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Abstract.—The historical signal in nucleotide sequences becomes eroded over time by substitutions occurring repeatedly at
the same sites. This phenomenon, known as substitution saturation, is recognized as one of the primary obstacles to deep-
time phylogenetic inference using genome-scale data sets. We present a new test of substitution saturation and demonstrate
its performance in simulated and empirical data. For some of the 36 empirical phylogenomic data sets that we examined,
we detect substitution saturation in around 50% of loci. We found that saturation tends to be flagged as problematic in loci
with highly discordant phylogenetic signals across sites. Within each data set, the loci with smaller numbers of informative
sites are more likely to be flagged as containing problematic levels of saturation. The entropy saturation test proposed
here is sensitive to high evolutionary rates relative to the evolutionary timeframe, while also being sensitive to several
factors known to mislead phylogenetic inference, including short internal branches relative to external branches, short
nucleotide sequences, and tree imbalance. Our study demonstrates that excluding loci with substitution saturation can be
an effective means of mitigating the negative impact of multiple substitutions on phylogenetic inferences. [Phylogenetic
model performance; phylogenomics; substitution model; substitution saturation; test statistics.]

One of the key steps in phylogenomics is to identify
a suitable set of loci for reconstructing the evolution-
ary history of a group of organisms. The inference
of phylogenetic trees from nucleotide sequences can
be misled by a number of factors. For example, the
sequences might contain too little information if they
have evolved too slowly (Yang 1998; Klopfstein et al.
2017). On the other hand, high evolutionary rates
will increase the probability of multiple substitutions
occurring at the same nucleotide sites, leading to a
phenomenon known as substitution saturation (Brown
et al. 1982; Mindell and Honeycutt 1990; Philippe and
Forterre 1999; Philippe et al. 2011). Even when the
best-fitting model of nucleotide substitution is used,
saturation can cause the phylogenetic method to produce
inaccurate estimates of the tree topology and branch
lengths. Therefore, an important step in experimental
design for phylogenomic analysis is to identify the loci
with excessive evolutionary rates that might mislead
phylogenetic inference (Philippe et al. 2011).

One popular approach for exploring phylogenetic
informativeness is to identify the loci that have exper-
ienced substitution saturation (Philippe and Forterre
1999). A widely used approach for this purpose is to
compare the sites in a sequence alignment with those
expected under conditions of complete saturation. Fol-
lowing information theory, the test takes the pattern of
nucleotide frequencies at a fully saturated site to follow
a multinomial distribution with maximum entropy (Xia
et al. 2003). The critical values for this test are the entropy
values above which the estimates of the tree topology
and branch lengths are likely to be inaccurate.

In an extensive simulation study, Xia et al. (2003)
described the behavior of the entropy test across a
range of phylogenetic conditions of overall evolutionary

rate, amounts of data, and tree imbalance. However,
there is a wide range of factors that can interact to
mislead phylogenetic inference, such as substitution
model underparameterization (Revell et al. 2005; Sul-
livan and Joyce 2005) or the presence of long terminal
branches (Klopfstein et al. 2017; Dornburg et al. 2019).
Some of these factors are rapidly gaining recognition in
phylogenomics research, in which identifying sources
of bias can be crucial for obtaining a reliable estimate
of the phylogeny (Reddy et al. 2017; Mai and Mirarab
2018). Therefore, understanding the sensitivity of tests of
saturation to a broad range of phenomena in empirical
data can improve practice in phylogenomics.

Data sets in phylogenomics are typically composed
of many alignments of non-recombining regions of the
genome (loci). The phylogenetic information signal in
each locus is often summarized using its “gene tree.”
Tests of substitution saturation can be used to select loci
for phylogenetic analysis (e.g., Han and Ro 2015; Dávalos
and Perkins 2008; Liu et al. 2014). This form of data
filtering ultimately aims to maximize the signal of the
true phylogenetic relationships in the data, also known
as the historical signal. There has been growing interest
in data-filtering methods for phylogenomics (Molloy
and Warnow 2018; Richards et al. 2018; Bravo et al. 2019).
However, the effectiveness of these methods, such as
using tests of saturation, remains to be explored in depth.

In this study, we describe the performance of a
common test of saturation, and evaluate the impact of
saturation in a broad range of empirical phylogenomic
data sets. We also describe a novel approach to examin-
ing substitution saturation that focuses exclusively on
phylogenetically informative sites. This approach greatly
ameliorates the negative influence of slowly evolving
sites on the measurement of overall base composition,
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which is central to the performance of the entropy-
based tests of saturation. Using two simulation studies,
we first aim to identify the characteristics of sequence
alignments to which the tests are sensitive, including
a high rate of substitution. In our second simulation
study, we explore a broad continuum of evolutionary
scenarios to examine the power of the tests to identify loci
with amounts of substitution saturation that are likely
to mislead estimates of phylogeny and branch lengths.
We then evaluate the degree of substitution saturation
in 36 phylogenomic data sets, and investigate the link
between saturated loci and amount of discordance in
phylogenetic signal across sites. Our results suggest that
saturation can affect large portions of phylogenomic
data sets, and that testing for saturation is an effective
approach to identify loci with poor historical signal in
phylogenomic studies.

MATERIALS AND METHODS

Test of Expected Entropy
The degree of substitution saturation in a nucleotide

sequence alignment can be described using a measure of
entropy (Xia et al. 2003). The entropy of a distribution is
defined as the average information content in a given
sample. The information content measures the level
of surprise expected when we encounter a particular
outcome. Systems with high entropy are more unpre-
dictable and disorderly. In the context of phylogenetics,
entropy is highest at full saturation, when noise has
overridden the historical signal. In neutrally evolving
sequences under full saturation, every site might be
expected to have nucleotide frequencies equal to those
of the whole alignment. The nucleotide that occurs in
each sequence at a site is assumed to be independent of
the nucleotides in other sequences, so that the vector of
nucleotides at each site can be modeled as a single draw
from a multinomial distribution, where the underlying
probabilities are equal to the nucleotide frequencies. The
entropy of a multinomial sample with n observations, k
categories, and a vector p of probabilities for each of the
categories is:

H
(
X

) = −log
(
n!)−n

k∑
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pi log
(
pi

)

+
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(
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Therefore, the expected entropy of a sequence alignment
under full saturation can be calculated using the number
of taxa (n) and the overall nucleotide frequencies (p).
Meanwhile, the information content at an observed site
is based on the counts of nucleotides at that site:

I
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X|X =x

)= I(x)=−log2
(
P

(
X =x

))
, (2)

where P(X =x) is the density of a sample from the
multinomial distribution, given that the probabilities
are the overall nucleotide frequencies in the sequence
alignment. Since the entropy is the expected value of
the information content, we can calculate the entropy of
our sample by taking the average of the information at
each site. A test of saturation can then be performed by
taking the estimates of entropy across alignment sites
and comparing this with the sample entropy expected
under full saturation.

Substitution saturation can have negative impacts on
phylogenetic inference even before the historical signal
is completely eroded (Ho and Jermiin 2004), so a classic
test of the significance of the distance (t) between the
distribution of observed site information against the
value of maximal entropy will provide only limited
information about phylogenetic inferences. Instead, a
critical value for the t-statistic test can be derived from
simulations (Xia et al. 2003). The critical value tcrit
can then be used for testing the hypothesis that the
empirical value of tobs is far from maximal entropy, a
situation in which we would expect a negligible impact
of substitution saturation on phylogenetic inference. Our
formulation of this test is slightly different from that of
Xia et al. (2003), who tested whether tobs is significantly
smaller than tcrit. We propose testing whether tobs is
significantly smaller than full entropy, using tcrit as the
critical value of the test. Our test considers the variance in
the information content across sites more explicitly, but
the two tests can be expected to produce similar results.

Existing implementations of the test of saturation take
the expected entropy to depend on the base frequencies
of the sequence alignment. However, this test can
have problematic behavior in several scenarios, such as
when sequences are subject to selective constrains or
when sites vary in evolutionary rate. Such variation in
rates is common in empirical data sets: among codon
positions in protein-coding sequences or across sites
in ultraconserved elements (UCEs) and their flanking
regions. Therefore, we assessed the performance of the
test based exclusively on phylogenetically informative
sites (i.e., parsimony-informative sites with at least two
nucleotides, where at least two of these occur in at least
two sequences). This avoids the worst effects of constant
sites on the test in data matrices with small numbers
of taxa, small numbers of sites, or both. The focus of
the test on phylogenetically informative sites will have
a diminishing effect on the test as the size of the data
matrix increases, and is expected to have a null effect
under infinite sites.

The guidelines require revision so that the test can be
implemented more effectively for empirical data. Very
small sequence alignments can pose challenges for the
reliability of the test, due to the disproportionate effect
of small numbers of outlier sites. Similarly, alignments
with large numbers of slow-evolving sites and an
overrepresentation of a particular nucleotide type will
be highly sensitive to single outlier sites. Therefore, a test
of saturation using the entropy t-statistic is unlikely to
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perform well on small sequence alignments or in which
nucleotide frequencies are highly uneven.

The Entropy t-Statistic and Phylogenetic Inference

We used a simulation study to examine the circum-
stances under which substitution saturation is a signi-
ficant problem that can be addressed in empirical data,
relative to other causes of misleading inferences. We
simulated the evolution of nucleotide sequences along
trees with variable numbers of taxa (8, 32, 128, and 512) to
generate data sets with three different sequence lengths
(250, 500, and 1500 nucleotides). Starting with trees that
were fully symmetric and in which all branches had
equal length, we varied several conditions that can affect
the performance of phylogenetic methods, including:
the number of substitutions along each branch of the
tree (0.05, 0.25, 0.45, and 0.65); tree imbalance (fully
balanced tree versus fully imbalanced tree); ratio of the
sum of internal to the sum of external branch lengths,
or stemminess (0.1, 0.5, and 0.9; Fiala and Sokal 1985);
and the substitution model that generated the data (the
matched Jukes–Cantor model, JC; or the more complex
GTR+� model). Simulations under GTR+� focused on
examining the impact of model underparameterization,
and were made with transition parameters drawn from
a Dirichlet distribution (all values of �=5) and gamma-
distributed rates across sites with �=1. In addition,
we simulated sequence evolution under the conditions
above but including a proportion of constant sites
(0, 0.25, 0.5, 0.75), as is common in several empirical
data types. Our simulations included 100 sequence
alignments under each combination of scenarios and
under either the JC or the GTR+� substitution model. We
performed phylogenetic analyses of each data set using
the JC substitution model and maximum-likelihood
optimization in IQ-TREE (Nguyen et al. 2015).

Phylogenetic accuracy in each scenario was calculated
as the unweighted and normalized Robinson–Foulds
distance (Robinson and Foulds 1981; Penny and Hendy
1985) between the inferred tree and the “true” tree
used for simulation in each analysis. We also made a
comparable calculation with branch lengths, by taking
the difference between the estimated and true tree
length, and dividing this difference by the true tree
length. The outcome is the proportion error in estimated
tree length. In addition, we recorded the entropy t-
statistics as calculated on all alignment sites and on
informative sites only.

We tested the hypothesis that each factor that we
varied in our simulations had an impact on phylogenetic
inference and on the two entropy t-statistics. We tested
four linear regression models in which the response
variables were, in turn, the topological distance between
the estimated and true trees, the difference in tree length
between the estimated and true trees, and each of the
two tobs values of the saturation test (calculated on
all sites or only on informative sites). The explanatory
variables were the six fixed factors that we varied in

our simulations (number of taxa, alignment length,
tree length, degree of tree imbalance, stemminess, and
substitution model used for simulation). In addition,
we considered the total number of variable sites in the
alignment, and all of the two-way interactions between
the main effects. The resulting P-values were corrected
for multiple comparisons using false discovery rates.

Diagnostic Ability of the Entropy t-Statistic

In a second simulation study, we characterized the
performance of the two entropy t-statistics for identify-
ing cases in which substitution saturation is misleading
phylogenetic inference. We explored a similar parameter
space as in our first simulation study, but treated several
of the factors as continuous. In each simulation, we
sampled values from uniform distributions for mean
branch length U(0.01, 0.65), stemminess U(0.1, 0.9), and
sequence length U(250, 2000). In each simulation, we
also randomly sampled the number of taxa (8, 32, 128,
and 512), whether the tree was imbalanced or balanced,
a portion of the sites to remain constant U(0, 0.8), and
the model of nucleotide substitution used for sequence
evolution (JC or GTR+�). We repeated 105 times the
sampling of parameters, simulation of sequence evol-
ution, phylogenetic inference in IQ-TREE under a JC
model, and the calculation of the two t-statistics of
entropy (all sites versus informative sites only). This
analysis allowed us to explore the performance of the
test statistics along a gradient of scenarios and to
identify appropriate critical values for interpreting the
best-performing test statistic.

We quantified the diagnostic ability of the two entropy
t-statistics across the simulation conditions by using
receiver operating characteristic (ROC) curves to show
the relationship between rates of true positives and false
positives. Across a traverse of the values of the test stat-
istic calculated in simulations, we considered positives to
be cases in which the topology of the inferred phylogeny
was different from that of the true tree. For each ROC
curve, we chose the critical values as those that maxim-
ized the difference between the numbers of true positives
and false positives, such that they provide the greatest
power for discriminating positives from negatives. The
code used to perform simulations is freely available
online (github.com/duchene/entropy_saturation_test).

We also explored the performance of the entropy
t-statistics in identifying cases in which substitution
saturation is likely to have misled estimates of branch
lengths. Branch lengths are continuous variables, so an
arbitrary critical value has to be used to determine the
target positives for the test. We determined a positive as
being cases in which estimated tree length was at least
50% greater or smaller than the true tree length.

Based on the results of our simulations, we propose
critical values for assessing saturation using the entropy
test statistic calculated on phylogenetically informative
sites. Past research has indicated that test statistics
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often cannot be interpreted using a single, universally
applied critical value, because the power of any given
test can vary with sample size and other features of
the data (e.g., Xia et al. 2003; Duchêne et al. 2017).
Following previous work, we propose critical values that
depend on the number of taxa and on sequence length.
Specifically, we performed a multiple regression of the
critical value chosen under each simulation condition on
the square root of the corresponding number of taxa and
sequence length as explanatory variables. Regression
models can then be used to predict critical values across
any number of taxa and sequence length. The saturation
test is implemented in the free software PhyloMAd
(Duchêne et al. 2018b; github.com/duchene/phylomad)
and reports the test results, a diagnosis based on the new
critical values, and estimates of expected false-positive
and true-positive rates.

Signal of Substitution Saturation in Phylogenomic Data
The prevalence and impact of substitution saturation

were examined in a range of phylogenomic data sets
from the literature (Table 1). We obtained 36 data
sets that varied widely in taxonomic range, size, and
sequence type. The data sets spanned multiple orders
of magnitude in their number of taxa and number of
genomic regions included. They also included a range
of data types that we broadly describe as exon, intron,
ultraconserved element, or anchored-enriched region
data. While these data types have some overlap, they are
different in the data targeted by researchers (e.g., coding
gene regions versus the informative regions flanking
UCEs), which potentially allows useful distinctions to
be made.

Our proposed test of substitution saturation was
performed separately for each locus in each data set,
where “locus” is defined as in the studies from which
we obtained the data. Our analyses focused on the
test on informative sites only, given that a test on
complete alignments has inferior performance under
most conditions (see Results). We only explore loci with
a minimum of 30 phylogenetically informative sites, and
in which none of the nucleotide frequencies is greater
than 0.5. These bounds ameliorate the severe impact that
outlier sites can have on the estimates of the t-statistic.
For each data set, we compared loci with high versus low
risk of saturation in terms of their total numbers of sites,
numbers of informative sites, GC content, and phylogen-
etic inferences. Phylogenetic analyses were performed
for each locus using maximum likelihood in IQ-TREE
(Nguyen et al. 2015) with the best-fitting substitution
model from the GTR+� family. As a metric of branch
support, we calculated the approximate likelihood-ratio
test (aLRT), which assesses the agreement across sites
regarding the maximum-likelihood resolution (Guindon
et al. 2010). From the inferences for each locus, we
extracted the mean branch support across branches,
mean estimated branch lengths, and stemminess (Fiala
and Sokal 1985).

RESULTS

The Entropy t-Statistic and Phylogenetic Inference
Our simulations show that substitution saturation,

simulated as long tree lengths, is one of the primary
factors misleading phylogenetic inference (Fig. 1). How-
ever, several other factors are also important obstacles to
phylogenetic inference, including tree imbalance, large
numbers of taxa, low relative lengths of internal to
external branches (stemminess), and high complexity
in the true substitution process compared with the
model used for inference (model underparameteriza-
tion; Fig. 1).

Our regression models highlight the widespread
interactions between factors in misleading phylogenetic
inferences. For example, substitution saturation is highly
misleading to topology inference when tree imbalance is
high and trees have large numbers of taxa (Fig. 1a,b).
Accuracy in the inferred tree topology was best
explained by the two-way interactions between number
of taxa and phylogenetic imbalance of the true tree (t-
value =218.971; Supplementary Table S1 available on on
Zenodo at https://doi.org/10.5281/zenodo.5131558),
that between phylogenetic imbalance and stemminess
of the true tree (t-value =111.592), between the true tree
length and the substitution model used for simulation
(Fig. 1a; t-value =−104.186), and between the true
tree length and stemminess of the true tree (t-value
=−86.007).

Several of the primary factors explaining error in
branch-length estimates were the same as those explain-
ing error in the tree topology, including the interaction
between true tree length and the substitution model
used for simulation (Fig. 1; t-value =−191.171), and the
interaction between tree imbalance and the stemminess
of the true tree (t-value =110.811). In addition, a strong
predictor of error in branch-length estimates was the
interaction between the substitution model used and the
proportion of invariable sites (t-value =215.571). All P-
values were small (<0.001) and remained qualitatively
identical when adjusted using false-discovery rates.

The entropy t-statistics were sensitive to factors
that were similar, but not identical, to those that
best explained phylogenetic error. The coefficients of
regressions explaining topological error and the entropy
statistics were similar (Fig. 2a,b). Meanwhile, coefficients
of regression explaining error in tree-length estimate
were not associated with those explaining the entropy
statistics (Fig. 2c,d). Therefore, the saturation test presen-
ted here is primarily suited to assessing misleading
estimates of tree topology rather than branch lengths.

The t-statistic applied to phylogenetically informative
sites has a greater sensitivity to factors that also affect
phylogenetic inference compared with the statistic on
all sites. The statistic calculated on all sites was best
explained by the interaction between true tree length
and stemminess of the true tree (t-value =144.484),
followed by the interaction between true tree length and
phylogenetic imbalance (t-value =114.893). However,

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab075#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab075#supplementary-data
https://doi.org/10.5281/zenodo.5131558
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TABLE 1. Phylogenomic data sets tested for substitution saturation in this study

Number Data Mean run time
of taxa type/ of saturation

Number of per genomic test per Source
Taxon locia locus regionb locus (s) reference

Stinging wasps (Aculeata) 807 140–183 UCE 0.273 Branstetter et al. 2017
Bilaterian metazoans

(Bilateria)
424 50–75 Exon 0.076 Cannon et al. 2016

Laurasiatherian mammals
(Laurasiatheria)

10,258 8–23 Intron 0.096 Chen et al. 2017 (A)

Laurasiatherian mammals
(Laurasiatheria)

3637 5–23 Intron 0.118 Chen et al. 2017 (B)

Amniote vertebrates
(Amniota)

1145 10 UCE 0.035 Crawford et al. 2012

Marsupial mammals
(Marsupialia)

1494 38–45 Exon 0.098 Duchêne et al. 2018a

Butterflies (Papilionoidea) 350 144–205 Exon 1.086 Espeland et al. 2018
Ray-finned fishes

(Actinopterygii)
489 5–27 UCE 0.040 Faircloth et al. 2013

North American tarantulas
(Aphonopelma)

581 63–83 Anchored 0.179 Hamilton et al. 2016 (A)

Spiders (Araneae) 326 22–34 Anchored 0.107 Hamilton et al. 2016 (B)
North American

mygalomorph spiders
(Euctenizidae)

403 18–25 Anchored 0.085 Hamilton et al. 2016 (C)

Ray-finned fishes
(Actinopterygii)

1101 105–298 Exon 1.095 Hughes et al. 2018

Cichlid fishes (Cichlidae) 533 57–149 Anchored 0.927 Irisarri et al. 2018
Birds (Aves) 8293 42–52 Exon 0.154 Jarvis et al. 2014 (A)
Birds (Aves) 8287 42–52 Exon 0.117 Jarvis et al. 2014 (B)
Birds (Aves) 2515 39–52 Intron 0.540 Jarvis et al. 2014 (C)
Gobioid fishes

(Actinopterygii: Gobioidei)
570 43 Exon 0.133 Kuang et al. 2018

Iguanas (Phrynosomatidae) 580 4–11 UCE 0.052 Leaché et al. 2015
Flowering plants

(Angiosperms)
370 29–35 Anchored 0.089 Léveillé-Bourret et al. 2018

Mosses (Bryophyta) 105 68–146 Exon 0.290 Liu et al. 2019
Birds (Neoaves) 1539 17–33 UCE 0.041 McCormack et al. 2013
Songbirds (Passeri) 515 106 UCE 0.191 Moyle et al. 2016
Acorn ants (Temnothorax) 2091 44–50 UCE 0.124 Prebus 2017
Birds (Aves) 259 164–200 Anchored 0.750 Prum et al. 2015
Snakes (Storeria) 322 70–90 Anchored 0.389 Pyron et al. 2016
Seed plants (Gymnosperms) 1308 38 Exon 0.089 Ran et al. 2018 (A)
Seed plants (Gymnosperms) 1308 38 Exon 0.082 Ran et al. 2018 (B)
Seed plants (Gymnosperms) 1308 38 Exon 0.093 Ran et al. 2018 (C)
Harvestmen spiders

(Ischiropsalidoidea)
672 5 Exon 0.037 Richart et al. 2016 (A)

Harvestmen spiders
(Ischiropsalidoidea)

653 5 Exon 0.034 Richart et al. 2016 (B)

Harvestmen spiders
(Ischiropsalidoidea)

672 5 Exon 0.034 Richart et al. 2016 (C)

Ferns (Monilophyta) 2385 52–73 Exon 0.118 Shen et al. 2018
Squamate reptiles

(Squamata)
4175 18–34 UCE 0.054 Streicher and Wiens 2017

Squamate reptiles
(Squamata)

44 98–167 Exon 0.810 Wiens et al. 2012

Decapod crustaceans
(Decapoda)

105 57–94 Exon 0.849 Xia et al. 2003

Squamate reptiles
(Squamata)

52 98–2378 Anchored 1.086 Zheng and Wiens 2016

Note: Data sets were examined as done in previous studies, such that each locus was analyzed independently.
aFor some studies, only a subset of the data were examined because of numerical problems (possibly caused by missing data) or file-format difficulties (such as those
caused by unusual characters).
b“Exon” and “Intron” data sets refers to gene regions, either protein-coding or intronic, respectively; “UCE” refers to ultraconserved elements (Faircloth et al. 2012);
“Anchored” refers to anchored-enriched regions (Lemmon et al. 2012).

the test statistic is weakly correlated with an under-
parameterized substitution model and extreme cases of
tree imbalance (Supplementary Table S1 available on
Zenodo). In contrast, the statistic on phylogenetically
informative sites was reasonably well explained by the
interaction between the true tree length and the substitu-
tion model used for simulation (t-value =124.593), and
between imbalance and stemminess (t-value =72.962).

Diagnostic Ability of the Entropy t-Statistic
The entropy t-statistic test focusing on informative

sites consistently made a clear separation between true
positives and false positives across a traverse of values of
the test statistic, suggesting strong power to discriminate
between accurate and misleading inferences of tree
topology (Fig. 3). In contrast, the test using all alignment
sites performed poorly in distinguishing true positives

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab075#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab075#supplementary-data
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FIGURE 1. The effect of the most influential factors in simulations on the performance of phylogenetic inference and the entropy t-statistic. The
JC model of nucleotide substitution was used for all analyses, such that the model is matched in simulations under the JC model (a, c, e, and g),
and underparameterized in simulations under the GTR+� model (b, d, f, and h). The performance of phylogenetic inference was measured as
(a, b) the unweighted Robinson–Foulds distance between the estimated and true trees, and (c, d) the difference in tree length between estimated
and true trees, calculated as ((estimated tree length – true tree length) / true tree length). Performance is compared with the entropy t-statistic
as calculated on all alignment sites (c, d; tobs) and on phylogenetically informative sites only (c, d; tvar_obs). Boxplot whiskers cover the full range
of values in each scenario.

from false positives and was virtually ineffective when
the substitution model was underparameterized. Under
a matched substitution model, the smallest number of
taxa explored (8) led to the poorest test performance,
primarily caused by a minority of true negatives having
values that resemble most of the true positives (i.e., some
accurate inferences having a signal that resembles high

entropy; Fig. 3). Substitution model underparameteriza-
tion primarily affected test performance in analyses with
large numbers of taxa. Long sequences led to a small
drop in test performance in analyses with large numbers
of taxa (128 and 512 taxa).

The number of taxa and sequence length are suitable
predictors of the best thresholds as taken from the
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FIGURE 2. Coefficients of regression analyses of multiple variables across simulations explaining topological distance to the true tree and tree
length distance (y-axis) and the entropy t-statistics (x-axis). A strong negative correlation between regression coefficients explaining topological
distance and entropy t-statistics (a, b) indicates that the statistics have some power to predict misleading inferences of tree topology. Meanwhile,
there is no association in regression coefficients explaining tree-length distance to the true tree and the entropy statistics (c, d).

data in ROC curves (the value that maximizes the
difference between numbers of true positives and false
positives). Specifically, according to multiple regression,
the values of tcrit of the test on informative sites are well
explained by the square root of numbers of taxa and
sequence length (adjusted r2 =0.9; Fig. 4). Nonetheless,
there will be excessive uncertainty around the predicted
threshold values when the number of taxa is �512 and
sequence length is �1600. Another observation is the
high values of tcrit at intermediate numbers of taxa.
At these tree sizes, estimates of base composition will
be the most influenced by sites that are slow-evolving
yet are parsimony-informative. For this reason, base
composition is the least representative of maximum
entropy at intermediate numbers of sites. This is reflected
in the high variance in estimates of tcrit and higher
predicted values at those intermediate numbers of taxa
(Fig. 4).

The test on informative sites also had a reasonable
ability to identify inaccurate inferences of branch lengths
(Supplementary Fig. S1 available on Zenodo), while

the test on all sites had poor performance through-
out scenarios. The test on informative sites was also
virtually unaffected by model underparameterization
when including small numbers of taxa. These results
are consistent with our simulations showing that the
primary drivers of misleading branch-length estimates
are large tree lengths, high stemminess, and excess-
ive tree imbalance, rather than the accuracy of the
substitution model among those examined.

Signal of Substitution Saturation in Phylogenomic Data
Our implementation of the entropy tests of saturation

on empirical data sets took an average of 0.141 s per
locus. Saturation was flagged as being highly prevalent
in more than a quarter of the data sets examined
(10 of 36), affecting >5% of loci in these data sets
and >50% in one case. In the remaining data sets,
saturation was rarely flagged, or not at all (26 of 36).
Given this striking distinction among data sets, our

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab075#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab075#supplementary-data
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analyses show that, when prevalent, saturation can
have a large impact on phylogenomic analyses. Branch
support (aLRT) was on average lower in saturated than

unsaturated loci in 70% of the data sets that had any
flagged saturation (Fig. 5a). Unsaturated loci also had
a number of informative sites that was high relative to
other loci in their corresponding study (Fig. 5b). This
means that rather than having an absolute small number
of informative sites, it was loci with relatively small
numbers of informative sites that tended to be flagged
for saturation. Saturated and unsaturated loci led to
similar estimates of branch lengths and stemminess, and
had comparable GC contents (Supplementary Fig. S2
available on Zenodo).

Our analyses revealed that the impact of saturation on
discordance across sites in gene trees can be substantial.
Loci flagged for saturation yielded gene trees that had
mean aLRT branch supports that were 4.8% lower on
average than the trees inferred from unsaturated loci,
being 25% poorer in one data set (Fig. 6). Nonetheless,
the portion of saturated loci was not associated with
the loss in branch support in gene trees from saturated
loci (Fig. 6b). The data sets that benefited the least from
distinguishing between saturated and unsaturated loci
tended to be UCE or anchored-enriched data. These data
sets also had a slight tendency to have fewer informative
sites per locus and smaller numbers of taxa (Fig. 6c,d).

Data sets that targeted exons and introns had higher
proportions of saturated loci than those that targeted
UCEs and anchored-enriched regions (Fig. 7a). Data
sets from exons/introns also tended to have greater
numbers of informative sites and to yield longer gene
trees with greater aLRT branch supports than data sets
from UCEs and anchored-enriched regions (Fig. 7b,c).
In addition, data sets comprising exon/introns led to

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab075#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab075#supplementary-data
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gene trees with shorter internal relative to external
branch lengths (lower stemminess; Fig. 7e). The longer
internal branches found in gene trees inferred from
UCEs or anchored-enriched regions suggest that low
branch supports are likely associated with the lower
number of sites and overall shorter trees, rather than
due to misleading inferences such as those arising from
substitution saturation (Fig. 5).

DISCUSSION

Our study has shown that substitution saturation
can be highly misleading in phylogenetics, even when
compared with a range of other factors that can also
mislead inference. Saturation was flagged as occurring
in large numbers of loci in nearly one-third of a broad
range of empirical data sets examined, and tended to
be flagged in loci with highly discordant signals across
sites (Supplementary Fig. S3 available on Zenodo).
Interestingly, loci with relatively few informative sites in
each data set were frequently flagged as being saturated,
such that they should be scrutinized in empirical data.
One solution is to use the entropy t-statistic calculated
on phylogenetically informative sites to rapidly identify
levels of substitution saturation that are likely to mislead
phylogenetic inference. Similar tests for identifying his-
torical signal in sequence alignments vary considerably
in their effectiveness (e.g., Strimmer and Von Haeseler
1997; Goldman 1998; Townsend 2007; Susko and Roger

2012; Townsend et al. 2012; Klopfstein et al. 2017). For this
reason, we have focused on a description of the rates
of true positives versus false positives of entropy tests
for substitution saturation and a fast implementation.
Our results indicate that saturation is a relatively com-
mon and problematic phenomenon in phylogenomics;
accordingly, the entropy test of saturation as described
here offers a useful complement to existing diagnostics
of data quality and model performance.

Our analyses of empirical data sets suggest that dif-
ferent data types have comparable portions of saturated
loci. Rather than depending on data type, saturation
is typically flagged as a problem for loci that have
small numbers of fast-evolving sites. This finding lends
support to the hypothesis that variable sites in highly
conserved genomic regions have more saturation than
those in highly variable genome regions (Philippe et al.
1996). Despite the similar results across data types, we
also observed only limited improvement in gene-tree
branch supports when excluding saturated loci in UCE
data sets (Supplementary Fig. S3 available on Zenodo).
This might be due to a more careful choice of markers
and data filtering before analyses of UCEs, which is also
reflected in the small portions of loci rejected.

Strikingly, our test identified large proportions of loci
as being saturated in multiple data sets, in some cases
identifying saturation in more than half of the data.
This suggests that assessing substitution saturation can
have a dramatic effect in reducing noise in phylogenomic

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab075#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab075#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab075#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab075#supplementary-data
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data sets. Assessing saturation in alignments as a whole
can be particularly useful after filtering by taxa (e.g.,
Aberer et al. 2013; Mai and Mirarab 2018) and by sites
(e.g., Ranwez et al. 2011; Whelan et al. 2018). Using a
combination of methods for filtering by rate might also
reduce the portion of the false negatives that arise in
tests of historical signal due to fast-evolving segments of
alignments (Dornburg et al. 2019).

Our findings on the performance of the entropy
saturation test also point to the importance of assessing
substitution model adequacy in phylogenetic studies
(e.g., Goldman 1993; Bollback 2002; Weiss and von
Haeseler 2003; Foster 2004; Brown 2014; Duchêne et al.
2018c). Our results from the saturation tests applied to all
sites of an alignment suggest that complex evolutionary
models can mislead any entropy-based saturation test
on an alignment as a whole. Examples of more complex

models that can mislead the test include a process in
which substitution is dominated by a small number
of distinct categories of base frequencies, also known
for its implementation as the CAT model (Fitch and
Markowitz 1970; Lartillot and Philippe 2004). Another
difficult scenario is that of the covarion substitution
process, where substitution types are constrained at
various points in evolutionary time (Miyamoto and
Fitch 1996). These models do not lead to alignment-
wide base frequencies under maximum entropy, such
that our saturation test is an inadequate representation
of the model that generated the data. Therefore, we
encourage the testing of a broad range of evolutionary
models in phylogenomics. Alternatively, researchers can
use multiple methods of model assessment, beginning
with tests of signals in individual taxa or sites, followed
by tests of model adequacy, and finishing with overall
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tests of historical signal (e.g., Dávalos and Perkins 2008;
Liu et al. 2014).

The entropy test of substitution saturation on phylo-
genetically informative sites shows good performance
across a broad range of scenarios and is likely to be
robust to other factors that were not explored in this
study. For example, the test is likely to perform well
in the presence of rate variation across sites, provided
that this form of variation is modeled appropriately
(Kalyaanamoorthy et al. 2017). However, due to the
unusual nature of the tree-topology parameter, tests of
data quality are generally dissociated from the actual
performance of phylogenetic methods (also see Duchêne
et al. 2017, 2018c). Outlier fast-evolving lineages might
pose a challenge to tests of historical signal like the
entropy saturation test, due to the possible mixed signals
of closely related and highly divergent taxa (Dornburg
et al. 2019). Therefore, it is useful to complement tests
of the historical signal with tests of the plausibility
of branch-length estimates, or of the consistency in
phylogenetic signal across an alignment (e.g., Minin et al.
2003; Aberer et al. 2013; Mai and Mirarab 2018).

An important matter when developing tests of phylo-
genetic signal or model adequacy is to identify appro-
priate critical values that balance the rates of true and
false positives. Identifying such critical values can be
a difficult task, for many reasons. In particular, phylo-
genetic information is not straightforward to capture in
test statistics that summarize the features of sequence
alignments (Duchêne et al. 2018c). We find that the
entropy saturation test is associated with several factors
that affect the quality of phylogenetic inference, such

as stemminess and evolutionary rate. However, the test
might vary in usefulness across data sets and among
loci within a phylogenomic data set. This is in part
because of variance across loci in the performance of the
substitution model, which will affect the performance of
the test of saturation. Users of tests of model adequacy
and saturation need to be aware of this limitation of the
tests, and we recommend at least reporting the predicted
rates of true and false positives across various data
sizes from our simulations. Further work on methods
of reporting the uncertainty around critical values of
assessment will be valuable.

Alternative methods of assessing substitution sat-
uration might prove to have better performance. For
example, a common practice for model assessment in
evolutionary biology is to use null distributions based on
simulations (Brown and Thomson 2018), which allows
for a test that is highly tailored to the data. However,
simulations can be computationally demanding, and a
simulations-based test would be dependent on using
an adequate substitution model. Yet another alternative
approach is to train a machine-learning algorithm to
assess historical signal. Machine learning has recently
been proposed in phylogenetics for substitution model
selection (Abadi et al. 2020), inference of tree topology
(Suvorov et al. 2019), species delimitation (Derkarabetian
et al. 2019), and analyses of molecular rates across
lineages (Tao et al. 2019). A random forest or an artificial
neural network might prove to be highly effective
for identifying the factors that are associated with
accurate inferences. Similarly, these algorithms could
be trained for identifying sequence alignments with
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misleading signals. These alternative methods might
have superior performance to entropy-based tests of
saturation. Nonetheless, the computational demand of
the test presented here is minimal and is unlikely to be
reduced substantially using other frameworks.

Substitution saturation is detrimental to phylogenetic
inference and is common in phylogenomic data sets,
but it can be effectively identified using appropriate
tests. Phylogenomic data sets are now widespread and
researchers need to identify the data, models, and meth-
ods that are most suitable for answering the biological
questions being posed (e.g., Reddy et al. 2017; Molloy and
Warnow 2018; Richards et al. 2018; Bravo et al. 2019; Karin
et al. 2019; Duchêne et al. 2020). The entropy test performs
well across a wide range of simulation scenarios, and
we provide guidelines for its usage. Tests of substitution
saturation and model adequacy will improve the quality
of phylogenetic inference in the genomic era, particularly
in studies using data from exons or introns.
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Data available from the Zenodo digital repository:
https://doi.org/10.5281/zenodo.5131558.
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