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Aim: The objective of this work was to demonstrate the usefulness of a novel statistical
method to study the impact of transcranial magnetic stimulation (TMS) on brain
connectivity in patients with depression using different stimulation protocols, i.e., 1 Hz
repetitive TMS over the right dorsolateral prefrontal cortex (DLPFC) (protocol G1), 10 Hz
repetitive TMS over the left DLPFC (G2), and intermittent theta burst stimulation (iTBS)
consisting of three 50 Hz burst bundle repeated at 5 Hz frequency (G3).

Methods: Electroencephalography (EEG) connectivity analysis was performed using
Directed Transfer Function (DTF) and a set of 21 indices based on graph theory. The
statistical analysis of graph-theoretic indices consisted of a combination of the k-NN
rule, the leave-one-out method, and a statistical test using a 2 × 2 contingency table.

Results: Our new statistical approach allowed for selection of the best set of graph-
based indices derived from DTF, and for differentiation between conditions (i.e., before
and after TMS) and between TMS protocols. The effects of TMS was found to differ
based on frequency band.

Conclusion: A set of four brain asymmetry measures were particularly useful to study
protocol- and frequency-dependent effects of TMS on brain connectivity.

Significance: The new approach would allow for better evaluation of the therapeutic
effects of TMS and choice of the most appropriate stimulation protocol.

Keywords: transcranial magnetic stimulation, graph-based EEG connectivity, depression, directed transfer
function, k-NN rule based statistical analysis

Abbreviations: TMS, Transcranial Magnetic Stimulation; rTMS, repetitive transcranial magnetic stimulation; HF, high
frequency; LF, low frequency; iTBS, intermittent theta burst stimulation; DLPFC, dorsolateral prefrontal cortex; EEG,
electroencephalography; DTF, Directed Transfer Function; HAM-D, Hamilton Depression Rating Scale; DCR, Diagnostic
Criteria for Research; ICD-10, International Classification of Diseases, tenth edition.
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INTRODUCTION

Some psychiatric diseases, like depression, may be characterized
as dysconnectivity disorders (Friston, 1996; Schmitt et al., 2011).
The missing connections can be rebuilt via neuroplasticity (Noda
et al., 2018; Wilson et al., 2018; Iglesias, 2020; Zrenner et al., 2020),
which refers to the ability of the brain to change over the course
of the lifespan (Pascual-Leone et al., 2011; Zappasodi et al., 2015).
Neuroplastic changes can be observed under different stimuli
or during task performance (Cottone et al., 2017; Olejarczyk
et al., 2017), and in various disease states such as Alzheimer’s
disease (Ahmadlou et al., 2010; Morabito et al., 2015), depression
(Zuchowicz et al., 2019; Olejarczyk et al., 2020), schizophrenia
(Olejarczyk et al., 2017; Yuchao et al., 2019), Parkinson’s disease
(Galvez et al., 2018), stroke (Zappasodi et al., 2014), and epilepsy
(Jiang et al., 2018).

Transcranial magnetic stimulation (TMS) is a non-
invasive neuromodulation technique that is applied as
an alternative therapy in drug-resistant patients to restore
impaired neural connections. The combination of TMS and
electroencephalography (EEG) allows for the non-invasive study
of changes in brain connectivity (Shafi and Pascual-Leone, 2012).

Recent studies examining connectivity using EEG data
recorded in patients with depression have predominantly used
non-directional measures (i.e., coherence; Leuchter et al., 2012),
various measures of phase synchronization (e.g., Phase-Locking
Value; Zuchowicz et al., 2019), Phase Lag Index (Olbrich et al.,
2014), Katz’s and Higuchi’s fractal dimensions, and other non-
linear methods or their combinations (Acharya et al., 2015). The
application of directional measures, such as Directed Transfer
Function (DTF) (Kaminski and Blinowska, 1991), allows for
better understanding of the mechanisms involved in neural
network re-organization associated with changes in brain states
in different conditions among healthy persons or patients
suffering from psychiatric disorders. To our knowledge, only one
study has applied DTF and graph-theoretic indices to study the
effects of TMS on functional connectivity in depression using a
standard stimulation protocol, i.e., 10 Hz repetitive TMS (rTMS)
applied over the left dorsolateral prefrontal cortex (DLPFC)
(Olejarczyk et al., 2020). Other stimulation protocols have been
used in only a few other studies. In particular, previous research
has shown that the application of 1 Hz rTMS over the right
DLPFC causes a shift in frontal alpha power asymmetry toward
the right hemisphere (Valiulis et al., 2012).

Most prior studies have performed statistical analyses on
indices based on graph theory using analysis of variance
(ANOVA) or a non-parametric test equivalent. Some authors
have applied various classifiers to differentiate between patients
with depression and controls by applying a combination of
different non-linear connectivity methods to extract features
from EEG signals (Acharya et al., 2015). However, to-date, none
of the classifiers used in statistical analyses have utilized a wide
range of graph-theoretic indices derived from the adjacency
matrices of a connectivity measure.

In the present study, we compared the results of the
connectivity analysis evaluated by DTF and graph-theoretic
indices using three different TMS protocols: (1) 10 Hz rTMS over

the left DLPFC, (2) 1 Hz rTMS over the right DLPFC, and (3)
intermittent theta burst stimulation (iTBS). Moreover, we applied
a novel approach to the statistical analysis of graph-theoretic
indices using the k-NN rule combined with the leave-one-out
method and a statistical test using a 2× 2 contingency table. This
approach is novel because it calculates the significance level for
the dependence between the class label and a feature vector to
evaluate whether this dependence exists at all. This is particularly
important in the case of high misclassification rates, which is
relevant for the present study.

The primary objective of this work was to apply a novel
method of statistical analysis (Harnisz et al., 2020). The usefulness
of this method was demonstrated by analyzing the impact of
various TMS protocols on EEG connectivity patterns in patients
with depression. The advantage of the proposed method is the
ability to identify statistically significant differences between
conditions or stimulation protocols using a vector comprised of
the optimal combination of features found among all analyzed
features. This approach is in contrast to non-parametric tests,
which rely on a single feature.

MATERIALS AND METHODS

Patient Recruitment and Diagnosis
Based on Psychiatric Tests
EEG data were collected in the Republican Vilnius Psychiatric
Hospital (RVPH) following approval by the local ethics
committee. TMS was applied to treat patients who were
diagnosed with drug-resistant depression. One hundred twenty-
six patients with a drug-resistant depressive disorder were
recruited from the RVPH. Eligible participants ranged in age
from 18 to 75 years. Participants were split into three treatment
groups, and demographic data for the three treatment groups
are reported in Table 1. The three groups consisted of: (1) 35
patients (30 females, 5 males) who underwent 1 Hz rTMS over
the right DLPFC, (2) 77 patients (55 females, 22 males) who
underwent 10 Hz rTMS over the left DLPFC, and (3) 14 patients
(11 females, 3 males) who underwent iTBS. All patients were
screened according to the Diagnostic Criteria for Research (DCR)
of International Classification of Diseases—tenth edition (ICD-
10). All participants provided written informed consent prior to
taking part in this study.

TABLE 1 | Characteristics of the patient groups.

Group TMS protocol N (F/M) Mean ± SD age (years)

G1 1 Hz rTMS over the
right DLPFC

35 (30/5) 50.2 ± 10.27

G2 10 Hz rTMS over the
left DLPFC

77 (55/22) 50.05 ± 14.18

G3 intermittent theta burst
stimulation (iTBS) over

the left DLPFC

14 (11/3) 55 ± 14.7

N, number of patients; F/M, number of females/males; G1, G2, G3, indicate the
TMS stimulation protocols.
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Inclusion criteria for patients with depression were as follows:
(a) history of at least one previous affective episode, according to
the Diagnostic Criteria for Research of ICD-10, and (b) a total
score greater than 18 on the 17-item Hamilton Depression Rating
Scale (HAM-D; Hamilton, 1960), and (c) resistance to at least
two different antidepressant medications or their combinations.
There were no gender restrictions; however, we did aim to
achieve a balance of genders during recruitment. Exclusion
criteria were as follows: (a) history of medical condition(s) that
could entail cognitive deterioration, (b) history of epilepsy, (c)
recent drug or alcohol abuse, (d) pregnancy, (e) diagnosis of
a learning disability, (f) inability to understand or complete
the cognitive assessment, or (g) any other contraindication(s)
for TMS. After participants were enrolled into the study,
previously administered antidepressant treatments were
maintained. However, psychotropic medications that can affect
the stimulation threshold—particularly benzodiazepines—were
tapered. Psychotropic drug doses were required to be stable for
at least 2 weeks prior to initiating the first TMS session and for
the entire duration of the treatment.

TMS
TMS procedures were applied using the MagVenture Magpro
X100 TMS stimulator with the MagVenture Cool Coil B65 liquid
cooled figure-eight coil. 280 µs biphasic impulses were used
during the stimulation.

TMS is a broad term that includes different types of
stimulations, such as single pulse stimulation for motor threshold
evaluation or therapeutic rTMS. iTBS is one type of rTMS
protocol (Schwippel et al., 2019). As a comparison to a commonly
used 10 Hz rTMS (G2), we applied two other protocols: iTBS
over the left DLPFC (G3), and 1 Hz rTMS over the right DLPFC
(G1). Physiologically, iTBS is expected to facilitate the activity
of the stimulation site by delivering 20 excitatory stimulation
trains, which is similar to the 10 Hz condition. However, iTBS
is expected to facilitate this activity in a shorter time period as
compared to the 10 Hz condition (i.e., 3 min vs. > 15 min).
A shorter duration of stimulation, and thus more comfort to the
patient, is the main advantage of this protocol.

The intensity of rTMS was set according to the resting motor
threshold. The resting motor threshold was defined as the lowest
intensity needed to generate a visible twitch of the thumb of
the participants’ relaxed hand. Stimulation intensities were set at
100% for high frequency rTMS over the left DLPFC, 120% for
low frequency rTMS over the right DLPFC, and 80% for iTBS
rTMS over the left DLPFC. All rTMS frequencies greater than
or equal to 5 Hz are considered high frequency (HF), whereas
all rTMS frequencies less than or equal to 1 Hz are considered
low frequency (LF).

HF rTMS consisted of twenty 10 Hz stimulation trains that
each lasted 8 s and were spaced at 40-s intervals (1,600 impulses in
total) (Rossi et al., 2009). LF rTMS consisted of 1 Hz stimulation
in 2 trains, each lasting for 60 s, and spaced at 3-min intervals
(120 impulses in total) (Klein et al., 1999). iTBS consisted of 2 s
50 Hz three-pulse bursts that were presented at 5 Hz frequency,
applied in 20 trains and spaced at 8-s intervals (600 impulses in
total) (Huang et al., 2011; Schwippel et al., 2019). The stimulation

site was chosen by the psychiatrist according to the prevailing
symptoms of depression. In particular, the left DLPFC was
chosen in the case of adynamic depression, i.e., depression with
dominating apathy symptoms, whereas the right DLPFC was
chosen in case of anxious depression (Neznamov et al., 2001;
Hunter et al., 2019; Minzenberg and Leuchter, 2019; Zorzo et al.,
2019; Balderston et al., 2020). Right DLPFC activity seems to
be directly linked to the manifestation of anxiety (Balderston
et al., 2020). Indeed, 1 Hz rTMS over the right DLPFC is often
used to treat anxious depression, as well as anxiety disorders
and posttraumatic stress disorder (PTSD) (Zorzo et al., 2019).
The HF rTMS and iTBS stimulation protocols were selected
randomly. The imbalance in number of participants across the
two stimulation sites (see Table 1) is due to practical limitations.
In particular, the duration of classical 1 Hz protocol is shorter
than the 10 Hz protocol, and thus does not require a shortened
TBS alternative. All patients underwent 10–30 procedures.

The Localite TMS Navigator MR-less system was used for
coil placement. This neuronavigation system utilized a standard
Montreal Neurological Institute (MNI) map with targets placed
at the following coordinates: (1) x = −41, y = 16, z = 54 for left
DLPFC; (2) x = 40, y = 48, z = 35 for right DLPFC (Teneback
et al., 1999; Valiulis et al., 2012; Fox et al., 2013).

EEG Registration and Preprocessing
EEG signals were recorded for 10 min during an eye-closed
resting-state condition prior to rTMS and again 20–30 min after
the last rTMS session. EEG data were collected in an electrically
shielded booth using EBNeuro Galileo Mizar apparatus. A cap
with twenty round bridge type Ag/AgCl electrodes was placed
according to the international 10–20 system. The Fpz electrode
was used as the ground electrode and ear electrodes were used as
the reference. EEG recordings were filtered with low frequency
(0.53 Hz), high frequency (70 Hz), and notch (50 Hz) filters. Data
were digitized at 256 Hz at 12 bits. For further analysis, 30 s EEG
intervals without artifacts before and after stimulation in all 126
patients with depression were chosen by an expert. In this study
we decided to perform rather the analysis of between-subject than
within-subject effects.

Connectivity Analysis
The DTF is a directed linear connectivity method that is
based on Granger Causality but defined in the frequency
domain. DTF allows one to determine the localization of sources
and the direction of EEG activity propagation (Kaminski and
Blinowska, 1991). The model order was estimated using the
Akaike information criterion (AIC) defined as follows:

AIC
(
d
)
= 2 ∗ log

(
det (V)

)
+

2kd
N

(1)

where V is the noise variance matrix, N is the window size, d is
the model order, and k is the number of EEG channels.

In the calculation of DTF, the following relation should
be satisfied to guarantee the quality of fitting of the model
(Blinowska and Kaminski, 2006): k ∗ d < 0.1 ∗ N. In the present
study, the model order d was set to 10, the number of EEG
channels k was 20, and the window size was 256 Hz ∗ 30 s = 7,680
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samples. Thus, the above relation was satisfied. The DTF was
calculated using HERMES software (Niso et al., 2013)1. The
significance of DTF values was determined using surrogate data
analysis. The amplitudes of signal were maintained, while the
frequency relationships were modified by shuffling of the data in
frequency domain. The signal values were then obtained again
from surrogate data that was transformed to the time domain.
Significance of the values was evaluated by comparing the results
from the original signal with results obtained from surrogate data.
The number of surrogates was set to 100. Adjacency matrices
were obtained from data with a p-value below the 0.05 threshold.

The matrices were analyzed using graph-theoretic indices.
All indices derived from matrices of adjacency for DTF were
calculated independently for each of the 126 patients separately
for five frequency bands and for 10 thresholds, i.e., 10 values
obtained from the matrices that contained 0–90% of the strongest
connections. The indices dependent on the EEG channel were
averaged across all twenty channels.

A disadvantage of the analysis of graph-theoretic indices is
their dependence on degree index. Results are typically reported
as graphs of index values as a function of the threshold
(Olejarczyk et al., 2017; Olejarczyk and Jernajczyk, 2017), or as
index values averaged across all thresholds (Olejarczyk et al.,
2020). In this paper, we propose to include the values of
indices calculated for each of 10 thresholds in the classification
step instead to take an average value. The k-NN classifier can
automatically select the thresholds for which the indices yield
the best classification results. However, frequently, an average
threshold does not allow for the separation of two populations
despite the presence of significant differences between indices for
some of thresholds. This may also occur if only an increasing
or decreasing trend exists between indices across a larger
range of thresholds.

The DTF was calculated in each patient from three 30-
s EEG segments within the entire frequency band. Then,
adjacency matrices were identified for each frequency band
(i.e., delta: 1–3 Hz; theta: 4–8 Hz; alpha: 9–12 Hz; beta:
13–30 Hz; gamma: 31–70 Hz), separately. The weighted matrices
of significant connections were analyzed using graph-theoretic
indices (Rubinov and Sporns, 2010).

The following graph-based indices were calculated using
MATLAB functions provided in the Brain Connectivity
Toolbox2: (1) basic measures (i.e., density, degree and strength);
(2) measures of integration (i.e., characteristic path length and
global efficiency); (3) measures of segregation (i.e., clustering
coefficient, local efficiency and modularity); (4) measures of
centrality (i.e., betweenness centrality); (5) measures of resilience
(i.e., five assortativity coefficients: add, aoi, aio, aoo, aii)
(Newman, 2003; Leung and Chau, 2007; Rubinov and Sporns,
2010; Olejarczyk et al., 2020); and (6) joint degree distribution
(i.e., jod, jid, jbl) (Olejarczyk et al., 2020).

We also calculated four measures of frontal-posterior and
hemispheric asymmetry: (1) frontal-posterior displacement
(DFP), (2) displacement between the left and right hemispheres

1http://hermes.ctb.upm.es/
2http://www.brain-connectivity-toolbox.net

(DLR), (3) frontal-posterior influence (IFP), and (4) influence
between left and right hemisphere (ILR). These measures
were calculated using MATLAB functions developed in-
house (Olejarczyk and Jernajczyk, 2017; Olejarczyk et al.,
2020). A detailed description of the DTF method and
definitions of the graph-theoretic indices is provided elsewhere
(Olejarczyk et al., 2020).

Novel Approach in Statistical Analysis of
Graph-Theoretical Indices
We examined differences in the TMS effect between two
conditions (i.e., before and after TMS), as well as, differences
between the three stimulation protocols (i.e., G1, G2, G3)
separately, across five frequency bands.

The error rate estimated by the leave-one-out method was
used as a feature selection criterion. The data matrices for the
feature selection contained 700, 1,540, and 280 rows for G1,
G2, and G3, respectively. These sizes were obtained according to
the following formula: number of patients × 10 thresholds × 2
conditions. The first column of this matrix contained the class
label, which was either the TMS condition (pre, post) or the
protocol number (G1, G2, G3). Next, there were 21 columns that
corresponded to each of the 21 features.

We proposed a novel approach in the statistical analysis of
graph-theoretic indices. Our approach combines two methods.
One method was adapted from an area known as Pattern
Recognition, and the other was a non-parametric test based on
a 2 × 2 contingency table: chi-square, V-square, chi-square with
Yates correction, or Fisher’s exact test (Stanisz, 2006). To form the
2 × 2 contingency table, we used the k nearest neighbor (k-NN)
rule, which is the most popular method in Pattern Recognition
(Cover and Hart, 1967). The k-NN rule is also considered to be
one of the most powerful rules and offers very good performance
(Carpenter and Grossberg, 1996).

The k-NN rule is simple to implement and does not require
a training session if the feature set is established. The main
disadvantage of the k-NN rule is a slow classification phase.
The k-NN rule is used in the classification of objects, described
by some features that assume numerical values. A k-NN
classification rule (or “classifier”) is based on a reference set that
contains objects with known class membership. The object to be
classified can be any object that is outside of the reference set.
This object is assigned to the class that is most heavily represented
from among its k nearest neighbors in the reference set, for
example, using a measure of Euclidean distance. The value of
k can be established experimentally or taken as a small natural
number. In the present study, we assumed k = 3, as suggested by
Wilson (1972). An ideal classifier is a very rare case, and we need
to account for potential misclassifications. In 1965, Lachenbruch
(1965) first described the leave-one-out method—a method for
estimating the error rate in small data sets. This technique was
also described in 1982 by Devijver and Kittler (1982). The leave-
one-out method allows for the classification of each object, x,
in the reference set, R, using the k-NN rule, which is based
on a reference set R-{x}, i.e., the reference set minus the object
being currently classified. If for r objects the assigned class differs
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from the true one, then an error rate will be err = r/N, where N
denotes a number of objects in the reference set. In addition to
calculating the error rate, a confusion matrix (defined in Table 2)
can be computed.

The confusion matrix is typically used to calculate sensitivity
and specificity of the classification. In our case, the confusion
matrix is used to calculate the significance level using the chi-
square test or one of its modifications. Recommendations for
choosing the correct modification can be found in the Statistica
software manual (Stanisz, 2006). The significance level calculated
on the basis of the aforementioned contingency table concerns
the dependence between two qualitative variables: the true class
and the assigned class. Both variables (i.e., the true class and
the assigned class) assume values of either 1 or 2. Generally,
the assigned class represents the “voice” of features. Thus, the
obtained significance level can be treated as concerned to the
dependence of the true class on the analyzed set of features.

Not all features can be easily matched to available classes.
Some features can be redundant or correlated, which can lead
to an increased error rate. Therefore, it is reasonable to perform
feature selection, which consists of reviewing various feature
combinations. There are two main feature selection procedures:
(1) forward feature selection and (2) backward feature selection.
The former consists of choosing a single feature that offers the
lowest error rate and then sequentially adding additional features
if the error rate subsequently decreases. The latter starts with
a complete set of features and sequentially rejects the single
feature if this action results in a decrease in the misclassification
rate. In the present study, we applied the forward feature
selection procedure.

All steps of the data analysis are shown in the flow chart
provided in Figure 1. The first step of the statistical analysis was
to select the best set of features for each of the 15 classes that
were formed from all possible combinations of the 3 protocols
and 5 frequency bands. Then, an appropriate non-parametric test
with Bonferroni correction based on 2× 2 contingency table was
performed to test for statistically significant differences between
two conditions (i.e., pre- and post-TMS) for vectors of selected
features in each of these combinations.

The purpose of the second step was to find possible
interactions between the 15 classes that were previously
considered. Non-parametric tests, such as Kruskal-Wallis or
Mann-Whitney U tests, are equivalent to a one-way analysis
of variance for independent variables. Therefore, these non-
parametric tests allow for the comparison between different
pairs of protocols for a given band, or different pairs of bands
for a given protocol. In contrast to non-parametric tests which
analyzes individual features, the k-NN classification analyzes
a vector of features. As a result of the k-NN classification,

TABLE 2 | The confusion matrix.

Contingency table Assigned to class 1 Assigned to class 2

True class 1 r11 r12

True class 2 r21 r22

FIGURE 1 | Flow chart of all stages of EEG analysis.

the confusion matrix for 15 classes was obtained using all 11
features that were selected in the first step of analysis, i.e., all
features that appeared in Table 3. Both conditions (i.e., pre-
and post-TMS) were considered in this classification due to the
relatively limited dataset. Then, an appropriate non-parametric
test with Bonferroni correction was applied based on 2 × 2
contingency table. The non-parametric test aimed to identify
statistically significant differences between each pair of bands in
each stimulation protocol, and each pair of protocols in every
frequency band relative to the set of 11 features.
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TABLE 3 | The results of feature selection and classification by condition (i.e., before and after TMS) performed separately for each of the three stimulation protocols and
five frequency bands.

Delta Theta Alpha Beta Gamma

G1 Selected features:
DFP, ILR, IFP, DLR,

C, aio
err = 0.229[
268 82

78 272

]
p < 0.0001

Selected features: ILR,
IFP, DLR, DFP, add

err = 0.207[
272 78

67 283

]
p < 0.0001

Selected features: ILR,
DFP, IFP, DLR, C

err = 0.266[
262 88

98 252

]
p < 0.0001

Selected features: DLR,
DFP, IFP, C, ILR, add

err = 0.254[
255 95

83 267

]
p < 0.0001

Selected features: DFP,
DLR, IFP, Eglobal , C,

ILR, add, aoo
err = 0.217[
271 79

73 277

]
p < 0.0001

G2 Selected features:
DFP, ILR, DLR, IFP,

aii
err = 0.266[
555 215

195 575

]
p < 0.0001

Selected features: IFP,
DFP, ILR, DLR, C

err = 0.307[
553 217

255 515

]
p < 0.0001

Selected features: DFP,
DLR, IFP, ILR, C

err = 0.307[
553 217

256 514

]
p < 0.0001

Selected features: DFP,
ILR, DLR, IFP, Eglobal„

aoo
err = 0.318[
530 240

249 521

]
p < 0.0001

Selected features: DLR,
DFP, ILR, C, IFP, aio

err = 0.281[
553 217

215 555

]
p < 0.0001

G3 Selected features:
ILR, C, DFP, DLR,

aii
err = 0.161[
124 16

29 111

]
p < 0.0001

Selected features: ILR,
DFP, aoo, IFP, C, aoi

err = 0.200[
116 24

32 108

]
p < 0.0001

Selected features: ILR,
C, DFP, IFP, DLR, add,

aoi
err = 0.200[
117 23

33 107

]
p < 0.0001

Selected features: ILR,
DFP, aii, DLR, IFP,

Eglobal
err = 0.200[
106 34

22 118

]
p < 0.0001

Selected features: ILR,
C, IFP, DLR, DFP, aii

err = 0.207[
116 24

34 106

]
p < 0.0001

RESULTS

Feature Selection Results
The feature selection and condition (i.e., before and after
TMS) classification was performed for every pair of stimulation
protocols (G1, G2, G3) and frequency bands (δ, θ, α, β, γ).
Altogether, 11 of the 21 features were selected, including the
asymmetry measures (DFP, IFP, DLR, ILR), clustering coefficient
(C), global efficiency (Eglobal), and the assortativity coefficients
(add, aio, aoi, aoo, aii). The sets of selected features were
found independently for every pair of stimulation protocol and
frequency band. Each set starts from a feature that offers the
lowest error rate. Further features were included in such a way
that the new set would allow to reduce maximally the error rate.
The selected features, the error rate, the confusion matrix for the
factor CONDITION and the corresponding p-values are reported
in Table 3.

Using the non-parametric tests based on 2 × 2 contingency
table, we found p-values that were less than 0.0001 for each
contingency table presented in Table 3. Due to the observed
high error rates (i.e., ranging from 0.161 to 0.318), we decided to
investigate whether there was, in fact, a dependence between the
class labels and sets of features. Out of 21 features, the forward
feature selection required a review of 231 feature combinations.
Accounting for Bonferroni correction, the results can be
considered statistically significant if p < 0.0002 (i.e., 0.05/231).
Thus, the sets of selected features allowed for the identification
of statistically significant differences between conditions for
each stimulation protocol, and in each frequency band. It is
worth noting that each of the asymmetry measures appeared
in sets of selected features for each stimulation protocol in
higher frequency bands (i.e., alpha, beta, and gamma). Clustering
coefficient, in contrast, was only observed in alpha and gamma
bands. The sensitivity and specificity of our method ranged from

0.68 to 0.87, and from 0.68 to 0.83, respectively. Sensitivity and
specificity for detecting stimulation impact was calculated from
the confusion matrices reported in Table 3.

Classification of Groups
The set of 11 features previously selected were used for
the classification of 15 classes that were formed from all
possible combinations of the three stimulation protocols and five
frequency bands. The results of this classification are reported in
Table 4.

The values reported in Table 4 were used to construct
2 × 2 contingency tables for every possible pair of frequency
bands in each stimulation protocol, and for every possible pair
of stimulation protocols in each frequency band. The 2 × 2
contingency tables tested for statistically significant differences
between bands for individual stimulation protocols, and for
differences between protocols in each frequency band. The
observed p-values were less than 0.0001 for each contingency
table. Thus, there were statistically significant differences between
each pair of bands in each stimulation protocol, as well as,
between each pair of protocols in each frequency band.

DISCUSSION

The published literature predominantly applies ANOVA or non-
parametric equivalents to assess indices based on graph theory.
However, ANOVA assumes that the variables are normally
distributed and if not, non-parametric tests are applied. Non-
parametric tests are equivalent to a one-way ANOVA in that a
single index can be considered. Here, we observed that a specific
set of features (i.e., indices) may allow for better differentiation
between conditions as compared to relying on a single feature
(Olejarczyk et al., 2012). Two populations may have identical
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TABLE 4 | The results of classification based on the k-NN rule and the leave-one-out method by 15 classes formed from all possible combinations of the three
stimulation protocols and five frequency bands.

class G1 G2 G3

δ θ α β γ δ θ α β γ δ θ α β γ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

δ 247 13 7 8 2 259 81 29 27 10 10 2 3 2 0

θ 7 136 25 35 9 44 178 104 109 34 2 7 2 7 1

G1 α 3 13 183 11 27 20 80 213 50 86 0 0 9 0 5

β 6 42 29 143 16 43 171 87 112 41 0 2 0 6 2

γ 1 5 10 5 231 10 51 121 41 205 0 0 1 1 18

δ 108 20 2 16 5 1043 143 55 74 22 34 8 6 4 0

θ 11 73 25 25 10 120 776 207 209 49 2 12 3 17 1

G2 α 3 23 80 7 33 65 225 774 122 181 1 0 9 5 12

β 10 66 27 47 18 110 394 235 516 87 0 10 3 10 7

γ 2 12 19 4 113 28 92 252 102 864 0 0 7 2 43

δ 21 4 0 2 1 128 24 11 13 0 69 6 0 1 0

θ 8 18 3 4 4 22 84 27 49 10 3 39 3 5 1

G3 α 3 5 20 3 6 17 34 85 18 41 0 1 38 6 3

β 5 15 4 11 3 13 76 32 56 16 1 6 9 32 1

γ 0 1 5 1 15 2 20 43 26 116 0 1 0 0 50

The values on the diagonal are marked in bold.

ranges of features. Nevertheless, it is possible to separate these
conditions by using a distance between the neighbors as a
selection criterion. Moreover, the application of the k-NN rule
allows for the identification of the best set of features without
assuming that the features are normally distributed. We chose the
leave-one-out method because it is recommended for limited data
sets, such as in the present study. Finally, the confusion matrix
and chi-square test (or its modification) were used to calculate
a significance level for the dependence between two qualitative
variables: the true class and the assigned class. The assigned
class represents the “voice” of the feature set. The last step is
a completely new and universal approach that can be applied
in other situations, such as the normal/Gaussian distribution of
features or larger data sets. This approach can also be applied in
conjunction with other modern classifiers (Ahmadlou and Adeli,
2010; Rafiei and Adeli, 2017).

There are a lot of connectivity measures and indices based
on graph theory (Rubinov and Sporns, 2010; Niso et al., 2013).
Their usefulness depends on a particular application. In this
study we were interested in finding a set of features (indices)
allowing for characterizing the changes in brain connectivity
evoked by TMS in patients with depression. We have found that
11 from 21 indices were useful for this purpose. They allowed
for differentiation between 15 classes being a combination of 3
protocols and 5 frequency bands. Then, we found a set of the best
indices for every class separately. These sets can be used in clinical
practice for evaluation of the TMS effect for a given protocol or to
find differences between protocols. Interestingly, four asymmetry
indices were common for three protocols in higher frequency
bands (alpha, beta and gamma). This finding is in line with a
known characteristic of depression, i.e., alpha hypoactivity of the
left and hyperactivity of the right frontal areas during the resting
state (Henriques and Davidson, 1991; Davidson, 1998; American
Psychiatric Association, 2013; Allen and Reznik, 2015; Mumtaz
et al., 2015; Van der Vinne et al., 2017; Kustubayeva et al., 2020).
The results of our study showed that also the fronto-posterior

asymmetry is important in depression. Moreover, the therapy
effect depends on the protocol choice. Thus, the evaluation of
initial state of patient with depression by these indices could be
helpful for decision support. However, future studies should be
performed for more epochs, in a larger sample size with a more
balanced groups of patients to test the usefulness of this new
methodological approach in clinical practice.

CONCLUSION

Here, we applied a novel approach to perform statistical analysis
of graph-theoretic indices using the k-NN rule combined with
the leave-one-out method and a statistical test for the 2 × 2
contingency table. This method allowed for the selection of
the best feature set to study protocol- and frequency-dependent
effects of TMS on brain connectivity.

The main purpose of this study was to develop a new
method of statistical analysis of graph-based indices derived from
adjacency matrices of DTF using EEG data recorded in patients
with depression before and after TMS. However, this is a general
method that could be applied with other data as well.
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