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Abstract
Background: Automated wide complex tachycardia (WCT) differentiation into ven-
tricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) may 
be accomplished using novel calculations that quantify the extent of mean electrical 
vector changes between the WCT and baseline electrocardiogram (ECG). At present, 
it is unknown whether quantifying mean electrical vector changes within three or-
thogonal vectorcardiogram (VCG) leads (X, Y, and Z leads) can improve automated VT 
and SWCT classification.
Methods: A derivation cohort of paired WCT and baseline ECGs was used to de-
rive five logistic regression models: (i) one novel WCT differentiation model (i.e., 
VCG Model), (ii) three previously developed WCT differentiation models (i.e., WCT 
Formula, VT Prediction Model, and WCT Formula II), and (iii) one “all-inclusive” model 
(i.e., Hybrid Model). A separate validation cohort of paired WCT and baseline ECGs 
was used to trial and compare each model's performance.
Results: The VCG Model, composed of WCT QRS duration, baseline QRS duration, ab-
solute change in QRS duration, X-lead QRS amplitude change, Y-lead QRS amplitude 
change, and Z-lead QRS amplitude change, demonstrated effective WCT differentia-
tion (area under the curve [AUC] 0.94) for the derivation cohort. For the validation 
cohort, the diagnostic performance of the VCG Model (AUC 0.94) was similar to that 
achieved by the WCT Formula (AUC 0.95), VT Prediction Model (AUC 0.91), WCT 
Formula II (AUC 0.94), and Hybrid Model (AUC 0.95).
Conclusion: Custom calculations derived from mathematically synthesized VCG sig-
nals may be used to formulate an effective means to differentiate WCTs automatically.
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1  |  INTRODUC TION

Twelve-lead electrocardiogram (ECG) interpretation is the most 
practical means to non-invasively differentiate wide complex 
tachycardias (WCTs) into ventricular tachycardia (VT) or supra-
ventricular wide complex tachycardia (SWCT). Rigorous research 
spanning several decades has amassed an expansive arsenal of 
manual ECG interpretation methods (Kashou et al., 2021; Kashou, 
Noseworthy, et al., 2020), each relying upon the visual recognition 
of distinctive electrocardiographic features of VT and SWCT. Yet, 
despite the creation of numerous manual diagnostic criteria and 
algorithms, arriving at a correct and timely VT or SWCT diagnosis 
remains problematic.

Recent works (Kashou, DeSimone, Deshmukh, et al., 2020; 
May et al., 2019a, 2020) have introduced several novel automated 
methods capable of distinguishing VT and SWCT with high ac-
curacy. Through the use of readily accessible ECG data routinely 
processed by computerized ECG interpretation software, auto-
mated methods (i.e., WCT Formula [2019] (May et al., 2019a), VT 
Prediction Model [2020] (May et al., 2020), and WCT Formula II 
[2020] (Kashou, DeSimone, Deshmukh, et al., 2020)) are able to 
deliver to clinicians an estimation of VT probability—one that is 
freely independent of ECG interpreter competency. By design, 
each automated approach makes use of paired WCT and base-
line ECG data to deduce the magnitude of mean electrical vector 
changes contained within two ECG planes (i.e., frontal [limb leads] 

and horizontal [chest leads]). In the case of the WCT Formula (May 
et al., 2019a), the frontal and horizontal percent amplitude change 
(PAC) calculations are used to broadly quantify QRS amplitude 
(μV) changes in the frontal and horizontal planes, respectively. 
Similarly, the WCT Formula II (Kashou, DeSimone, Deshmukh, 
et al., 2020), comprised of frontal and horizontal percent time-
voltage area change (PTVAC) calculations, makes use of QRS time-
voltage area (TVA) (μV∙ms) changes in the frontal and horizontal 
planes, respectively. Alternatively, the VT Prediction Model (May 
et al., 2020) uses QRS axis (°) and T-wave axis (°) change, both of 
which can be easily computed from standard computerized ECG 
measurements.

In this work, we sought to determine whether the quantification 
of QRS amplitude changes, between paired WCT and baseline ECGs, 
within three orthogonal vectorcardiogram (VCG) leads (i.e., X-lead 
[patient's right to patient's left], Y-lead [cranial-to-caudal], and Z-lead 
[anterior-to-posterior]), may yield effective methods to differentiate 
WCTs automatically. Provided that QRS complex data from mathe-
matically synthesized X-, Y-, and Z-VCG leads can be configured to 
determine the mean electrical vector of depolarization across three 
spatial planes (i.e., frontal plane [X and Y leads], horizontal plane [X 
and Z leads], and sagittal plane [Y and Z leads]) (Figure 1), we hypoth-
esized that QRS amplitude changes of mathematically synthesized 
VCG leads may offer a more robust means of quantifying changes in 
the mean electrical vector of depolarization and enable more accu-
rate WCT differentiation.

F I G U R E  1 Mean ventricular depolarization vector in the frontal, horizontal, and sagittal ECG planes. The X-lead appraises electrical 
changes from the patient's right to patient's left direction (frontal and horizontal ECG planes), the Y-lead appraises electrical changes from 
the cranial-to-caudal direction (frontal and sagittal ECG planes), and the Z-lead appraises electrical changes from the anterior-to-posterior 
direction (horizontal and sagittal ECG planes). Yellow arrows illustrate the archetypal direction and magnitude of a mean electrical vector 
of ventricular depolarization for a normal baseline ECG. The spatial orientation of each lead is depicted using blue (VCG leads) and black 
(standard 12-lead ECG leads) font lettering. The directionality of VCG signal recordings is depicted by a “+” symbol (positive voltage—i.e., 
waveforms above the isoelectric baseline). ECG, electrocardiogram; VCG, vectorcardiogram

K E Y W O R D S
electrocardiogram, supraventricular tachycardia, ventricular tachycardia, wide complex 
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2  |  METHODS

2.1  |  Study design

In this study, we formulated and trialed two novel logistic regres-
sion models (i.e., VCG Model and Hybrid Model) comprised of 
custom computations from mathematically synthesized VCG sig-
nals derived from paired WCT and subsequent baseline ECGs. The 
diagnostic performance of each model was directly compared to 
other previously described automated WCT differentiation mod-
els, namely the WCT Formula (May et al., 2019a), VT Prediction 
Model (May et al., 2020), and WCT Formula II (Kashou, DeSimone, 
Deshmukh, et al., 2020).

First, a derivation cohort of paired WCT and baseline ECGs was 
used to derive (i.e., VCG Model) and re-derive (i.e., WCT Formula, VT 
Prediction Model, and WCT Formula II) automated logistic regres-
sion models. Concurrently, all variables which comprise the WCT 
Formula, VT Prediction Model, WCT Formula II, and VCG Model 
were collectively integrated to formulate the Hybrid Model. Second, 
all five logistic regression models were trialed on a separate valida-
tion cohort of paired WCT and baseline ECGs. The diagnostic perfor-
mance metrics (i.e., accuracy, sensitivity, specificity, and area under 
the curve [AUC]) achieved by each model were directly compared.

Patient data acquisition and analysis was approved by the Mayo 
Clinic Institutional Review Board. Clinical and electrocardiographic 
data from patients of the derivation and validation cohorts were pre-
viously examined and described in prior works (Kashou, DeSimone, 
Hodge, et al., 2020; May et al., 2019b).

2.2  |  Electrocardiogram selection

Wide complex tachycardia and baseline ECG pairs were recorded 
within clinical settings at the Mayo Clinic Rochester or Mayo Clinic 
Health System of South Eastern Minnesota between September 
2011 and November 2016. Evaluated ECGs were standard 12-lead 
recordings (paper speed: 25 mm/s and voltage calibration: 10 mm/
mV) accessed from centralized data archives provided by a propri-
etary ECG interpretation software system (MUSE [GE Healthcare]). 
WCTs were required to satisfy standard WCT criteria (QRS duration 
≥120 ms and ventricular rate ≥100 beats per minute) and possess an 
official ECG laboratory interpretation of (i) “ventricular tachycardia,” 
(ii) “supraventricular tachycardia,” or (iii) “wide complex tachycardia.” 
Baseline ECGs were defined as the first non-WCT rhythm recorded 
after the WCT event. Polymorphic WCTs and WCTs demonstrating 
grossly irregular atrioventricular conduction (e.g., atrial fibrillation 
or atrial flutter with variable atrioventricular block) were excluded. 
ECGs demonstrating truncated WCTs (e.g., brief run of non-sustained 
VT) occurring within a dominant baseline heart rhythm (e.g., normal 
sinus rhythm) were not evaluated. If a WCT did not have a baseline 
ECG or definitive clinical diagnosis established by the patient’s over-
seeing physician, it was excluded from further analysis.

2.3  |  Derivation and validation cohorts

ECG pairs were collected from patients presenting to the Mayo 
Clinic Rochester or Mayo Clinic Health System of South Eastern 
Minnesota between September 2011 and November 2016. Of the 
597 ECG pairs evaluated, 400 and 197 ECG pairs were randomly as-
signed to the derivation and validation cohorts, respectively.

2.4  |  Official ECG laboratory diagnosis

Official ECG interpretation was completed by expert ECG interpret-
ers, including 7 heart rhythm cardiologists and 14 non-heart rhythm 
cardiologists.

2.5  |  Clinical diagnoses

Clinical diagnoses (i.e., VT or SWCT) were established by the pa-
tient's supervising physician. Physicians responsible for clinical diag-
noses were stratified according to a subjective hierarchy of clinical 
expertise: (i) heart rhythm cardiologist, (ii) non-heart rhythm cardi-
ologist, and (iii) non-cardiologist. All physicians responsible for clini-
cal diagnoses had access to the official ECG interpretation diagnosis 
provided by the ECG laboratory.

2.6  |  ECG measurements

2.6.1  |  Computerized ECG measurements

Standard computerized ECG measurements for WCT and baseline 
ECGs, including QRS duration (ms), QRS axis (°), and T-wave axis (°), 
were generated by GE Healthcare's MUSE ECG interpretation soft-
ware. Computerized QRS amplitude (μV) and TVA (time-voltage area) 
(μV∙ms) measurements of waveforms above (r/R and r'/R’) and below 
(q/QS, s/S, and s'/S′) the isoelectric baseline were automatically de-
rived from the dominant QRS complex template of select ECG leads 
(i.e., aVR, aVL, aVF, V1, V4, and V6). Only amplitude and TVA meas-
urements representative of QRS complex waveforms were analyzed.

2.6.2  | Manual VCG measurements

Three mathematically synthesized VCG signals (i.e., X, Y, and Z 
leads) were automatically generated by GE Healthcare's MUSE 
ECG interpretation software package. VCG signal QRS ampli-
tude (μV) measurements of waveforms above (r/R  and  r'/R’) and 
below (q/QS,  s/S, and  s'/S′) the isoelectric baseline were directly 
measured (using electronic calipers provided by the MUSE ECG 
interpretation software package) by the first author (K.A.H.), who 
was blinded to patients’ clinical characteristics and final rhythm 
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diagnosis (VT or SWCT). Special attention was made to exclude 
pacing stimuli (i.e., “pacing spikes”) from QRS complex amplitude 
measurements.

2.7  |  ECG parameters

2.7.1  |  QRS duration change (ms)

QRS duration change denotes the absolute difference in QRS dura-
tion (ms) measurements between paired WCT and baseline ECGs.

2.7.2  |  QRS axis change (°)

QRS axis change is the absolute difference in the frontal plane QRS 
axis (°) between paired WCT and baseline ECGs.

2.7.3  |  T-wave axis change (°)

T-wave axis change represents the absolute difference in the frontal 
plane T-wave axis (°) between paired WCT and baseline ECGs.

2.7.4  |  Frontal and horizontal percent amplitude 
change (%)

Frontal and horizontal PACs are quantifiable measures of QRS am-
plitude change between paired WCT and baseline ECG recordings 
(Figures S1 and S2). They are derived from computerized QRS wave-
form (q/QS, r/R, s/S, r'/R’, and s'/S′) amplitude (μV) measurements 
from corresponding ECG leads of the frontal (aVR, aVL, aVF) and 
horizontal (V1, V4, V6) ECG planes, respectively.

2.7.5  |  Frontal and horizontal percent time-
voltage area change (%)

Frontal and horizontal PTVACs are quantifiable measures of the de-
gree of change in QRS TVA between paired WCT and baseline ECGs 
(Figures S3 and S4). They are derived from QRS complex waveform 
(q/QS, r/R, s/S, r'/R’, and s'/S’) TVA measurements from specific ECG 
leads within the corresponding frontal (aVR, aVL, aVF) or horizontal 
(V1, V4, V6) ECG planes, respectively.

2.8  |  VCG parameters

2.8.1  |  X-, Y-, and Z-lead QRS amplitude change (%)

The X-, Y-, and Z-lead QRS amplitude change represents the 
comparative change in QRS amplitude between paired WCT and 

baseline ECGs within three separate orthogonally oriented VCG 
leads: X-lead (patient's right to patient's left), Y-lead (cranial-to-
caudal), and Z-lead (anterior-to-posterior), respectively (Figure 1). 
Unlike frontal and horizontal PAC or PTVAC, which can both be 
calculated from automated computerized QRS waveform meas-
urements of standard ECG leads (aVR, aVL, aVF, V1, V4, and V6), 
X-, Y-, and Z-lead QRS amplitude change calculations are derived 
from manual QRS waveform measurements of mathematically 
synthesized VCG signals generated by computerized ECG inter-
pretation software. The mathematical procedure necessary to 
calculate X-, Y-, and Z-lead QRS amplitude change is presented 
in Figure S5.

2.9  |  Logistic regression models

2.9.1  | WCT formula, VT prediction model, and 
WCT formula II

Prior work has described the logistic regression model structure of 
the WCT Formula (May et al., 2019a, 2019b), VT Prediction Model 
(Kashou, DeSimone, Hodge, et al., 2020; May et al., 2020), and WCT 
Formula II (Kashou, DeSimone, Deshmukh, et al., 2020). In general, 
each model uses independent VT predictors to derive an automatic 
estimation of VT probability (0.00%–99.99%). The logistic regres-
sion structure of the WCT Formula, VT Prediction Model, and WCT 
Formula II are shown in Figures S6–S8.

2.9.2  |  VCG model

By design, the VCG Model integrates measured and calculated ECG 
data from paired WCT and baseline ECGs to deliver an unambigu-
ous estimation of VT probability (0.00%–99.99%) using independent 
VT predictors synchronously weighted according to their influence 
on the binary classification of VT or SWCT. The logistic regression 
structure of the VCG Model is shown below:

The VCG Model incorporates six parameters directly accessed 
or calculated from paired WCT and baseline ECG data: two standard 
ECG measurements (i.e., WCT QRS duration [ms] and baseline QRS 

X� = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 = Ln

(

P

1 − P

)

X� = −12.4466 + (0.009548) (X− leadQRSamplitudechange)

+ (0.017794) (Y− leadQRSamplitudechange)

+ (0.010624) (Z− leadQRSamplitudechange)

+ (0.029447) (WCTQRSduration) + (0.025475) (BaselineQRSduration)

+ (0.039523) (AbsoluteQRSdurationchange)=Ln
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duration [ms]), one arithmetic calculation of standard ECG measure-
ments (i.e., QRS duration change [ms]), and three novel computa-
tions derived from mathematically synthesized VCG signals (i.e., X-, 
Y-, and Z-lead QRS amplitude change [%]). Each of the six parame-
ters (Xx) are apportioned a beta coefficient (βx) according to their 
influence on binary classification. The “constant” term (β0) denotes 
the y-intercept for the least-squares regression line. The weighted 
sum predictor (Xβ) and VT probability (P) may be calculated after in-
tegrating VT predictor (Xx) values derived from WCT and baseline 
ECG data.

2.9.3  |  Hybrid model

Constituent variables comprising the WCT Formula, VT Prediction 
Model, WCT Formula II, and VCG Model were combined to build 
an “all-inclusive” logistic regression model, which we refer to as 
the Hybrid Model. The Hybrid Model includes 12 variables: WCT 
QRS duration (ms), baseline QRS duration (ms), QRS duration 
change (ms), QRS axis change (°), T-wave axis change (°), frontal 
PAC (%), horizontal PAC (%), frontal PTVAC (%), horizontal PTVAC 
(%), X-lead QRS amplitude change (%), Y-lead QRS amplitude 
change (%), and Z-lead QRS amplitude change (%). A summary of 
the logistic regression structure of the Hybrid Model is shown in 
Figure S9.

2.10  |  Statistical analysis

Categorical variables were compared using chi-square tests. 
Wilcoxon rank-sum tests were used to compare continuous varia-
bles. In order to ensure satisfactory model comparisons, all logistic 
regression models were originally formulated or re-derived using 
the same collection of ECG pairs comprising the derivation cohort. 
Thereafter, each model was trialed separately on the same valida-
tion cohort. Previously described logistic regression models, in-
cluding the WCT Formula, VT Prediction Model, and WCT Formula 
II, were composed of the same variables as defined by the original 
works introducing each model (Kashou, DeSimone, Deshmukh, 
et al., 2020; May et al., 2019a, 2020). Paired ECGs of the validation 
cohort were assigned estimated VT probabilities (0.00%–99.99%) 
by all five logistic regression models. Binary rhythm classifica-
tion (VT or SWCT) was rendered according to a pre-specified VT 
probability partition of 50% (i.e., VT   ≥ 50% and SWCT   <  50%). 
Performance metrics (i.e., accuracy, sensitivity, specificity, posi-
tive predictive value [PPV], and negative predictive value [NPV]) 
for each model were assessed according to their agreement with 
the overseeing physician's clinical diagnosis. AUC was used to 
summarize overall diagnostic performance. Comparison of the 
fit between the statistical models was completed using a Delong 
test. A two-tailed p-value of <.05 was considered statistically sig-
nificant. Statistical analyses were completed using SAS version 9.4 
(SAS Institute).

3  |  RESULTS

3.1  |  Part I: Derivation of logistic regression models

3.1.1  |  Derivation cohort

The derivation cohort included 400 paired WCT (185 VT, 215 SWCT) 
and baseline ECGs from 309 patients. Clinical diagnosis and ECG 
laboratory interpretation data are shown in Table S1. The major-
ity (86.0%) of clinical diagnoses (VT or SWCT) were established by 
heart rhythm or non-heart rhythm cardiologists. Two-hundred and 
three out of the 400 (50.8%) VT or SWCT clinical diagnoses were 
established among patients having a corroborating electrophysiol-
ogy procedure or implanted intra-cardiac device (e.g., pacemaker).

Patient characteristics of VT and SWCT groups are described in 
Table S2. The VT group included more ECG pairs from patients with 
coronary artery disease, prior myocardial infarction, ongoing antiar-
rhythmic drug use, ischemic cardiomyopathy, and implanted implant-
able cardioverter-defibrillator (ICD). The SWCT group included more 
ECG pairs from patients with an implanted pacemaker. The VT group 
comprised more patients with a severely depressed (≤30%) left ven-
tricular ejection fraction (LVEF). Conversely, the SWCT group included 
more patients with a preserved (≥50%) LVEF. Baseline ECGs with ven-
tricular pacing were more common in the VT group, whereas preexist-
ing bundle branch block was more frequent in the SWCT group.

3.1.2  |  ECG parameters

Paired ECGs in the VT group expressed greater WCT QRS duration, 
QRS duration change, QRS axis change, frontal PAC, horizontal PAC, 
frontal PTVAC, horizontal PTVAC, X-lead QRS amplitude change, 
Y-lead QRS amplitude change, and Z-lead QRS amplitude change 
(Table 1).

3.1.3  | WCT formula, VT prediction model, and 
WCT formula II derivation

Logistic regression model derivation, using previously established 
model parameters for the WCT Formula, VT Prediction Model, and 
WCT Formula II, yielded excellent WCT differentiation with an AUC 
of 0.95, 0.91, and 0.94, respectively.

3.1.4  |  VCG model derivation

The novel VCG Model composed of independent parameters, includ-
ing WCT QRS duration (p < .001), baseline QRS duration (p = .007), 
absolute change in QRS duration (p <  .001), X-lead QRS amplitude 
change (p <  .001), Y-lead QRS amplitude change (p <  .001), and Z-
lead QRS amplitude change (p < .001), demonstrated effective WCT 
differentiation (AUC 0.94) for the derivation cohort.
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3.1.5  |  Hybrid Model derivation

The “all-inclusive” Hybrid Model composed of 12 unified parame-
ters, including WCT QRS duration (p = .005), baseline QRS duration 
(p = .102), QRS duration change (p = .419), QRS axis change (p = .961), 
T-wave axis change (p = .419), frontal PAC (p = .036), horizontal PAC 
(p = .361), frontal PTVAC (p = .148), horizontal PTVAC (p < .001), X-
lead QRS amplitude change (p = .260), Y-lead QRS amplitude change 
(p = .124), and Z-lead QRS amplitude change (p = .082) achieved fa-
vorable WCT differentiation (AUC 0.95) for the derivation cohort.

3.2  |  Part II: Validation of logistic 
regression models

3.2.1  |  Validation cohort

The validation cohort comprised 197 paired WCT (86  VT, 111 
SWCT) and baseline ECGs from 173 patients. Clinical diagnosis and 
ECG laboratory interpretation data are shown in Table S3. The ma-
jority (84.7%) of VT and SWCT clinical diagnoses were established 
by heart rhythm or non-heart rhythm cardiologists. Ninety-eight out 
of 197 (49.7%) clinical diagnoses were established among patients 
having a corroborating electrophysiology procedure or implanted 
intra-cardiac device.

Patient characteristics data of VT and SWCT groups are de-
scribed in Table S4. Comparison of clinical diagnosis, ECG interpre-
tation data, and patient characteristics between the derivation and 
validation cohorts is shown in Tables S5 and S6.

3.2.2  |  Validation of diagnostic performance

Overall accuracy, sensitivity, specificity, PPV, NPV, and AUC of each 
logistic regression model is listed in Table 2. Comparisons of diag-
nostic performance metrics between each logistic regression model 
are presented in Table 3. Figure 2 illustrates diagnostic performance 
comparisons (i.e., AUC) between the Hybrid Model and all other lo-
gistic regression models.

The VCG Model achieved effective VT and SWCT differentia-
tion (AUC 0.94; confidence interval [CI] 0.91–0.97). When adopting a 
50% VT probability partition for rhythm adjudication (i.e., VT  ≥ 50% 
and SWCT   <  50%), the VCG Model achieved an overall accuracy, 
sensitivity, and specificity of 87.8%, 83.7%, and 91.0%, respectively. 
Diagnostic performance indices of the VCG Model were similar to 
that achieved by the WCT Formula, VT Prediction Model, and WCT 
Formula II.

The Hybrid Model yielded effective WCT differentiation 
(AUC 0.95; CI 0.93–0.98). When applying a 50% VT probability par-
tition for diagnosis (i.e., VT   ≥ 50% and SWCT  < 50%), the Hybrid 
Model yielded an overall accuracy, sensitivity, and specificity of 
86.8%, 80.2%, and 91.9%. Overall diagnostic performance (i.e., AUC) 
of the Hybrid Model outperformed the VT Prediction Model but was 
otherwise comparable to that achieved by the WCT Formula, WCT 
Formula II, and VCG Model.

In addition, other model comparisons revealed that the WCT 
Formula and WCT Formula II demonstrated superior diagnostic 
performance compared to the VT Prediction Model. Otherwise, no 
other statistically significant differences in model performance were 
observed.

WCT
(n = 400)

SWCT
(n = 215)

VT
(n = 185) p-Value

WCT QRS duration (ms) 159.2 (31.2) 143.1 (17.9) 177.8 (32.9) <.001

Baseline QRS duration (ms) 140.0 (34.1) 136.1 (23.5) 144.5 (43.0) .180

Absolute QRS duration 
change (ms)

30.5 (31.2) 16.7 (17.8) 46.5 (35.5) <.001

Change in QRS axis (°) 56.5 (57.2) 26.1 (34.1) 91.8 (58.4) <.001

Change in T-wave axis (°) 64.9 (56.7) 41.3 (42.9) 92.4 (58.6) <.001

Frontal PAC (%) 79.4 (73.4) 37.8 (28.7) 127.6 (79.7) <.001

Horizontal PAC (%) 78.1 (59.2) 42.6 (27.2) 119.3 (59.6) <.001

Frontal PTVAC (%) 136.4 (152.1) 56.2 (51.0) 229.6 (175.7) <.001

Horizontal PTVAC (%) 119.7 (121.1) 60.3 (51.0) 188.7 (141.0) <.001

X-lead QRS amplitude 
change (%)

74.8 (77.8) 45.6 (48.2) 108.6 (90.9) <.001

Y-lead QRS amplitude 
change (%)

91.3 (104.8) 44.9 (35.3) 145.1 (130.2) <.001

Z-lead QRS amplitude 
change (%)

92.4 (107.6) 49.9 (57.7) 141.7 (129.2) <.001

Standard deviation is in parentheses.
Abbreviations: PAC, percent amplitude change; PTVAC, percent time voltage area change; SWCT, 
supraventricular wide complex tachycardia; VT, ventricular tachycardia; WCT, wide complex 
tachycardia.

TA B L E  1 Electrocardiographic 
parameters
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For each model, diagnostic performance did not differ among 
patients with or without a corroborating electrophysiology proce-
dure or implantable intra-cardiac device: WCT Formula (p  =  .67), 
WCT Formula II (p = .64), VT Prediction Model (p = .08), VCG Model 
(p = .64), and Hybrid Model (p = .98).

4  |  DISCUSSION

In this work, we sought to determine whether the quantification of 
QRS amplitude changes within three orthogonal VCG leads (X, Y, 
and Z leads) can be used to create an effective means for automated 
WCT classification. We demonstrated that accurate WCT differ-
entiation may be achieved by novel logistic regression models (i.e., 
VCG Model and Hybrid Model) comprised of custom computations 
from mathematically synthesized VCG signals derived from paired 

WCT and baseline ECGs. We found VCG Model's performance was 
comparable to other high-performing automated WCT differentia-
tion models, but its novel constituents (i.e., X-lead QRS amplitude 
change, Y-lead QRS amplitude change, and Z-lead QRS amplitude 
change) did not make an iterative improvement in WCT differentia-
tion accuracy when unified with other established WCT differentia-
tion parameters as part of the Hybrid Model.

4.1  |  Diagnostic performance

4.1.1  |  VCG Model

Our study results showed  that the VCG Model implementation 
yielded effective WCT differentiation (AUC 0.94) for WCTs ex-
pected to be encountered in clinical practice. Overall performance 

TA B L E  2 Logistic regression model diagnostic performance

VCG Model WCT Formula WCT Formula II VT Prediction Model Hybrid Model

Accuracy (%) 87.8 (82.4–92.0) 87.8 (82.4–92.0) 87.8 (82.4–92.0) 83.3 (77.3–88.2) 86.8 (81.3–91.2)

Sensitivity (%) 83.7 (74.2–90.8) 82.6 (72.9–89.9) 83.7 (74.2–90.8) 75.6 (65.1–84.2) 80.2 (70.3–88.0)

Specificity (%) 91.0 (84.1–95.6) 91.9 (85.2–96.2) 91.0 (84.1–95.6) 89.2 (81.9–94.3) 91.9 (85.2–96.2)

PPV (%) 87.8 (78.7–94.0) 88.8 (79.7–94.7) 87.8 (78.7–94.0) 84.4 (74.4–91.7) 88.5 (79.2–94.6)

NPV (%) 87.8 (80.4–93.2) 87.2 (79.7–92.6) 87.8 (80.4–93.2) 82.5 (74.5–88.8) 85.7 (78.1–91.5)

AUC 0.94 (0.91–0.97) 0.95 (0.92–0.98) 0.94 (0.91–0.97) 0.91 (0.87–0.95) 0.95 (0.93–0.98)

Summary of logistic regression model performance metrics. Overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive 
value rendered according to a pre-specified VT probability partition of 50% (i.e., VT  ≥ 50% and SWCT < 50%). Numbers in parentheses are 95% 
confidence intervals.
Abbreviations: AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value.

Accuracy Sensitivity Specificity AUC

Hybrid Model vs. WCT 
Formula

0.81 0.75 1.0 0.53

Hybrid Model vs. WCT 
Formula II

0.81 0.58 1.0 0.14

Hybrid Model vs. VCG Model 0.81 0.58 1.0 0.28

Hybrid Model vs. VT 
Prediction Model

0.15 0.29 0.51 0.01*

WCT Formula vs. WCT 
Formula II

1.0 1.0 1.0 0.80

WCT Formula vs. VCG Model 1.0 1.0 1.0 0.86

WCT Formula vs. VT 
Prediction Model

0.05 0.11 0.45 0.02*

WCT Formula II vs. VCG 
Model

1.0 1.0 1.0 0.98

WCT Formula II vs. VT 
Prediction Model

0.08 0.12 0.68 0.04*

VCG Model vs. VT Prediction 
Model

0.08 0.07 0.75 0.09

Summary of logistic regression model comparisons. Values depicted are p values (p value <.05 was 
considered statistically significant [*]).
Abbreviations: AUC, area under the curve; VT, ventricular tachycardia; WCT, wide complex 
tachycardia.

TA B L E  3 Comparison of logistic 
regression model performance
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was similar whether or not the VCG Model was applied to patients 
who were diagnosed by the traditional “gold standard” methods, in-
cluding rhythm classification based on the results of electrophysiol-
ogy procedures or analysis of intra-cardiac device (i.e., pacemaker 
or ICD) recordings. The use of a pre-specified 50% VT probability 
cut-point for WCT classification (i.e., VT  ≥ 50% and SWCT < 50%) 
yielded favorable diagnostic indices, including strong overall ac-
curacy with high diagnostic sensitivity and specificity for VT. 
Moreover, VCG Model's performance was comparable to be other 
high-performing WCT differentiation approaches, including the 

WCT Formula (AUC 0.95), VT prediction Model (AUC 0.91), and 
WCT Formula II (AUC 0.94).

4.1.2  |  Hybrid Model

The Hybrid Model similarly demonstrated exceptional diagnostic 
performance when implemented on the validation cohort (AUC 
0.95). Again, like other automated WCT differentiation models, 
the Hybrid Model's performance did not significantly differ among 

F I G U R E  2 Comparison of the diagnostic performance of Hybrid Model against other WCT differentiation models. AUC, area under the 
receiver operating characteristic curve; VCG, vectorcardiogram; VT, ventricular tachycardia; WCT, wide complex tachycardia
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patients without and without electrophysiology procedures or an 
implantable intra-cardiac device. Upon using a pre-specified 50% VT 
probability cut-point (i.e., VT ≥ 50% and SWCT < 50%) for WCT clas-
sification, the Hybrid Model achieved strong overall accuracy with 
favorable diagnostic sensitivity and specificity for VT. Notably, the 
Hybrid Model outperformed the VT Prediction Model (AUC 0.91), 
but demonstrated similar diagnostic performance with the WCT 
Formula (AUC 0.95), WCT Formula II (AUC 0.94), and VCG Model 
(AUC 0.94).

4.2  |  X-, Y-, and Z-lead QRS amplitude change

In prior works (Kashou, DeSimone, Deshmukh, et al., 2020; May 
et al., 2019a), we demonstrated that the quantification of QRS am-
plitude or TVA changes in specific leads of the frontal (aVR, aVL, aVF) 
and horizontal (V1, V4, V6) ECG planes enable accurate WCT differ-
entiation. The underlying conceptual basis for these observations is 
that VT, which may originate and spread from any location within 
the right or left ventricles, categorically demonstrates immense 
"electrical freedom" compared to SWCT, which ordinarily depolar-
izes the ventricular myocardium in a manner prescribed by the native 
His-Purkinje network (Evenson et al., 2021). Consequently, VT may 
express a virtually unlimited diversity of distinct QRS complexes 

dissimilar from those present on the respective baseline ECG. 
Correspondingly, VT will commonly demonstrate greater changes to 
the electrical vector of depolarization than SWCT upon WCT onset 
or offset. The few notable exceptions to this concept include VTs 
that rapidly engage (e.g., fascicular VT) or characteristically make 
use of the heart's His-Purkinje network (e.g., bundle branch reentry). 
In contrast, SWCTs are expected to ordinarily demonstrate a more 
constrained range of mean electrical vectors and limited number of 
electrocardiographically distinct QRS complexes compared to the 
patient's baseline ECG. In rarer circumstances, marked mean elec-
trical vector and QRS complex changes may arise from SWCTs that 
develop from impulse propagation using atrioventricular accessory 
pathways (i.e., pre-excitation).

Similar to other previously introduced variables (e.g., frontal 
PAC, horizontal PTVAC, and QRS axis change) (Kashou, DeSimone, 
Deshmukh, et al., 2020; May et al., 2019a, 2020), X-, Y-, and Z-
lead QRS amplitude change are designed to quantify the extent of 
mean electrical vector changes that occur upon WCT onset or off-
set. However, unlike previously described diagnostic variables, the 
collective evaluation of X-, Y-, and Z-lead QRS amplitude change 
enables the direct quantification of mean electrical vector changes 
occurring in three, instead of two, spatial planes (i.e., patient's right 
to patient's left [X-lead], cranial-to-caudal [Y-lead], and anterior-to-
posterior [Z-lead]) (Figure 3). Therefore, we hypothesized X-, Y-, and 

F I G U R E  3 Mean electrical vector changes in the frontal, horizontal, and sagittal ECG planes. Summary of expected changes to the mean 
electrical vector of ventricular depolarization following WCT initiation within three orthogonal ECG planes (i.e., frontal, horizontal, and 
sagittal). Displayed arrows represent mean electrical vectors for ventricular depolarization. The directional orientation of individual arrows 
expresses the mean electrical axis of ventricular depolarization (i.e., QRS axis). The heavy yellow arrows denote the baseline heart rhythm's 
mean electrical vector for ventricular depolarization. Color-shaded regions and arrows denote the expected range of mean electrical vectors 
after WCT onset. The spatial orientation of VCG leads is depicted with blue font lettering. The directionality of ventricular depolarization 
captured by VCG leads is portrayed by a “+” symbol (positive voltage—i.e., waveforms above the isoelectric baseline). The X-lead appraises 
electrical changes from the patient's right to patient left direction (frontal and horizontal ECG planes), the Y-lead appraises electrical changes 
from the cranial-to-caudal direction (frontal and sagittal ECG planes), and the Z-lead appraises electrical changes from the anterior-to-
posterior direction (horizontal and sagittal ECG planes). Panels show various examples of expected changes in the mean electrical vector of 
depolarization that occur upon WCT initiation within each orthogonal ECG plane (i.e., frontal, horizontal, and sagittal). VT exhibits a virtually 
unlimited range of potential mean electrical vectors. SWCTs due to new RBBB or new LBBB exhibit a relatively constrained range of possible 
mean electrical vectors. SWCTs arising from a preexisting RBBB or LBBB demonstrate minor changes to the mean electrical vector. ECG, 
electrocardiogram; LBBB, left bundle branch block; RBBB, right bundle branch block SWCT, supraventricular wide complex tachycardia; VT, 
ventricular tachycardia; WCT, wide complex tachycardia
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Z-lead QRS amplitude changes may offer a more robust means to 
quantify changes in the mean electrical vector of depolarization, 
thereby enabling more accurate automated WCT differentiation.

We report X-, Y-, and Z-lead QRS amplitude change are strong 
independent VT predictors—VT generally generates greater X-, Y-, 
and Z-lead QRS amplitude change than SWCT. As such, X-, Y-, and 
Z-lead QRS amplitude change independently contributed to WCT 
differentiation as part of the VCG Model. However, once X-, Y-, and 
Z-lead QRS amplitude change were unified with other highly inter-
related variables (e.g., frontal and horizontal PAC) as part of the 
all-inclusive Hybrid Model, these parameters no longer maintained 
diagnostic singularity. Moreover, automated models that incorpo-
rated X-, Y-, and Z-lead QRS amplitude change did not demonstrate 
superior diagnostic performance compared to previously introduced 
automated models, except in the case of the Hybrid Model outper-
forming the VT Prediction Model.

4.3  |  Prospective applications and future directions

The VCG Model and Hybrid Model join other recently introduced 
automated approaches (i.e., WCT Formula [2019] (May et al., 2019a), 
VT Prediction Model [2020] (May et al., 2020), and WCT Formula 
II [2020] (Kashou, DeSimone, Deshmukh, et al., 2020)) that are de-
signed to leverage the diagnostic value of WCT and baseline ECG 
comparison and provide clinicians an impartial estimation VT prob-
ability through computerized ECG interpretation software. Similar 
to other recently introduced WCT differentiation models, the VCG 
Model and Hybrid Model may be of practical clinical use for medical 
providers upon their successful integration into computerized ECG 
interpretation software. Candidate computerized ECG interpreta-
tion software programs include those that are able to (i) identify, 
discriminate, and measure QRS complex and T-wave waveforms ac-
curately and reliably, and (ii) simultaneously process computerized 
ECG data from the WCT itself and the baseline ECG recorded (and 
archived) before or after the WCT event. Once automated algorithms 
are fully integrated into computerized ECG interpretation software, 
ECG interpreters and clinicians would be able to assimilate automati-
cally delivered VT probability estimates (e.g., 90% VT probability) 
with other meaningful diagnostic information (e.g., patient history 
of ischemic heart disease, WCT demonstrating a “northwest axis,” or 
VT diagnosis reached by the 3rd step of the Brugada algorithm [i.e., 
presence of atrioventricular dissociation]).

Despite what would be an incredible diagnostic advantage, a 
glaring limitation of the VCG Model, Hybrid Model, and other re-
cently introduced automated approaches is that they require the 
use of a recorded and digitally archived baseline ECG for their ap-
plication. In circumstances where WCT patients present without a 
baseline ECG, clinicians and ECG interpreters would have to tempo-
rarily rely on manual WCT differentiation methods until the patient’s 
baseline ECG is acquired.

In future works, the customized variables that make up the 
VCG Model and other automated WCT differentiation models may 

be integrated with additional computerized ECG measurements or 
yet to be formulated diagnostic determinants to bolster diagnostic 
performance. Additionally, customized variables, which comprise al-
ready described logistic regression models, could be used by more 
sophisticated modeling techniques (e.g., artificial neural networks) 
more apt to decipher meaningful non-linear and non-parametric 
relationships.

4.4  |  Study limitations

Study limitations were comprehensively described in prior works 
(Kashou, DeSimone, Deshmukh, et al., 2020; May et al., 2019a, 
2020). However, there are two important limitations that warrant 
special attention. First, our study evaluated any clinically encoun-
tered WCT (i.e., “all-comers”) that was formally diagnosed by the 
patient's overseeing physician. As a result, this analysis did not ex-
clude patients who did not undergo an electrophysiology proce-
dure or did not have an implanted intra-cardiac device (e.g., ICD or 
pacemaker). Although we found model performance did not differ 
among patients with or without an accompanying electrophysiol-
ogy procedure or implanted intra-cardiac device, we must acknowl-
edge that a substantial proportion of VT or SWCT diagnoses were 
not established by the traditional “gold standard.”  Furthermore, 
this WCT selection process precluded a detailed assessment of 
automated model performance among various SWCT (e.g., SWCT 
due to bystander conduction over various accessory pathways) and 
VT (e.g., fascicular VT) subtypes. Nevertheless, by not excluding 
WCT tracings lacking a corroborating electrophysiology procedure 
or implanted intra-cardiac device, our analysis counters the patient 
selection biases created by only evaluating a proportionally smaller 
subgroup of WCTs seen in clinical practice. Second, the diagnostic 
performance of automated models was not directly compared with 
traditional manual WCT differentiation approaches (Brugada et al., 
1991; Chen et al., 2019; Jastrzebski et al., 2017; Pava et al., 2010; 
Vereckei et al., 2008). Additional research will be necessary to de-
termine whether automated models exhibit diagnostic superiority 
over conventional manual interpretation methods.

5  |  CONCLUSION

Custom calculations derived from mathematically synthesized VCG 
signals may be used to formulate accurate diagnostic models to dif-
ferentiate VT and SWCT. The VCG Model and Hybrid Model, which 
incorporate customized VCG signal calculations, performed similarly 
well when compared to other high-performing automated WCT dif-
ferentiation models and may be incorporated into existing ECG in-
terpretation software systems.
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