genetic variation in C. chuniana. The Nanling Mts. 
are considered an important glacial refugium for the preservation of 
genetic diversity during the glacial periods because of its complex 
physiography and long-term stable ecological conditions. Our study 
provides molecular evidence on how topography and climate change 
affect the phylogeographic history of the representative species 
within STEBF of southern China. Study of additional plant groups 
with similar geographical distribution patterns is further required to 
assess whether the patterns from Cercis observed here apply more 
generally to the evolutionary history and past vegetation changes 
in the STEBF associated with physiography and climate fluctuation.
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