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Simple Summary: Diapause in insects is a classic and long-term concern subject regulated by both
circadian clock and endocrine system. Studies in many insects have shown that disturbance of
circadian clock system can affect diapause occurrence. However, the specific molecular regulation
mechanism and key nodes between circadian clock and endocrine hormones regulating diapause
occurrence are still lack of insightful reports. Our work identified the molecular nodes and pathways
through which the transcription-translation feedback loop of the silkworm circadian clock regulated
the level and action of diapause hormones, based on the diapause change in a silkworm mutant
line of Period gene knockout. This work confirmed that Period knocked out in silkworms changed
the classic temperature- and photoperiodic-dependent diapause-destiny and changed the diapause
through the GABA-DH neurotransmitter-endocrine hormone pathway, and showed that the GABA
receptor gene, GRD, was controlled by both the circadian clock and endocrine system in silkworms.
The results provided an example to explain the regulatory mechanism of the circadian clock on
endocrine hormones in the silkworm.

Abstract: Diapause is a developmental transition in insects based on seasonal adaptation to adversity;
it is regulated by a circadian clock system and the endocrine system. However, the molecular node
and its mechanism underlying the effects of these systems are still unclear. Here, a mutant of Bombyx
mori with the circadian clock gene Period (Per) knocked out was constructed, which dramatically
changed the classic diapause-destined pathway. Per-knockout silkworms powerfully attenuated,
but could not completely block, the predetermined effects of temperature and photoperiod on
diapause determination, and this effect depended on the diapause hormone (DH) pathway. The
impaired transcription-translation feedback loop of the circadian clock system lacking the Per gene
caused direct up-regulation of the expression of GRD, a receptor of γ-aminobutyric acid (GABA),
by changing expression level of Cycle. The synthesis of GABA in the tissue complex of brain-
suboesophageal ganglion then increased and restricted the decomposition, which continuously
promoted the GABAergic signal to play a role, and finally inhibiting (delaying) the release of DH to
the hemolymph, and reducing the diapause-inducing effect of DH. The results provided an example
to explain the regulatory mechanism of the circadian clock on endocrine hormones in the silkworm.
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1. Introduction

The coordinated regulation of the circadian clock and endocrine system on the physi-
ology and behavior is a fascinating and confusing subject that has attracted much research
attention. Studies have shown that the circadian clock regulated the organism’s metabolism
and endocrine systems, so that the body could adapt to environmental temperature, light,
and diet [1–3]. This is mediated by a series of transcription factors through the mutual regu-
lation of the transcription-translation feedback loop (TTFL) and endocrine hormones [4–6].
However, many investigators believe that circadian rhythms and metabolic processes also
have a reciprocal interaction [7–9].

Studies in animal models such as mice have found that the central circadian clock
located in the hypothalamus can directly regulate the release of reproductive axis hor-
mones [10]. Interfering with the mClock gene, a core member of the TTFL of the circadian
clock of mammals, results in the suppression of estrogen synthesis in ovarian cells, while
interfering with the mPer2 gene increases the content of progesterone [11]. Knocking out
the mBmal1 gene resulted in decreased insulin secretion in mice [12]. Knockout of the
DrPer1b gene in zebrafish (Danio rerio) resulted in an attention deficit and hyperactive be-
haviors caused by the decrease of dopamine levels in the brain [13]. Research on Drosophila
melanogaster has found that the brain affects hormone secretion by regulating the peripheral
circadian clock of endocrine organs [14]. Knockout of the DmPer circadian clock gene
inhibited the synthesis of steroid hormones [14,15]. Studies on insect Per genes and physio-
logical functions have found that disrupting the neuronal regions of the brain expressing
the PtPer gene affected the behavioral rhythm and the ratio of diapause in Protophormia
terraenovae [16]. The reproductive of Riptortus pedestris is induced by the suppression of
juvenile hormone (JH) secretion [17]. Reducing the RpPer transcription level by RNAi
changed the expression pattern of JH regulatory genes, leading to non-diapause under the
conditions of diapause induction but this effect on diapause could be saved by supplement-
ing JH analogues [18]. However, most existing reports have only emphasized correlations
between the circadian rhythm and level of endocrine hormones and metabolites. The
studies showed that the circadian clock had regulatory effects on the levels of endocrine
hormones and metabolites, but the molecular regulation mechanism is still unclear.

The Bombyx mori (B. mori) silkworm is an important economic insect in animal hus-
bandry, and the silk protein secreted by silkworms is a valuable raw material in the textile
and biomedical engineering industries [19,20]. B. mori is the only model insect of Lepi-
doptera, which comprises up to 70% of agricultural and forestry pests [21,22]. Silkworm
diapause is an ideal trait for studying the synergistic mechanism of temperature and light,
the two main zeitgebers. The circadian clock signal is the initial signal pathway to control
the silkworm diapause. Temperature induces activation of the silkworm diapause eggs,
while it is the combined effect of temperature and light in the late stage of parental em-
bryonic development that determines the diapause of silkworms, and clearly the effect
of temperature is strongly greater than that of light [23–26]. A problem that has persisted
in the fields of sericulture and entomology for nearly 100 years is that the mechanism
of temperature- and light-inducing diapause has been associated with the role of the di-
apause hormone (DH) [27–29], and the molecular nodes determining how diapause is
controlled by both the circadian clock and endocrine system have not been identified in
silkworms. The focus of this study was therefore to identify the molecular nodes and
pathways through which the TTFL of the silkworm circadian clock regulated the level and
action of diapause hormones.

2. Materials and Methods
2.1. Silkworm Strain and Rearing

A bivoltine race of silkworms named DAZAO was used in the experiments, and its
egg-diapause phenotype was determined by the mother’s experience of the temperature
and photoperiod during embryonic development. A constant incubation temperature
of 25 ◦C (25), 20 ◦C (20), or 15 ◦C (15), and one type of daily illumination of continuous
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light (LL), continuous darkness (DD), or 12 h light followed by 12 h darkness (LD), which
were combined into six types of incubation conditions, that were 25LL, 25LD, 25DD, 20LL,
20DD, and 15LD. After hatching, the larvae were fed with fresh mulberry leaves at 25LD
(±1.5 ◦C) and relative humidity 75–85% until adulthood. Figure S1 shows the effect of
the environment experienced by maternal embryos on the diapause of next generation
eggs. Pupation time of each larva was accurately recorded (±1 h). Hemolymph, ovary, and
brain-suboesophageal ganglion complex (Br-SG) of female pupae were collected at pupal
ages of 24 h, 48 h, 72 h, 96 h, and 120 h (±2 h), and the samples were stored at −80 ◦C.

The injection was performed on female pupae at the intersegment membrane of
the third abdominal segment, with a glass capillary needle diameter ≤ 100 µm. The
DH (sequence: TDMKDESDRGAHSERGALWFGPRL, purity ≥ 98%) was synthesized by
Sangon Biotech (Shanghai, China), and picrotoxin was from Apexbio (B5054; Apexbio,
Houston, TX, USA). Each pupa was injected with DH 10 µL (0.5 µg/µL or 1.0 µg/µL) or
picrotoxin (30 µL of 3 µg/µL). The DH injection was performed at pupal age 72 h, and the
picrotoxin injection was performed at 24 h, 48 h, 72 h, 96 h, and 120 h (±2 h). The negative
control was injected with the same volume of sterile water.

The egg-diapause was investigated at 48 h after laying. Regarding the percentage
of dark brown eggs peculiar to diapause eggs that appeared in the egg batch, ≥90% was
recorded as the diapause egg batch (D), ≤10% as the non-diapause egg batch (ND), and
10–90% as the mixed egg batch (MD) of diapause and non-diapause.

2.2. Plasmid Construction and Per Gene Knockout Mutant Screening

TALEN-mediated genome editing technology was used to knockout the silkworm
period gene (Per). The knockout target was located at +19 bp from the transcription start site
of exon 3, and the length was 16 bp (Figure 1A). The TALEN plasmids were digested with
Not I (FD0594; Thermo Fisher Scientific, Waltham, MA, USA), the linearized plasmid was
treated with proteinase K, and was purified by phenol/chloroform extraction (v:v = 1:1)
and absolute ethanol precipitation.

The purified plasmid templates were then transcribed as cap-mRNAs using a SP6
transcription kit (AM1340; Invitrogen, Carlsbad, CA, USA), and further purified with
LiCl to obtain cap-mRNA-L (450.6 ng/µL)/-R (460.8 ng/µL). The embryos (eggs) were
incubated at 15LD, which induced (determined) the later adults to lay non-diapause eggs.
The preparative cap-mRNA-L/R (v:v = 1:1) was injected into the non-diapause eggs within
8 h of egg age using a microinjector (IM300; Narishige, Setagaya-ku, Tokyo, Japan), with an
injection amount of approximately 5–10 ng/egg. After injection, the eggs were incubated
at 25LL, relative humidity 80–90% for hatching. G0 generation adults were mated with
wild-type (WT) adults, and the mutants were screened by detecting the individual DNA
sequences of the moths after oviposition. The PCR primers are shown in Table S1. From the
G1 generation, the moths were brother and sister inbred, using continuing DNA sequencing
until a homozygous mutation (records, Per−/−) was found in a batch.

2.3. Brain Transplantation

The female pupae with ages of 10 h (±1 h) were prefixed for 2 h at a low temperature
of 4 ◦C. According to previous methods [30], a small incision was made in the ventral
corneum of the head with microsurgical clips, then the complete brains of Per-knockout
and wild-type were interchanged and transplanted (n = 15). The incision was sealed with
nontoxic glue, and the postoperative pupae were kept in a sterile moisturizing petri dish
until adults emerged. An intact ovary removed from every silkworm moth aged 3–6 h was
used to assay the contents of 3-hydroxykynurenine, the serosal pigment precursor specific
to diapause eggs, which was used to evaluate the diapause destiny of eggs.
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Figure 1. The target site for knockout Period gene (Per) and the mutant screening in B. mori. (A) Gene 
structure and the TALEN knockout sequences (302G...351T) designed for the transcription start site 
(300ATG) located on the third exon of Per. (B) Mutant screening efficiency and the 3 types of Per 
gene mutations screened. (C) Sequencing peak map of ∆Per-3 mutant. (D,E) Verification of Per 
knockout effect on mRNA level and protein level respectively. The material is the newly hatched 
larvae (n = 3 batches, 200–300 larvae per batch). 
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Figure 1. The target site for knockout Period gene (Per) and the mutant screening in B. mori. (A) Gene
structure and the TALEN knockout sequences (302G...351T) designed for the transcription start site
(300ATG) located on the third exon of Per. (B) Mutant screening efficiency and the 3 types of Per
gene mutations screened. (C) Sequencing peak map of ∆Per-3 mutant. (D,E) Verification of Per
knockout effect on mRNA level and protein level respectively. The material is the newly hatched
larvae (n = 3 batches, 200–300 larvae per batch).

2.4. Western Blot Analysis

The PER protein was analyzed by western blotting. The larvae (n ≥ 30) within 2 h
after hatching were homogenized with cell lysis buffer (P0013; Beyotime, Shanghai, China),
centrifuged (4 ◦C, 13,800× g, 20 min), and the protein concentration in the supernatant
was assayed using the BCA method (pc0020; Solarbio, Beijing, China). The protein was
resolved using SDS-PAGE. The gel was transferred to a polyvinylidene difluoride mem-
brane for immunoblotting (1620177; Bio-Rad, Hercules, CA, USA), blocked in blocking
buffer (P0023B; Beyotime), and then incubated with primary antibody. The membrane was
then washed with TBST three times (5 min each wash) and incubated with the secondary
antibody, followed by use of the ChemiDoc™ Imaging System (12003153; Bio-Rad). The
PER protein (NCBI Reference Sequence: NP_001036975.1) has total lengths of 1108 amino
acid residues, and the antigen of PER polyclonal antibody is length of 592 amino acid
residues from M1 to T592. Rabbit primary antibody against PER was synthesized by Wuhan
GeneCreate Biological Engineering (Wuhan, China) and the secondary antibody was goat
anti-rabbit (GAR0072; Lianke Bio, Hangzhou, China). The antibody dilutions were 1:1000
and 1:5000 for primary and secondary antibody, respectively.
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2.5. Quantitative Real-Time PCR

Total RNA was extracted from the newly hatched larva, ovaries of female pupae,
and tissue complex of Br-SG using TRIzol reagent (15596018; Invitrogen) according to
the manufacturer’s instructions. The RNA concentration was determined using a spec-
trophotometer (Nanodrop 2000; Thermo Fisher Scientific). A Prime Script™ RT reagent Kit
(RR037B; TaKaRa, Dalian, China) was used for cDNA synthesis. Quantitative real-time PCR
(qRT-PCR) was performed to measure gene mRNA levels using the TB Green® Premix Ex
Taq™ (RR420B; TaKaRa) in an ABI StepOnePlus™ Real-Time PCR system (Ambion, Foster
City, CA, USA). Primer sequences were designed on the BLAST website (Table S1). The
qRT-PCR reaction system was 20 µL, with reaction conditions of 95 ◦C for 30 s, followed
by 40 cycles of 95 ◦C for 5 s and 60 ◦C for 34 s, with a final melting curve of 95 ◦C for 15 s,
60 ◦C for 60 s, and 95 ◦C for 15 s. The mRNA level for individual gene was normalized
using the Rp49 gene as a reference, and transcript levels were quantified using the 2−∆∆CT

method [31,32].

2.6. RNA Interference

Two kinds of double-stranded RNA (dsRNA) were injected to interfere in the expres-
sion of the glutamic acid decarboxylase gene (GAD). The length of both dsRNAs was 21 bp,
targeting 333G-351A (dsRNA-GAD-333) and 1691G-1709A (dsRNA-GAD-1691). A dsRNA
mixture containing 5 µg each of dsRNA-GAD-333 and dsRNA-GAD-1691 was diluted in
10 µL ddH2O, then injected into a 48-h-old pupa (50–60 females). The negative control
was injected with the same volume of ineffective (negative) interference dsRNA (NC). The
injection and diapause judgment of laid eggs were conducted by the same method as the
DH injection.

2.7. Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) Analysis

LC-MS/MS was used to determine the DH level in hemolymphs, and the contents
of γ-aminobutyric acid (GABA) [33] and dopamine (DA) [34] in hemolymphs or Br-SG
tissue complexes. A total of 150 µL of phosphate-buffered saline (PBS) was added to
one Br-SG sample (from 50 female pupae), followed by homogenization (FastPrep-24;
MP Biomedicals, Burlingame, CA, USA). The pretreatment of the Br-SG homogenate and
hemolymph samples was as follows: 30 µL of sample was added to 90 µL of 0.1% formic
acid/acetonitrile. After mixing, the supernatant was extracted by centrifugation (18,800× g,
6 min). DH, GABA (03835; Sigma-Aldrich, St. Louis, MO, USA), and dopamine (DA)(43658;
Sigma-Aldrich) were determined by the full scanning electrospray ionization (+) mode
(M/Z: 80–990). The quantitative ion was 547.5 > 159.2, 104.0 > 87.0, and 153.9 > 137.1
and the qualitative ion was 547.5 > 442.2, 104.0 > 69.0, and 153.9 > 119.1, respectively. An
ACQUITY UPLC BEH HILIC column (1.7 µm, 2.1 × 100 mm; Waters, Milford, MA, USA)
was used in the LC-MS/MS (5500; AB SCIEX, Redwood City, CA, USA) system at 40 ◦C
with a sample volume of 5 µL. The mobile phase A was 0.1% FA, and B was acetonitrile.
The initial mobile phase B was 20% acetonitrile for DH, and 98% acetonitrile for GABA and
DA, and the flow rate was 0.3 mL/min for both.

2.8. Ehrlich’s Diazo Reaction

As previously reported [35,36], Ehrlich’s diazo reagent was used to detect 3-hydroxy
kynurenine [37]. On the day of adult emergence, complete ovaries (including eggs) were
dissected out from the moth, washed with PBS, dried on filter paper, weighed, and ho-
mogenized with 3% Na2CO3 solution (w:v = 1:5). After centrifugation (9600× g for 5 min),
the supernatant was collected as the sample solution. According to the sample solution,
Ehrlich’s diazo reagent = 1:2 (v:v), the color was compared by being photographed or
detected using the absorbance value at A490 nm within 5 min after mixing.
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2.9. Assay of Trehalose and Glycogen

The contents of trehalose and glycogen were measured using the anthrone reaction.
The absorbance at 620 nm was measured using a microplate reader (Synergy HT; Biotek,
Winooski, VT, USA). The standard products were trehalose (S11052; YuanYe, Shanghai,
China) and glucose (G6172; Macklin, Shanghai, China). Trehalose assay steps involved
adding 150 µL 80% ethanol to 10 µL of the hemolymph sample, and heating in water for
20 min at 75 ◦C. After centrifugation (1500× g for 10 min), the supernatant was resuspended
and the pellet was washed with 80% ethanol, then combined with the two supernatants.
After evaporating to dryness using a 65 ◦C water bath, 20 µL ultrapurified (UP) water
was added to dissolve the sample. Then, 30 µL 6 M NaOH was added, and heated for
10 min to 100 ◦C to destroy reducing sugars. Finally, an anthrone reaction was performed.
The glycogen assay steps involved weighing 0.1 g of the ovarian sample, adding 500 µL
30% KOH (w:v), and heating for 30 min at 100 ◦C. After cooling, 750 µL absolute ethanol
was added, and the sample was then placed on ice for 10 min, followed by centrifugation
(900× g for 10 min). The precipitate was resuspended successively with 500 µL UP water,
10 µL saturated KCl, and 1000 µL absolute ethanol, and incubated for 5 min at 60 ◦C. The
precipitate from centrifugation (900× g for 10 min) was dissolved in 1000 µL UP water and
used as the anthrone reaction sample.

2.10. Chromatin Immunoprecipitation and Sequencing (ChIP-Seq)

The BmN cells were collected in logarithmic growth phase according to the instruc-
tions of the Pierce Magnetic ChIP Kit (26157; Thermo Fisher Scientific), then formaldehyde
corresponding to 1% of total volume was added, followed by crosslinking at room tem-
perature for 10 min. Then, 1/10 volume of glycine solution (10×) was added at room
temperature for 5 min to stop the crosslinking reaction. The cells were then washed
twice with precooled PBS, and 10 µg of antibody was added for the immunoprecipi-
tation. The rabbit anti-CYCLE and rabbit anti-CLOCK antibodies were produced by
Wuhan GeneCreate Biological Engineering (Wuhan, China). The CYCLE and CLOCK
proteins had total lengths of 700 and 647 amino acid residues, respectively. Their poly-
clonal lengths were 399 amino acids (170–568) and 308 amino acids (30–337), respec-
tively. The DNAs collected by ChIP from the CYCLE and CLOCK reactions were sent
to GENEWIZ (Suzhou, China) for library construction and sequencing. Bowtie2 soft-
ware (https://www.dnv.com/services/bow-tie-software-for-analysis-and-risk-assessme
nt-barrier-management-synergi-life-39311?utm_campaign=qhse_synergi_life&utm_source
=google&utm_medium=cpc&gclid=Cj0KCQjw--GFBhDeARIsACH_kdZlk2mDZtUWjme
g6HnNjPcmPyRJCfXpNKu7W-rAfyWac4i9iwScLg8aAtNlEALw_wcB&gclsrc=aw.ds, ac-
cessed on 27 August 2021) was used to compare and annotate the silkworm reference
genome database.

2.11. Dual Luciferase Reporter Assays

The 450 bp fragment of the GRD gene promoter region of the silkworm containing
three E-boxes was amplified and cloned into the luciferase reporter gene vector, pGL4.10
(Promega, Madison, WI, USA), and was named GRD luc. The full-length cDNA of silkworm
Clock, Cycle, and Per were cloned into the pcDNA3.1(+) expression vector. The mouse
293T cell line was used for transfection according to the manufacturer’s instructions for
Lipofectamine™ 2000 Transfection Reagent (11668019; Thermo Fisher Scientific). After 24 h
of transfection, the Dual-Luciferase® Reporter Assay System (E1910; Promega) was used to
detect luciferase activity using a fluorescence and chemiluminescence analyzer Fluoroskan
Ascent™ FL (Thermo Fisher Scientific).

2.12. Statistical Analysis

Prism 8 (GraphPad, San Diego, CA, USA) was used for statistical calculations and
graph construction. Significance analysis was performed using a t-test and data were

https://www.dnv.com/services/bow-tie-software-for-analysis-and-risk-assessment-barrier-management-synergi-life-39311?utm_campaign=qhse_synergi_life&utm_source=google&utm_medium=cpc&gclid=Cj0KCQjw--GFBhDeARIsACH_kdZlk2mDZtUWjmeg6HnNjPcmPyRJCfXpNKu7W-rAfyWac4i9iwScLg8aAtNlEALw_wcB&gclsrc=aw.ds
https://www.dnv.com/services/bow-tie-software-for-analysis-and-risk-assessment-barrier-management-synergi-life-39311?utm_campaign=qhse_synergi_life&utm_source=google&utm_medium=cpc&gclid=Cj0KCQjw--GFBhDeARIsACH_kdZlk2mDZtUWjmeg6HnNjPcmPyRJCfXpNKu7W-rAfyWac4i9iwScLg8aAtNlEALw_wcB&gclsrc=aw.ds
https://www.dnv.com/services/bow-tie-software-for-analysis-and-risk-assessment-barrier-management-synergi-life-39311?utm_campaign=qhse_synergi_life&utm_source=google&utm_medium=cpc&gclid=Cj0KCQjw--GFBhDeARIsACH_kdZlk2mDZtUWjmeg6HnNjPcmPyRJCfXpNKu7W-rAfyWac4i9iwScLg8aAtNlEALw_wcB&gclsrc=aw.ds
https://www.dnv.com/services/bow-tie-software-for-analysis-and-risk-assessment-barrier-management-synergi-life-39311?utm_campaign=qhse_synergi_life&utm_source=google&utm_medium=cpc&gclid=Cj0KCQjw--GFBhDeARIsACH_kdZlk2mDZtUWjmeg6HnNjPcmPyRJCfXpNKu7W-rAfyWac4i9iwScLg8aAtNlEALw_wcB&gclsrc=aw.ds
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expressed as the mean ± SEM. According to a previous report [38], JTK_CYCLE software
was used to analyze the rhythm of circadian clock gene expressions within 24 h.

3. Results
3.1. Per Expression Is Necessary for Diapause-Destiny in Bombyx mori

The designed TALEN target (Figure 1A) was used to knock out the silkworm Period
gene (Per). After microinjecting 1250 eggs, 193 larvae were obtained (hatching rate 15.4%).
The genomic DNA of G0 generation adults were detected after mating and oviposition,
and 9 mutants were detected from 25 adults (mutation rate 36%), with 6 G1 positive
broods obtained (Figure 1B). Further screening showed three types of mutations in the
heterozygous state of the G1 generation, namely ∆Per-1 with a deletion of 6 bp, ∆Per-2
with a deletion of 9 bp, and ∆Per-3 with a replacement of 1 bp and an insertion of 19 bp
(Figure 1B).

We selected a 19 bp insertion and formed a stop codon (∆Per-3), resulting in a protein
truncation by more than 99% for homozygous screening. Using continuous sequencing
selection of self-generations, a homozygous mutant was obtained in the G5 generation
(Figure 1C). Identification of gene transcription and translation levels showed that Per
mRNA and protein could not be detected in this mutant line (Figure 1D,E). Per gene was
stably knocked out with continuous 12 generations of genome testing, which was denoted
as Per−/− in this study.

Next, we investigated transcriptional changes of the core member genes of the TTFL
of the circadian clock. The results showed that the transcription levels of Cry1, Cry2, Tim,
Clock, and Cycle genes differed, when compared with the WT, in which the expression of
Cry1 and Clock in Per−/− silkworms lost circadian rhythms, indicating that knocking out
the Per gene disrupted the transcriptional rhythm patterns of core members of the TTFL of
the silkworm circadian clock (Figure S2). This may have further affected the signal output
of the TTFL of the circadian clock system.

Investigating the phenotype of the mutant silkworms showed that a non-diapause
change of eggs occurred (Figure 2). The phenotypic change was stable when investigated
for multiple generations. Incubation of embryos in an invariable 25LD environment
resulted in almost all of the female moths of the WT group laying diapause eggs (D).
In the Per knockout group, nearly 60% of female moths laid non-diapause eggs (ND),
aproximately 25% of the moths laid mixed diapause and non-diapause eggs (MD), and
less than 20% moths laid diapause eggs (D) (Figure 2A,B). Further investigations the effect
of the incubation environment of 25DD or 25LL on the diapause of offspring eggs, the
results showed that almost all postembryonic female moths of the WT group laid D-type
eggs, while that of the diapause-type of the Per knockout group was powerfully affected
by incubation light in the parental embryonic-period. The D-type of the Per−/− offspring
eggs was less than 3.0% in 25DD, and increased to 45.0% in 25LL. The percentage of D-type
batches instigated by 25LD was higher than that of 25DD, but lower than that of 25LL
(Figure 2B). Under incubation temperature of 25 ◦C, the day length did not affect the
diapause decision in WT, and the female moths laid diapause eggs. But the day length
played a decisive role for the Per knockout silkworms, and the diapause rate increased as
extension of day length (25LL > 25LD > 25DD) with a dose effect.

When the parent eggs were incubated at an intermediate temperature of 20 ◦C, the
light cycle of incubation had a decisive effect on the diapause of offspring eggs of the
WT group, but it had little effect on that of the Per knockout group. The female moths of
the D-type egg-laying moths in the WT group increased from 3.0% for the 20DD to 100%
for the 20LL, while it increased from 12.5% at the 20DD to 22.5% at the 20LL in the Per
knockout group (Figure 2C). It is worth noting that the effect of light on the diapause of
the Per knockout group at 20 ◦C was lower than that at 25 ◦C (Figure 2B,C). In conclusion,
knocking out the Per gene resulted in weakening of the temperature and light sensitivities
of the silkworm embryos, which were decisive for diapause.
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3.2. Deletion of Per Gene Inhibited the Secretion of DH through GABA Pathway in Brain 

Figure 2. Per-knockout affects the determinative effect of incubation temperature and light on the
diapause of offspring eggs. (A) Three diapause phenotypes of eggs (batches) produced by female
moths. ND, non-diapause egg batch, the proportion of diapause eggs ≤ 10%; MD, the mixed
batch of diapause eggs and non-diapause eggs, the proportion of diapause eggs was 10–90%; D,
the diapause egg batch, the proportion of diapause eggs was ≥90%. In the photos, the yellow
eggs are non-diapause eggs, and the dark brown eggs are diapause eggs. (B) At 25 ◦C incubation
temperature, the effect of the incubation light regimes (DD, LD and LL) on the diapause of offspring
eggs (n = 66–102 batches). (C) At 20 ◦C incubation temperature, the effect of the incubation light
regimes (DD and LL) on the diapause of offspring eggs (n = 72–152 batches). The numbers of the egg
batches are marked above the corresponding column.

3.2. Deletion of Per Gene Inhibited the Secretion of DH through GABA Pathway in Brain

To identify the role of DH in the non-diapause phenotype of Per mutant silkworms,
the level of DH during the critical period when Br-SG released DH to the hemolymph was
determined. LC-MS/MS results showed that from 72 h to 96 h of pupal age, DH levels
in the WT female pupal hemolymph were significantly increased, indicating that Br-SG
positively affected the release of DH to hemolymphs. Although the DH level in the Per
knockout group also increased, it was obviously lower than that in the WT group during
the same period (Figure 3A,B).

To characterize the rescue effect of DH, which induces the occurrence of silkworm
eggs diapause on Per mutant silkworms, the female pupae were injected with synthetic
DH at a pupal age of 72 h. When supplementing with 5 µg DH per pupa, the percentage of
Per−/− diapause moths (D-type) increased from 0.0% to 53.4%. In addition, the percentage
of non-diapause moths decreased from 93.3% in the negative control to 13.3%. When each
pupa was supplemented with 10 µg of DH, 100% of the eggs laid by the female moths
were diapause egg batches (Figure 3C). These results showed that DH induced an efficient
rescue effect on Per knockout silkworm diapause, and also indicated that knocking out the
Per gene may have reduced the levels and effect of DH in pupal hemolymphs, leading to
non-diapause.
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Figure 3. Per-knockout affects the DH content and the diapause metabolism of the female pupal
hemolymph. The parental silkworm eggs were incubated at 25LD, and the larval and pupal stage
maintained a 25LD environment. (A) DH mass spectrum. DH std, standard product of DH; WT
and Per−/− represents the 72 h pupal hemolymph of wild-type and mutant silkworm, respectively.
(B) DH content in pupal hemolymph. In the multiple comparison of significant differences in the
figure, there is no significant difference between the same letters, and there are significant differences
between different letters (p ≤ 0.05, n = 3). (C) The diapause rescue effect of DH supplementation
by female pupae on the eggs laid by mutant adults (n = 13–15 batches). The parental eggs were
incubated at 25LD, and the pupa was injected 10 µL DH at age 72 h (±2 h). DH concentration (w:v)
was 0.5 µg/µL and 1.0 µg/µL. The control was injected with the same volume of sterile water. The
transcription levels of DHR (D) and Treh-2 (E) in the pupal ovaries were measured by qRT-PCR and
with the reference gene was Rp49 (n = 3). (F) Glycogen content in the ovary (n = 4). (G) The content
of trehalose in hemolymph (n = 6). In Figure (B–G), data were expressed as the mean ± SEM, the
difference between Per−/− and WT is: *, p < 0.05; **, p < 0.01; ***, p < 0.001.

The mRNA levels of the DH-encoding gene, diapause hormone (DH)-pheromone
biosynthesis activating neuropeptide (PBAN) DH-PBAN, and its transcription factor gene,
Pitx, were measured during the pupal age from 24 h to 120 h. The results showed that in
the Br-SG tissues that synthesized and secreted DH, there was no significant difference
between these two gene transcription levels between the Per mutant and the WT group
(Figure S3). We further determined the transcription level of the DH receptor gene, DHR,
in the ovary, and found that during the pupal age of 48–96 h, the critical period of DH
secretion in the WT group, the expression of this gene in the Per−/− silkworms was severely
downregulated, when compared with the WT group. However, after 96 h, there was no
significant difference between the groups (Figure 3D).

The transcription levels of diapause metabolism markers and rate-limiting enzyme
genes triggered by the diapause hormone were then measured. The trehalase-2 gene (Treh-2)
transcription level in the mutant ovary was significantly downregulated, when compared
with the WT group at the pupal ages of 24 h–120 h (Figure 3E). The glycogen content in the
ovary was always lower than that of the WT group (Figure 3F), while the trehalose level in
the hemolymph had a tendency to be higher than that of WT group before the pupal age
of 72 h, with no significant difference thereafter (Figure 3G). Together, the results showed
that the weakened DH signal of the mutant Per−/− silkworms affected the conversion and
transport of trehalose in hemolymphs.

Although the previous results showed that the mutant silkworms with knockout
of the Per gene had decreased DH levels in the pupal hemolymph, and the response of
ovarian cells to the DH receptor was weakened, the weakened response did not result from
the downregulation of gene transcription of the DH gene. Using brain transplantation
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experiments, these results further proved the relationship between the DH activity levels
and its effects on changes of the brain in Per knockout silkworms.

At the pupal age of 10 h (±1 h), we interchanged and transplanted Per−/− and WT
female pupal brains that were not connected to SG lost the characteristic of carrying DH
(Figure 4A). The adults rarely laid eggs after emergence, and the diapause could not be
judged by the color of the eggs. Because the specific serosal molecular pigment precursor
of diapause eggs is 3-hydroxykynurenine in ovaries, the contents in virgin moths (moth
age of 3–6 h) were detected using the Ehrlich’s diazo reaction. According to the diapause
classification criteria of the color reaction (Figure S4), the content of 3-hydroxykynurenine
increased in the ovaries of Per−/− moths implanted with WT brains, and the diapause rate
increased. On the contrary, the content of 3-hydroxykynurenine in the ovaries of WT moths
implanted with Per−/− brains decreased, and the diapause rate decreased (Figure 4B,C). It
indicated that deletion of Per reduced the diapause of offspring eggs by affecting the control
of brain on DH secretion. This supported the result that the DH signal was weakened
in Per−/− middle and late pupae. Because the influence of the donor-carrying DH or
the potential synthesis of donor SGs and secretion of DH was excluded during brain
transplantation, the results described above indicated that the donor brain affected DH
synthesis and secretion of SG.
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Figure 4. Deletion of Per affects diapause via the neurotransmitter GABA in the pupal brain.
(A) Schematic of brain transplantation. Brain transplantation was performed on female pupae
with ages of 10 h (±1 h). (B) Effect of brain transplantation on the content of 3-hydroxykynurenine.
The 3-hydroxykynurenine content of intact ovaries from moth ages of 3–6 h was detected using
Ehrlich’s diazo reaction. (C) Effect of brain transplantation on egg diapause. Absorbance of Ehrlich’s
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diazo reaction was used to judge the diapause types according to the diapause classification criteria
(n = 15–70 female moths). (D,E) The content of GABA in Br-SG of pupae. The parental embryonic
incubation was 25LD (D), 25LD and 15LD (E). (F,G) Efficiency of interference with GAD on the
diapause of Per−/−. GAD-RNAi, GAD interference dsRNA was injected at pupal age of 48 h. NC,
invalid interference fragments were injected. The mRNA levels of GAD (F) and GRD (G) in Br-SG
were measured 24 h after injection (n = 3). (H) Effect of GAD-RNAi on diapause. The ND batches rate
was 79% in NC and the ND rate declined to 57% after GAD-RNAi (n = 14–19 batches). (I) Picrotoxin
treatment can rescue the diapause of Per−/−. 90 µg picrotoxin was injected into each Per−/− pupa. The
control (NC) was injected with 30 µL sterile water at pupal age of 24 h. The diapause was determined
by the content of 3-hydroxykynurenine in the moth ovaries ages of 3–6 h (n = 15–24 female moths).
In figure (D–G), * p < 0.05; *** p < 0.001, n = 3. In figures (F–I), eggs were incubated in 25LD.

We further determined the content of the neurotransmitters, DA and GABA, which
regulate DH secretion after stimulation and inhibition in the brain. The LC-MS/MS results
showed that during the pupal age of 24–120 h of the WT group, the content of DA in the
Br-SG complex was rapidly reduced from the high level of 24 h, and was at a very low level
for 48 h. In the Br-SG of mutant Per−/− pupae, the DA content at the pupal age of 24 h had
lower levels than that of the WT group, with a low level of oscillation during the period of
48–120 h (Figure S5).

We then determined the content of GABA, which inhibited DH secretion in the Br-SG.
When the embryonic stage silkworms were exposed to the 25LD diapause-predetermined
environment, the GABA content of the Per knockout group was higher than that of WT
silkworms. Except for the pupal age of 96 h, which was not statistically significant, the
other pupal ages all reached the p < 0.001 level; but, during the pupal age of 24–96 h, the
GABA level gradually approached that of WT silkworms (Figure 4D). Further comparisons
with the WT silkworm in 15LD non-diapause incubation environment (lay non-diapause
eggs) showed that the GABA-content of the 25LD-Per-knockout group increased to the
level of the 15LD-WT group at a pupal age of 72 h, while it restored to the lower level of
the previous 25LD-WT group at a pupal stage of 96 h (Figure 4E). Our data indicated that
the DH secretion period was delayed in the Br-SG of the Per knockout pupae.

At 24 h after the dsRNA interference of GAD, the mRNA levels of GAD and the GABA
receptor gene, GRD in the Br-SG were then determined. The mRNA level of GAD was
downregulated by approximately 33% in Br-SG (Figure 4F), and the expression of GRD
was also downregulated by about 10% (Figure 4G). The percentage of diapause egg batches
(D + MD) increased from 21% in the NC group to 43% (Figure 4H).

Further treatment of the Per knockout pupae with the GABA receptor blocker, picro-
toxin, showed that reducing the effect of GABA rescued the diapause process of the Per−/−

silkworms. After injection with picrotoxin during pupal age 24–120 h, according to the
diapause classification criteria of Ehrlich’s diazo reaction, the evaluation results showed
that when picrotoxin was injected at 48 h, 72 h, or 96 h of pupal age, the percentage of
diapause-destined moths (D + MD) was 100%. In addition, the effect of picrotoxin injection
at the pupal age of 24 h was also better than that of the NC, and the percentage of D-type
plus MD-type moths in the group was nearly 2-fold higher than that in the NC. However,
the injection of picrotoxin at the pupal age of 120 h had almost no effect on the promotion
of diapause (Figure 4I). The results indicated that the decrease of DH level in pupal stage
of the Per gene knockout mutant caused the production of non-diapause eggs, which was
closely related to the stronger role of the GABA neurotransmitter in Br-SG, that inhibited
DH secretion during the specific period of the pupal ages of 48 h–96 h.
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3.3. Per Directly Inhibited GABA Receptor GRD through Circadian Activators CYCLE
and CLOCK

We next investigated the transcription levels of GABA pathway-related genes in the
Br-SG tissue complex. Within 24–120 h of pupal age, the transcription level of the GABA
synthase gene, GAD (Figure 5A), and the GABA receptor gene, GRD (Figure 5B), were
upregulated in the Per knockout silkworm compared with the WT, although the other
four GABA receptor-subunit genes (RDL1, RDL2, RDL3, and LCCH3) showed inconsistent
up- and down-regulated expressions (Figure S6A–D). Further studies showed that the
plasma membrane GABA transporter gene, GAT (Figure 5C), and the GABA transaminase
gene, GABAT (Figure 5D), which controlled the decomposition process of GABA, had
significantly downregulated mRNA levels, while the transcription level of the GAT gene
was downregulated many times in the Per knockout silkworms. However, the vesicle
transporter gene of GABA, VGAT, the succinate semialdehyde dehydrogenase gene (Ssadh),
and the degradation enzyme of the primary breakdown product of GABA knockouts had
almost the same transcription levels as WT silkworms (Figure S6). These results showed
that the decomposition of GABA in the Br-SG tissue complex of the Per knockout silkworms
was limited, while the synthesis and effects of GABA were enhanced.
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Figure 5. Per−/− affects the transcriptional regulation of key genes in the GABA pathway. (A–D) Gene
transcription levels in the GABA pathway. GAD, glutamic acid decarboxylase; GRD, ionotropic
GABA receptor; GAT, plasma membrane GABA transporter; GABAT, GABA transaminase. (E) ChIP-
seq identification of CYCLE binding genes. Ann, Annotation; Dis, Distance to TSS; Des, Description.
Genome alignment revealed that the promoter region of GRD has a binding site for CYCLE. (F) Dual
luciferase reporter assays. GRD is activated by CLOCK and CYCLE, and inhibited by PER (sample
replicates, n = 4). (G,H) The transcription levels of Cycle and Clock. In figures (A–D) and (G,H), eggs
were incubated in 25LD. qRT-PCR was used to determine the genes transcription levels in Br-SG
(n = 3). *, p < 0.05, **, p < 0.01, ***, p < 0.001.

To further explain the molecular mechanism of the non-diapause effects in the silkworms
caused by the knockout of the Per gene, we screened CYCLE and CLOCK, two circadian
clock transcription regulators, for their regulatory effects on members of the DH pathway.
ChIP-seq was used to screen the genes regulated by CYCLE/CLOCK in silkworm BmN
cells. Then, the promoter sequence of the GRD gene was bound by the CYCLE protein.
The E-box was located −441 bp from the transcription start site (Figure 5E). Luciferase
assays further showed that co-transfection of the Cycle and Clock genes of the silkworm
obviously increased the activity of the GRD gene promoter, but when co-transfected with
the Per gene of the infected silkworm, it severely reduced the activity of the GRD promoter
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(Figure 5F). These results showed that transcription of silkworm GRD was regulated by the
transcriptional regulatory factors of the circadian clock system.

We investigated the mRNA levels of core clock genes in the Br-SG tissue complexes,
and found that within 24–120 h of pupal age, in contrast to the relatively stable transcription
levels in the WT silkworm, the Per knockout silkworms continued to upregulate the ex-
pression of the Cycle gene, especially in the pupal ages of 72–96 h of the sensitive period of
Br-SG release of DH (Figure 5G). In addition, the Per knockout silkworms continued to up-
regulate the expression of the Clock gene (Figure 5H) in the pupal ages of 48 h–96 h; the Tim
and Cry1/2 genes, which are core members of TTFL were also upregulated (Figure S7). To-
gether, these results supported circadian clock transcription regulators of CYCLE/CLOCK
upregulated the transcription level of the GRD gene.

4. Discussion

Among a variety of insects with adult reproductive diapause, the Hemipteran Riptortus
pedestris [18,39,40], Diptera Drosophila melanogaster [41], and Culex pipiens [42] showed
changes in reproductive diapause after knocking down or knocking out their Per genes.
In the Hymenoptera pearl wasp (Nasonia vitripennis), the larval diapause was involved
with the NvPer gene in the pupal stage, and the adult could not produce diapause-destined
eggs even when exposed to short light conditions [43]. These results showed that the
circadian clock system was involved in the regulation of insect diapause, but the molecular
regulation mechanism is still unclear. An important reason is that the key model insect,
D. melanogaster, lacks a noticeable diapause [44], which limits the progress of research on
the endocrine and molecular genetics basis of the regulation of diapause by the circadian
clock [45,46].

In the present study, using the classic egg-diapause model insect, B. mori, we found
that knocking out the circadian clock gene, Per, changed the effects of temperature and light
on the diapause determination of parent embryo stage. The mutant showed clear response
to photoperiod on diapause at 25 ◦C, which was not observed in WT. In 25DD, exclusion
of day length influence, the diapause rate of the mutant was remarkably lower than that
of WT, and showed that knockout of Per gene weakened the decisive effect of 25 ◦C on
diapause. When embryos were incubated at 25LD and 25LL, although day length had a
compensatory effect on diapause determination, the weakening of temperature effect still
existed. When embryos were incubated under 20 ◦C, the day length affected the diapause
decision both in WT and mutant, the diapause rate increased as extension of day length
(20LL > 20DD). The day length played a decisive role in diapause of WT, but the effect
on mutants was dramatically weakened. These results showed that the circadian clock
system damages in the Per knockout severely weakened, but could not completely block
the decisive role of temperature and light during embryonic stages on the diapause of
silkworm eggs.

(1) Knockout of the circadian clock gene Per strongly changed the secretion and function of DH,
which determined the diapause of silkworms.

Diapause of insects including silkworms is an active adaptation to the adverse en-
vironment, but the occurrence of diapause of silkworm eggs does not depend on the
temperature and photoperiod during the period of adverse environment, but the incu-
bation environment of maternal embryos [23,47–49]. The results of the classic bivoltine
silkworm showed that egg diapause is determined by the seasonal signal temperature, and
day length experienced by the parent embryo during the later stages, which is reflected by
the release of DH in the early and middle pupal stages. DH released into the hemolymph
further affected diapause metabolism occurring in the middle and late pupal stages, then
induced mature eggs to complete the diapause phenotype by the parent [50–53]. The
environmental temperature and light in the later stages of the silkworm embryo, which
determine diapause of the next generation of eggs, are essentially the zeitgeber of the
circadian clock [54–56]. A basic scientific question is how the silkworm converts the timing
signals of environmental temperature and light, which are sensed by the circadian clock,
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into storage signals to determine the endocrine level and role of diapause hormones in
the pupal stage, thereby inducing subsequent diapause metabolism and the diapause
phenotype of progeny eggs.

DH is synthesized in the pupal SG of silkworms, and is released into the hemolymph
via the corpus cardiacum-corpus allatum complex in the 3–4 day pupal stage [57,58]. It then
binds to the DH receptor (a G protein-coupled receptor) on the ovarian membrane [28,59],
and activates trehalase in ovarian cells and the oocytes in the ovary [60,61], resulting in
the trehalose in the hemolymph efficiently being converted into glucose and then being
absorbed into the ovary, thereby promoting the accumulation of glycogen in the developing
egg [29,62]. This is a prerequisite for the start of diapause metabolism of the silkworm.
Notably, the activation of diapause eggs does not depend on the disappearance of DH, and
even the presence of DH can be detected in non-diapause eggs [63].

In the present study, a mutant silkworm with knockout of the circadian clock, Per
gene, showed a significant decrease in the DH content in the hemolymph at the pupal
age of 72–96 h, which is the most sensitive time to induce diapause metabolism. The
transcription levels of the DH receptor gene and the trehalase-2 gene, two symbolic genes of
the DH signaling pathway, were severely reduced in the ovary. The content of glycogen, a
marker metabolite of diapause metabolism, showed typical non-diapause changes, whereas,
supplementation with DH at an early pupal age completely repaired the non-diapause
effect of Per knockout. These results showed that knocking out the Per circadian clock gene
led to non-diapause in silkworm eggs, by reducing the level and effects of DH during the
pupal stage.

(2) The circadian clock of B. mori affected the DH levels and functions in the pupal stage through
the GABA signaling pathway.

Studies have shown that the DH response of silkworms has a strong sensitivity,
depending on the developmental period. Only when the mother has a high DH level in
the hemolymph of the pupal—age of 3–4 day, can the ovaries (including eggs) and other
tissues be activated for diapause metabolism [50,57]. DH-PBAN is the DH-coding gene of
the silkworm, which is specifically expressed in a spatiotemporal manner in the SG of the
pupal stage, and is promoted by the transcription factor, Pitx [64,65]. The precursor protein
expressed by the DH-PBAN gene can be sheared and processed into a variety of FXPRL
amide neuropeptides, including DH, PBAN and three other SG nerve peptides (α-, β-, and
γ-SGNPs) [66]. In the present study, although it was confirmed that non-diapause in the
silkworm eggs resulted from knocking out the Per gene, which was caused by low DH levels
in the pupal stage, the transcription level of the DH-PBAN gene and Pitx in the pupal stage
Br-SG tissue complex were not downregulated. It is speculated that the post-translational
shearing regulation of DH may not precisely regulate the DH levels of Per−/− silkworms,
and the regulation was more likely due to the secretion link of DH after shearing. Several
studies have shown that non-diapause silkworm can synthesize the same amount of DH
as diapause silkworm at pupal stage, but the secretion of DH is promoted and inhibited
by the brain, resulting in different phenotypes of diapause of final offspring eggs, that is,
the difference in DH secretion rather than synthesis ultimately affects the occurrence of
diapause [23,57]. Moreover, three experiments, including brain transplantation, picrotoxin
injection and GAD interference, all showed that promoting DH secretion could enhance
the diapause effect of the mutant, indicating that the difference of DH titers was mainly the
secretion regulation mechanism rather than the post transcriptional regulation mode.

The secretion of DH in the pupal stage of the silkworm is controlled by the brain [67,68].
The neurotransmitters, dopamine [69] and GABA [30,36,70] in the brain are responsible
for the secretion of DH, and their roles are promoted and inhibited, respectively. GABA
is synthesized by glutamic acid decarboxylase (GAD) [71], a major inhibitory neurotrans-
mitter in the central system in insects [72–74] and vertebrates [33,75], and plays a role
through GABAergic receptors in the optic tectum [76]. Silkworm GABA receptor subunit
genes include GRD, RDL1/2/3, and LCCH3 [77]. The Shiomi laboratory of Shinshu Univer-
sity (Nagano-ken, Japan) recently discovered that the expression of the silkworm GABA
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transporter (GAT) on the plasma membrane of the brain was temperature-dependent and
modulated the DH release through the fine tuning of GAT gene expression levels. Embryos
experiencing a low temperature of 15 ◦C had significant downregulation of GAT expression
in the post-embryonic pupal stage, which further caused GABAergic signals to act on
corazonin neurons for a long time, and ultimately this inhibited the release of DH [70].

In the present study, the brain interchange study results confirmed that the non-
diapause phenotype of Per knockout mutant silkworms was caused by decreases in se-
cretion of DH regulated by the brain. In tissues of the Br-SG, the GABA synthase GAD
gene transcription level in Per knockout pupae was upregulated, when compared with
WT pupae, and the GABA content increased to the level of non-diapause-destined pupa
(15LD-WT) at 72 h, but decreased to the level of diapause-destined pupa (25LD-WT) at
96 h. The expression of the transaminase gene, GABAT, which catabolizes GABA, was
also downregulated, and it was downregulated more significantly after 72 h of pupal age,
suggesting that GABA break down in Br-SG was also reduced. In contrast, the expression
of the GABA transporter gene, GAT, was dramatically downregulated compared with the
WT, indicating that GABAergic signaling continued to be promoted in the pupal stage.
Furthermore, interference of the GABA synthesis rate-limiting enzyme gene, GAD, in
the pupal stage prevented the non-diapause changes of Per knockout silkworms. These
results showed that the Per knockout mutant relied on the dual regulation of increased
GABA synthesis and restricted breakdown, and this enhanced the inhibitory effect on
DH secretion.

It was found in mice that GABA was the main neurotransmitter in the pacemaker cells,
which was released in the suprachiasmatic nucleus according to a diurnal rhythm [75,78].
There were rhythmic level changes in different brain regions [79], suggesting that GABA
was related to the circadian clock system. Though it has been proved that many regulators
could affect the transcription of GABA receptor subunit genes, including cAMP response
element-binding protein and methyl CpG-binding protein 2 [80–83]. Our study first report
that the circadian clock directly regulates the expression of GABA receptor genes, GRD in
silkworm. The present study found that CYCLE, a transcriptional regulator of the TTFL,
bound to the −441 bp promoter region of the transcription start site of the GRD coding
DNA sequence to directly regulate the transcription of the GRD gene of the GABA receptor.
During the sensitive period of diapause hormone secretion from 72 h to 96 h of pupal
age, the Per knockout silkworms also obviously upregulated expressions of Cycle and
Clock genes in Br-SG, when compared with that of WT silkworms, and also upregulated
the mRNA levels of the GAD and GRD genes. Further injection of the GABA receptor
antagonist, picrotoxin, in the pupal stage showed that inhibition of the GABA receptor
helped recovery of the diapause of the mutant. It showed that knocking out the silkworm
Per gene affected the feedback regulation of the GABA pathway by changing the signal
output of the circadian clock pathway.

5. Conclusions

In conclusion, the diapause-destined mechanism changed in the circadian clock gene
Period knockout silkworms (Figure 6). The circadian clock system directly upregulated
the expression of GRD in the pupal stage through CYCLE, the transcriptional regulator,
and feedback stimulated the increase in levels of the inhibitory neurotransmitter, GABA,
thus continuing to promote the GABAergic signal in Br-SG, to inhibit the release of DH
in hemolymphs.
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