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Abstract
Background: Automated	wide	complex	 tachycardia	 (WCT)	differentiation	 into	ven-
tricular	tachycardia	(VT)	and	supraventricular	wide	complex	tachycardia	(SWCT)	may	
be	accomplished	using	novel	calculations	that	quantify	the	extent	of	mean	electrical	
vector	changes	between	the	WCT	and	baseline	electrocardiogram	(ECG).	At	present,	
it is unknown whether quantifying mean electrical vector changes within three or-
thogonal	vectorcardiogram	(VCG)	leads	(X,	Y,	and	Z	leads)	can	improve	automated	VT	
and	SWCT	classification.
Methods: A	derivation	 cohort	 of	 paired	WCT	 and	 baseline	 ECGs	was	 used	 to	 de-
rive	 five	 logistic	 regression	 models:	 (i)	 one	 novel	WCT	 differentiation	 model	 (i.e.,	
VCG	Model),	 (ii)	 three	previously	developed	WCT	differentiation	models	 (i.e.,	WCT	
Formula,	VT	Prediction	Model,	and	WCT	Formula	II),	and	(iii)	one	“all-	inclusive”	model	
(i.e.,	Hybrid	Model).	A	separate	validation	cohort	of	paired	WCT	and	baseline	ECGs	
was used to trial and compare each model's performance.
Results: The	VCG	Model,	composed	of	WCT	QRS	duration,	baseline	QRS	duration,	ab-
solute	change	in	QRS	duration,	X-	lead	QRS	amplitude	change,	Y-	lead	QRS	amplitude	
change,	and	Z-	lead	QRS	amplitude	change,	demonstrated	effective	WCT	differentia-
tion	(area	under	the	curve	[AUC]	0.94)	for	the	derivation	cohort.	For	the	validation	
cohort,	the	diagnostic	performance	of	the	VCG	Model	(AUC	0.94)	was	similar	to	that	
achieved	by	 the	WCT	Formula	 (AUC	0.95),	VT	Prediction	Model	 (AUC	0.91),	WCT	
Formula	II	(AUC	0.94),	and	Hybrid	Model	(AUC	0.95).
Conclusion: Custom	calculations	derived	from	mathematically	synthesized	VCG	sig-
nals	may	be	used	to	formulate	an	effective	means	to	differentiate	WCTs	automatically.
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1  |  INTRODUC TION

Twelve-	lead	 electrocardiogram	 (ECG)	 interpretation	 is	 the	 most	
practical	 means	 to	 non-	invasively	 differentiate	 wide	 complex	
tachycardias	 (WCTs)	 into	 ventricular	 tachycardia	 (VT)	 or	 supra-
ventricular	wide	 complex	 tachycardia	 (SWCT).	 Rigorous	 research	
spanning	 several	 decades	 has	 amassed	 an	 expansive	 arsenal	 of	
manual	ECG	interpretation	methods	(Kashou	et	al.,	2021;	Kashou,	
Noseworthy,	et	al.,	2020),	each	relying	upon	the	visual	recognition	
of	distinctive	electrocardiographic	features	of	VT	and	SWCT.	Yet,	
despite the creation of numerous manual diagnostic criteria and 
algorithms,	arriving	at	a	correct	and	timely	VT	or	SWCT	diagnosis	
remains problematic.

Recent	 works	 (Kashou,	 DeSimone,	 Deshmukh,	 et	 al.,	 2020;	
May	et	al.,	2019a,	2020)	have	introduced	several	novel	automated	
methods	 capable	 of	 distinguishing	 VT	 and	 SWCT	 with	 high	 ac-
curacy.	Through	the	use	of	readily	accessible	ECG	data	routinely	
processed	 by	 computerized	 ECG	 interpretation	 software,	 auto-
mated	methods	(i.e.,	WCT	Formula	[2019]	(May	et	al.,	2019a),	VT	
Prediction	Model	 [2020]	 (May	et	al.,	2020),	and	WCT	Formula	 II	
[2020]	 (Kashou,	DeSimone,	Deshmukh,	 et	 al.,	 2020))	 are	 able	 to	
deliver	 to	 clinicians	 an	 estimation	 of	VT	 probability—	one	 that	 is	
freely	 independent	 of	 ECG	 interpreter	 competency.	 By	 design,	
each	 automated	 approach	 makes	 use	 of	 paired	WCT	 and	 base-
line	ECG	data	to	deduce	the	magnitude	of	mean	electrical	vector	
changes	contained	within	two	ECG	planes	(i.e.,	frontal	[limb	leads]	

and	horizontal	[chest	leads]).	In	the	case	of	the	WCT	Formula	(May	
et	al.,	2019a),	the	frontal	and	horizontal	percent	amplitude	change	
(PAC)	 calculations	 are	 used	 to	 broadly	 quantify	 QRS	 amplitude	
(μV)	 changes	 in	 the	 frontal	 and	 horizontal	 planes,	 respectively.	
Similarly,	 the	 WCT	 Formula	 II	 (Kashou,	 DeSimone,	 Deshmukh,	
et	 al.,	 2020),	 comprised	 of	 frontal	 and	 horizontal	 percent	 time-	
voltage	area	change	(PTVAC)	calculations,	makes	use	of	QRS	time-	
voltage	area	 (TVA)	 (μV∙ms)	 changes	 in	 the	 frontal	 and	horizontal	
planes,	respectively.	Alternatively,	the	VT	Prediction	Model	(May	
et	al.,	2020)	uses	QRS	axis	(°)	and	T-	wave	axis	(°)	change,	both	of	
which	can	be	easily	computed	 from	standard	computerized	ECG	
measurements.

In	this	work,	we	sought	to	determine	whether	the	quantification	
of	QRS	amplitude	changes,	between	paired	WCT	and	baseline	ECGs,	
within	 three	orthogonal	vectorcardiogram	 (VCG)	 leads	 (i.e.,	X-	lead	
[patient's	right	to	patient's	left],	Y-	lead	[cranial-	to-	caudal],	and	Z-	lead	
[anterior-	to-	posterior]),	may	yield	effective	methods	to	differentiate	
WCTs	automatically.	Provided	that	QRS	complex	data	from	mathe-
matically	synthesized	X-	,	Y-	,	and	Z-	VCG	leads	can	be	configured	to	
determine the mean electrical vector of depolarization across three 
spatial	planes	(i.e.,	frontal	plane	[X	and	Y	leads],	horizontal	plane	[X	
and	Z	leads],	and	sagittal	plane	[Y	and	Z	leads])	(Figure	1),	we	hypoth-
esized	that	QRS	amplitude	changes	of	mathematically	synthesized	
VCG	leads	may	offer	a	more	robust	means	of	quantifying	changes	in	
the mean electrical vector of depolarization and enable more accu-
rate	WCT	differentiation.

F I G U R E  1 Mean	ventricular	depolarization	vector	in	the	frontal,	horizontal,	and	sagittal	ECG	planes.	The	X-	lead	appraises	electrical	
changes	from	the	patient's	right	to	patient's	left	direction	(frontal	and	horizontal	ECG	planes),	the	Y-	lead	appraises	electrical	changes	from	
the	cranial-	to-	caudal	direction	(frontal	and	sagittal	ECG	planes),	and	the	Z-	lead	appraises	electrical	changes	from	the	anterior-	to-	posterior	
direction	(horizontal	and	sagittal	ECG	planes).	Yellow	arrows	illustrate	the	archetypal	direction	and	magnitude	of	a	mean	electrical	vector	
of	ventricular	depolarization	for	a	normal	baseline	ECG.	The	spatial	orientation	of	each	lead	is	depicted	using	blue	(VCG	leads)	and	black	
(standard	12-	lead	ECG	leads)	font	lettering.	The	directionality	of	VCG	signal	recordings	is	depicted	by	a	“+”	symbol	(positive	voltage—	i.e.,	
waveforms	above	the	isoelectric	baseline).	ECG,	electrocardiogram;	VCG,	vectorcardiogram

K E Y W O R D S
electrocardiogram,	supraventricular	tachycardia,	ventricular	tachycardia,	wide	complex	
tachycardia
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2  |  METHODS

2.1  |  Study design

In	this	study,	we	formulated	and	trialed	two	novel	 logistic	regres-
sion	 models	 (i.e.,	 VCG	 Model	 and	 Hybrid	 Model)	 comprised	 of	
custom	 computations	 from	 mathematically	 synthesized	 VCG	 sig-
nals	derived	from	paired	WCT	and	subsequent	baseline	ECGs.	The	
diagnostic performance of each model was directly compared to 
other	 previously	 described	 automated	WCT	 differentiation	mod-
els,	 namely	 the	WCT	 Formula	 (May	 et	 al.,	 2019a),	 VT	 Prediction	
Model	(May	et	al.,	2020),	and	WCT	Formula	II	(Kashou,	DeSimone,	
Deshmukh,	et	al.,	2020).

First,	a	derivation	cohort	of	paired	WCT	and	baseline	ECGs	was	
used	to	derive	(i.e.,	VCG	Model)	and	re-	derive	(i.e.,	WCT	Formula,	VT	
Prediction	Model,	and	WCT	Formula	 II)	automated	 logistic	 regres-
sion	models.	 Concurrently,	 all	 variables	which	 comprise	 the	WCT	
Formula,	 VT	 Prediction	Model,	WCT	 Formula	 II,	 and	 VCG	Model	
were	collectively	integrated	to	formulate	the	Hybrid	Model.	Second,	
all five logistic regression models were trialed on a separate valida-
tion	cohort	of	paired	WCT	and	baseline	ECGs.	The	diagnostic	perfor-
mance	metrics	(i.e.,	accuracy,	sensitivity,	specificity,	and	area	under	
the	curve	[AUC])	achieved	by	each	model	were	directly	compared.

Patient	data	acquisition	and	analysis	was	approved	by	the	Mayo	
Clinic	Institutional	Review	Board.	Clinical	and	electrocardiographic	
data from patients of the derivation and validation cohorts were pre-
viously	examined	and	described	in	prior	works	(Kashou,	DeSimone,	
Hodge,	et	al.,	2020;	May	et	al.,	2019b).

2.2  |  Electrocardiogram selection

Wide	 complex	 tachycardia	 and	 baseline	 ECG	 pairs	were	 recorded	
within	clinical	settings	at	the	Mayo	Clinic	Rochester	or	Mayo	Clinic	
Health	 System	 of	 South	 Eastern	 Minnesota	 between	 September	
2011	and	November	2016.	Evaluated	ECGs	were	standard	12-	lead	
recordings	(paper	speed:	25	mm/s	and	voltage	calibration:	10	mm/
mV)	accessed	from	centralized	data	archives	provided	by	a	propri-
etary	ECG	interpretation	software	system	(MUSE	[GE	Healthcare]).	
WCTs	were	required	to	satisfy	standard	WCT	criteria	(QRS	duration	
≥120	ms	and	ventricular	rate	≥100	beats	per	minute)	and	possess	an	
official	ECG	laboratory	interpretation	of	(i)	“ventricular	tachycardia,”	
(ii)	“supraventricular	tachycardia,”	or	(iii)	“wide	complex	tachycardia.”	
Baseline	ECGs	were	defined	as	the	first	non-	WCT	rhythm	recorded	
after	the	WCT	event.	Polymorphic	WCTs	and	WCTs	demonstrating	
grossly	 irregular	 atrioventricular	 conduction	 (e.g.,	 atrial	 fibrillation	
or	atrial	flutter	with	variable	atrioventricular	block)	were	excluded.	
ECGs	demonstrating	truncated	WCTs	(e.g.,	brief	run	of	non-	sustained	
VT)	occurring	within	a	dominant	baseline	heart	rhythm	(e.g.,	normal	
sinus	rhythm)	were	not	evaluated.	If	a	WCT	did	not	have	a	baseline	
ECG	or	definitive	clinical	diagnosis	established	by	the	patient’s	over-
seeing	physician,	it	was	excluded	from	further	analysis.

2.3  |  Derivation and validation cohorts

ECG	 pairs	 were	 collected	 from	 patients	 presenting	 to	 the	 Mayo	
Clinic	 Rochester	 or	 Mayo	 Clinic	 Health	 System	 of	 South	 Eastern	
Minnesota	between	September	2011	and	November	2016.	Of	the	
597	ECG	pairs	evaluated,	400	and	197	ECG	pairs	were	randomly	as-
signed	to	the	derivation	and	validation	cohorts,	respectively.

2.4  |  Official ECG laboratory diagnosis

Official	ECG	interpretation	was	completed	by	expert	ECG	interpret-
ers,	including	7	heart	rhythm	cardiologists	and	14	non-	heart	rhythm	
cardiologists.

2.5  |  Clinical diagnoses

Clinical	 diagnoses	 (i.e.,	 VT	 or	 SWCT)	were	 established	 by	 the	 pa-
tient's	supervising	physician.	Physicians	responsible	for	clinical	diag-
noses were stratified according to a subjective hierarchy of clinical 
expertise:	(i)	heart	rhythm	cardiologist,	(ii)	non-	heart	rhythm	cardi-
ologist,	and	(iii)	non-	cardiologist.	All	physicians	responsible	for	clini-
cal	diagnoses	had	access	to	the	official	ECG	interpretation	diagnosis	
provided	by	the	ECG	laboratory.

2.6  |  ECG measurements

2.6.1  |  Computerized	ECG	measurements

Standard	computerized	ECG	measurements	 for	WCT	and	baseline	
ECGs,	including	QRS	duration	(ms),	QRS	axis	(°),	and	T-	wave	axis	(°),	
were generated by GE Healthcare's	MUSE	ECG	interpretation	soft-
ware.	Computerized	QRS	amplitude	(μV)	and	TVA	(time-	voltage	area)	
(μV∙ms)	measurements	of	waveforms	above	(r/R and r'/R’)	and	below	
(q/QS,	s/S,	and	s'/S′)	the	isoelectric	baseline	were	automatically	de-
rived	from	the	dominant	QRS	complex	template	of	select	ECG	leads	
(i.e.,	aVR,	aVL,	aVF,	V1,	V4,	and	V6).	Only	amplitude	and	TVA	meas-
urements	representative	of	QRS	complex	waveforms	were	analyzed.

2.6.2  | Manual	VCG	measurements

Three	 mathematically	 synthesized	 VCG	 signals	 (i.e.,	 X,	 Y,	 and	 Z	
leads)	 were	 automatically	 generated	 by	 GE Healthcare's	 MUSE	
ECG	 interpretation	 software	 package.	 VCG	 signal	 QRS	 ampli-
tude	 (μV)	measurements	 of	waveforms	 above	 (r/R and r'/R’)	 and	
below	 (q/QS,	 s/S,	 and	 s'/S′)	 the	 isoelectric	baseline	were	directly	
measured	 (using	 electronic	 calipers	 provided	 by	 the	MUSE	 ECG	
interpretation	software	package)	by	the	first	author	(K.A.H.),	who	
was	blinded	 to	 patients’	 clinical	 characteristics	 and	 final	 rhythm	
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diagnosis	 (VT	or	 SWCT).	 Special	 attention	was	made	 to	 exclude	
pacing	stimuli	 (i.e.,	“pacing	spikes”)	from	QRS	complex	amplitude	
measurements.

2.7  |  ECG parameters

2.7.1  |  QRS	duration	change	(ms)

QRS	duration	change	denotes	the	absolute	difference	in	QRS	dura-
tion	(ms)	measurements	between	paired	WCT	and	baseline	ECGs.

2.7.2  |  QRS	axis	change	(°)

QRS	axis	change	is	the	absolute	difference	in	the	frontal	plane	QRS	
axis	(°)	between	paired	WCT	and	baseline	ECGs.

2.7.3  |  T-	wave	axis	change	(°)

T-	wave	axis	change	represents	the	absolute	difference	in	the	frontal	
plane	T-	wave	axis	(°)	between	paired	WCT	and	baseline	ECGs.

2.7.4  |  Frontal	and	horizontal	percent	amplitude	
change	(%)

Frontal	and	horizontal	PACs	are	quantifiable	measures	of	QRS	am-
plitude	change	between	paired	WCT	and	baseline	ECG	recordings	
(Figures	S1	and	S2).	They	are	derived	from	computerized	QRS	wave-
form	 (q/QS,	 r/R,	 s/S,	 r'/R’,	 and	 s'/S′)	 amplitude	 (μV)	measurements	
from	 corresponding	 ECG	 leads	 of	 the	 frontal	 (aVR,	 aVL,	 aVF)	 and	
horizontal	(V1,	V4,	V6)	ECG	planes,	respectively.

2.7.5  |  Frontal	and	horizontal	percent	time-	
voltage	area	change	(%)

Frontal	and	horizontal	PTVACs	are	quantifiable	measures	of	the	de-
gree	of	change	in	QRS	TVA	between	paired	WCT	and	baseline	ECGs	
(Figures	S3	and	S4).	They	are	derived	from	QRS	complex	waveform	
(q/QS,	r/R,	s/S,	r'/R’,	and	s'/S’)	TVA	measurements	from	specific	ECG	
leads	within	the	corresponding	frontal	(aVR,	aVL,	aVF)	or	horizontal	
(V1,	V4,	V6)	ECG	planes,	respectively.

2.8  |  VCG parameters

2.8.1  |  X-	,	Y-	,	and	Z-	lead	QRS	amplitude	change	(%)

The	 X-	,	 Y-	,	 and	 Z-	lead	 QRS	 amplitude	 change	 represents	 the	
comparative	change	in	QRS	amplitude	between	paired	WCT	and	

baseline	ECGs	within	 three	 separate	orthogonally	oriented	VCG	
leads:	X-	lead	 (patient's	 right	 to	patient's	 left),	Y-	lead	 (cranial-	to-	
caudal),	and	Z-	lead	(anterior-	to-	posterior),	respectively	(Figure	1).	
Unlike	frontal	and	horizontal	PAC	or	PTVAC,	which	can	both	be	
calculated	 from	 automated	 computerized	QRS	waveform	meas-
urements	of	standard	ECG	leads	(aVR,	aVL,	aVF,	V1,	V4,	and	V6),	
X-	,	Y-	,	and	Z-	lead	QRS	amplitude	change	calculations	are	derived	
from	 manual	 QRS	 waveform	 measurements	 of	 mathematically	
synthesized	 VCG	 signals	 generated	 by	 computerized	 ECG	 inter-
pretation	 software.	 The	 mathematical	 procedure	 necessary	 to	
calculate	 X-	,	 Y-	,	 and	 Z-	lead	QRS	 amplitude	 change	 is	 presented	
in	Figure	S5.

2.9  |  Logistic regression models

2.9.1  | WCT	formula,	VT	prediction	model,	and	
WCT	formula	II

Prior	work	has	described	the	logistic	regression	model	structure	of	
the	WCT	Formula	(May	et	al.,	2019a,	2019b),	VT	Prediction	Model	
(Kashou,	DeSimone,	Hodge,	et	al.,	2020;	May	et	al.,	2020),	and	WCT	
Formula	II	(Kashou,	DeSimone,	Deshmukh,	et	al.,	2020).	In	general,	
each	model	uses	independent	VT	predictors	to	derive	an	automatic	
estimation	 of	 VT	 probability	 (0.00%–	99.99%).	 The	 logistic	 regres-
sion	structure	of	the	WCT	Formula,	VT	Prediction	Model,	and	WCT	
Formula	II	are	shown	in	Figures	S6–	S8.

2.9.2  |  VCG	model

By	design,	the	VCG	Model	integrates	measured	and	calculated	ECG	
data	from	paired	WCT	and	baseline	ECGs	to	deliver	an	unambigu-
ous	estimation	of	VT	probability	(0.00%–	99.99%)	using	independent	
VT	predictors	synchronously	weighted	according	to	their	influence	
on	the	binary	classification	of	VT	or	SWCT.	The	logistic	regression	
structure	of	the	VCG	Model	is	shown	below:

The	VCG	Model	 incorporates	 six	parameters	directly	 accessed	
or	calculated	from	paired	WCT	and	baseline	ECG	data:	two	standard	
ECG	measurements	(i.e.,	WCT	QRS	duration	[ms]	and	baseline	QRS	

X� = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 = Ln

(

P

1 − P

)

X� = −12.4466 + (0.009548) (X− leadQRSamplitudechange)

+ (0.017794) (Y− leadQRSamplitudechange)

+ (0.010624) (Z− leadQRSamplitudechange)

+ (0.029447) (WCTQRSduration) + (0.025475) (BaselineQRSduration)

+ (0.039523) (AbsoluteQRSdurationchange)=Ln

(

P

1−P

)

P =

(

eX�

1 + eX�

)
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duration	[ms]),	one	arithmetic	calculation	of	standard	ECG	measure-
ments	 (i.e.,	QRS	 duration	 change	 [ms]),	 and	 three	 novel	 computa-
tions	derived	from	mathematically	synthesized	VCG	signals	(i.e.,	X-	,	
Y-	,	and	Z-	lead	QRS	amplitude	change	[%]).	Each	of	the	six	parame-
ters	 (Xx)	are	apportioned	a	beta	coefficient	 (βx)	according	 to	 their	
influence	on	binary	classification.	The	“constant”	term	(β0)	denotes	
the y-	intercept	 for	 the	 least-	squares	regression	 line.	The	weighted	
sum	predictor	(Xβ)	and	VT	probability	(P)	may	be	calculated	after	in-
tegrating	VT	predictor	(Xx)	values	derived	from	WCT	and	baseline	
ECG	data.

2.9.3  |  Hybrid	model

Constituent	variables	comprising	the	WCT	Formula,	VT	Prediction	
Model,	WCT	Formula	II,	and	VCG	Model	were	combined	to	build	
an	 “all-	inclusive”	 logistic	 regression	model,	which	we	 refer	 to	as	
the	Hybrid	Model.	The	Hybrid	Model	includes	12	variables:	WCT	
QRS	 duration	 (ms),	 baseline	 QRS	 duration	 (ms),	 QRS	 duration	
change	 (ms),	QRS	axis	change	 (°),	T-	wave	axis	change	 (°),	 frontal	
PAC	(%),	horizontal	PAC	(%),	frontal	PTVAC	(%),	horizontal	PTVAC	
(%),	 X-	lead	 QRS	 amplitude	 change	 (%),	 Y-	lead	 QRS	 amplitude	
change	(%),	and	Z-	lead	QRS	amplitude	change	(%).	A	summary	of	
the	logistic	regression	structure	of	the	Hybrid	Model	is	shown	in	
Figure S9.

2.10  |  Statistical analysis

Categorical	 variables	 were	 compared	 using	 chi-	square	 tests.	
Wilcoxon	rank-	sum	tests	were	used	to	compare	continuous	varia-
bles.	In	order	to	ensure	satisfactory	model	comparisons,	all	logistic	
regression	models	were	originally	formulated	or	re-	derived	using	
the	same	collection	of	ECG	pairs	comprising	the	derivation	cohort.	
Thereafter,	each	model	was	trialed	separately	on	the	same	valida-
tion	 cohort.	 Previously	 described	 logistic	 regression	models,	 in-
cluding	the	WCT	Formula,	VT	Prediction	Model,	and	WCT	Formula	
II,	were	composed	of	the	same	variables	as	defined	by	the	original	
works	 introducing	 each	 model	 (Kashou,	 DeSimone,	 Deshmukh,	
et	al.,	2020;	May	et	al.,	2019a,	2020).	Paired	ECGs	of	the	validation	
cohort	were	assigned	estimated	VT	probabilities	(0.00%–	99.99%)	
by	 all	 five	 logistic	 regression	 models.	 Binary	 rhythm	 classifica-
tion	(VT	or	SWCT)	was	rendered	according	to	a	pre-	specified	VT	
probability	partition	of	50%	 (i.e.,	VT	  ≥	50%	and	SWCT	  <	 50%).	
Performance	metrics	 (i.e.,	 accuracy,	 sensitivity,	 specificity,	 posi-
tive	predictive	value	[PPV],	and	negative	predictive	value	[NPV])	
for each model were assessed according to their agreement with 
the	 overseeing	 physician's	 clinical	 diagnosis.	 AUC	 was	 used	 to	
summarize overall diagnostic performance. Comparison of the 
fit between the statistical models was completed using a Delong 
test.	A	two-	tailed	p-	value	of	<.05	was	considered	statistically	sig-
nificant.	Statistical	analyses	were	completed	using	SAS	version	9.4	
(SAS	Institute).

3  |  RESULTS

3.1  |  Part I: Derivation of logistic regression models

3.1.1  |  Derivation	cohort

The	derivation	cohort	included	400	paired	WCT	(185	VT,	215	SWCT)	
and	 baseline	 ECGs	 from	 309	 patients.	 Clinical	 diagnosis	 and	 ECG	
laboratory	 interpretation	 data	 are	 shown	 in	 Table	 S1.	 The	 major-
ity	(86.0%)	of	clinical	diagnoses	(VT	or	SWCT)	were	established	by	
heart	rhythm	or	non-	heart	rhythm	cardiologists.	Two-	hundred	and	
three	out	of	the	400	 (50.8%)	VT	or	SWCT	clinical	diagnoses	were	
established among patients having a corroborating electrophysiol-
ogy	procedure	or	implanted	intra-	cardiac	device	(e.g.,	pacemaker).

Patient	 characteristics	of	VT	and	SWCT	groups	are	described	 in	
Table	S2.	The	VT	group	included	more	ECG	pairs	from	patients	with	
coronary	 artery	 disease,	 prior	myocardial	 infarction,	 ongoing	 antiar-
rhythmic	drug	use,	 ischemic	cardiomyopathy,	and	 implanted	 implant-
able	cardioverter-	defibrillator	 (ICD).	The	SWCT	group	 included	more	
ECG	pairs	from	patients	with	an	implanted	pacemaker.	The	VT	group	
comprised	more	patients	with	a	severely	depressed	 (≤30%)	 left	ven-
tricular	ejection	fraction	(LVEF).	Conversely,	the	SWCT	group	included	
more	patients	with	a	preserved	(≥50%)	LVEF.	Baseline	ECGs	with	ven-
tricular	pacing	were	more	common	in	the	VT	group,	whereas	preexist-
ing	bundle	branch	block	was	more	frequent	in	the	SWCT	group.

3.1.2  |  ECG	parameters

Paired	ECGs	in	the	VT	group	expressed	greater	WCT	QRS	duration,	
QRS	duration	change,	QRS	axis	change,	frontal	PAC,	horizontal	PAC,	
frontal	 PTVAC,	 horizontal	 PTVAC,	 X-	lead	QRS	 amplitude	 change,	
Y-	lead	 QRS	 amplitude	 change,	 and	 Z-	lead	 QRS	 amplitude	 change	
(Table	1).

3.1.3  | WCT	formula,	VT	prediction	model,	and	
WCT	formula	II	derivation

Logistic	 regression	model	 derivation,	 using	 previously	 established	
model	parameters	for	the	WCT	Formula,	VT	Prediction	Model,	and	
WCT	Formula	II,	yielded	excellent	WCT	differentiation	with	an	AUC	
of	0.95,	0.91,	and	0.94,	respectively.

3.1.4  |  VCG	model	derivation

The	novel	VCG	Model	composed	of	independent	parameters,	includ-
ing	WCT	QRS	duration	(p <	.001),	baseline	QRS	duration	(p =	.007),	
absolute	change	in	QRS	duration	(p <	 .001),	X-	lead	QRS	amplitude	
change	(p <	 .001),	Y-	lead	QRS	amplitude	change	(p <	 .001),	and	Z-	
lead	QRS	amplitude	change	(p <	.001),	demonstrated	effective	WCT	
differentiation	(AUC	0.94)	for	the	derivation	cohort.
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3.1.5  |  Hybrid	Model	derivation

The	 “all-	inclusive”	Hybrid	Model	 composed	of	 12	unified	parame-
ters,	including	WCT	QRS	duration	(p =	.005),	baseline	QRS	duration	
(p =	.102),	QRS	duration	change	(p =	.419),	QRS	axis	change	(p =	.961),	
T-	wave	axis	change	(p =	.419),	frontal	PAC	(p =	.036),	horizontal	PAC	
(p =	.361),	frontal	PTVAC	(p =	.148),	horizontal	PTVAC	(p <	.001),	X-	
lead	QRS	amplitude	change	(p =	.260),	Y-	lead	QRS	amplitude	change	
(p =	.124),	and	Z-	lead	QRS	amplitude	change	(p =	.082)	achieved	fa-
vorable	WCT	differentiation	(AUC	0.95)	for	the	derivation	cohort.

3.2  |  Part II: Validation of logistic 
regression models

3.2.1  |  Validation	cohort

The	 validation	 cohort	 comprised	 197	 paired	 WCT	 (86	 VT,	 111	
SWCT)	and	baseline	ECGs	from	173	patients.	Clinical	diagnosis	and	
ECG	laboratory	interpretation	data	are	shown	in	Table	S3.	The	ma-
jority	(84.7%)	of	VT	and	SWCT	clinical	diagnoses	were	established	
by	heart	rhythm	or	non-	heart	rhythm	cardiologists.	Ninety-	eight	out	
of	197	 (49.7%)	clinical	diagnoses	were	established	among	patients	
having a corroborating electrophysiology procedure or implanted 
intra-	cardiac	device.

Patient	 characteristics	 data	 of	 VT	 and	 SWCT	 groups	 are	 de-
scribed	in	Table	S4.	Comparison	of	clinical	diagnosis,	ECG	interpre-
tation	data,	and	patient	characteristics	between	the	derivation	and	
validation	cohorts	is	shown	in	Tables	S5	and	S6.

3.2.2  |  Validation	of	diagnostic	performance

Overall	accuracy,	sensitivity,	specificity,	PPV,	NPV,	and	AUC	of	each	
logistic	 regression	model	 is	 listed	 in	Table	2.	Comparisons	of	diag-
nostic performance metrics between each logistic regression model 
are	presented	in	Table	3.	Figure	2	illustrates	diagnostic	performance	
comparisons	(i.e.,	AUC)	between	the	Hybrid	Model	and	all	other	lo-
gistic regression models.

The	VCG	Model	 achieved	effective	VT	and	SWCT	differentia-
tion	(AUC	0.94;	confidence	interval	[CI]	0.91–	0.97).	When	adopting	a	
50%	VT	probability	partition	for	rhythm	adjudication	(i.e.,	VT 	≥	50%	
and	SWCT	  <	 50%),	 the	VCG	Model	 achieved	an	overall	 accuracy,	
sensitivity,	and	specificity	of	87.8%,	83.7%,	and	91.0%,	respectively.	
Diagnostic	performance	 indices	of	 the	VCG	Model	were	similar	 to	
that	achieved	by	the	WCT	Formula,	VT	Prediction	Model,	and	WCT	
Formula II.

The	 Hybrid	 Model	 yielded	 effective	 WCT	 differentiation	
(AUC	0.95;	CI	0.93–	0.98).	When	applying	a	50%	VT	probability	par-
tition	for	diagnosis	 (i.e.,	VT	  ≥	50%	and	SWCT 	<	50%),	 the	Hybrid	
Model	 yielded	 an	 overall	 accuracy,	 sensitivity,	 and	 specificity	 of	
86.8%,	80.2%,	and	91.9%.	Overall	diagnostic	performance	(i.e.,	AUC)	
of	the	Hybrid	Model	outperformed	the	VT	Prediction	Model	but	was	
otherwise	comparable	to	that	achieved	by	the	WCT	Formula,	WCT	
Formula	II,	and	VCG	Model.

In	 addition,	 other	 model	 comparisons	 revealed	 that	 the	WCT	
Formula	 and	 WCT	 Formula	 II	 demonstrated	 superior	 diagnostic	
performance	compared	to	the	VT	Prediction	Model.	Otherwise,	no	
other statistically significant differences in model performance were 
observed.

WCT
(n = 400)

SWCT
(n = 215)

VT
(n = 185) p- Value

WCT	QRS	duration	(ms) 159.2	(31.2) 143.1	(17.9) 177.8	(32.9) <.001

Baseline	QRS	duration	(ms) 140.0	(34.1) 136.1	(23.5) 144.5	(43.0) .180

Absolute	QRS	duration	
change	(ms)

30.5	(31.2) 16.7	(17.8) 46.5	(35.5) <.001

Change	in	QRS	axis	(°) 56.5	(57.2) 26.1	(34.1) 91.8	(58.4) <.001

Change	in	T-	wave	axis	(°) 64.9	(56.7) 41.3	(42.9) 92.4	(58.6) <.001

Frontal	PAC	(%) 79.4	(73.4) 37.8	(28.7) 127.6	(79.7) <.001

Horizontal	PAC	(%) 78.1	(59.2) 42.6	(27.2) 119.3	(59.6) <.001

Frontal	PTVAC	(%) 136.4	(152.1) 56.2	(51.0) 229.6	(175.7) <.001

Horizontal	PTVAC	(%) 119.7	(121.1) 60.3	(51.0) 188.7	(141.0) <.001

X-	lead	QRS	amplitude	
change	(%)

74.8	(77.8) 45.6	(48.2) 108.6	(90.9) <.001

Y-	lead	QRS	amplitude	
change	(%)

91.3	(104.8) 44.9	(35.3) 145.1	(130.2) <.001

Z-	lead	QRS	amplitude	
change	(%)

92.4	(107.6) 49.9	(57.7) 141.7	(129.2) <.001

Standard deviation is in parentheses.
Abbreviations:	PAC,	percent	amplitude	change;	PTVAC,	percent	time	voltage	area	change;	SWCT,	
supraventricular	wide	complex	tachycardia;	VT,	ventricular	tachycardia;	WCT,	wide	complex	
tachycardia.

TA B L E  1 Electrocardiographic	
parameters
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For	 each	model,	 diagnostic	 performance	 did	 not	 differ	 among	
patients with or without a corroborating electrophysiology proce-
dure	 or	 implantable	 intra-	cardiac	 device:	WCT	 Formula	 (p =	 .67),	
WCT	Formula	II	(p =	.64),	VT	Prediction	Model	(p =	.08),	VCG	Model	
(p =	.64),	and	Hybrid	Model	(p =	.98).

4  |  DISCUSSION

In	this	work,	we	sought	to	determine	whether	the	quantification	of	
QRS	 amplitude	 changes	within	 three	 orthogonal	 VCG	 leads	 (X,	 Y,	
and	Z	leads)	can	be	used	to	create	an	effective	means	for	automated	
WCT	 classification.	 We	 demonstrated	 that	 accurate	 WCT	 differ-
entiation	may	be	achieved	by	novel	 logistic	regression	models	(i.e.,	
VCG	Model	and	Hybrid	Model)	comprised	of	custom	computations	
from	mathematically	 synthesized	VCG	signals	derived	 from	paired	

WCT	and	baseline	ECGs.	We	found	VCG	Model's	performance	was	
comparable	to	other	high-	performing	automated	WCT	differentia-
tion	models,	but	 its	novel	constituents	 (i.e.,	X-	lead	QRS	amplitude	
change,	 Y-	lead	QRS	 amplitude	 change,	 and	 Z-	lead	QRS	 amplitude	
change)	did	not	make	an	iterative	improvement	in	WCT	differentia-
tion	accuracy	when	unified	with	other	established	WCT	differentia-
tion	parameters	as	part	of	the	Hybrid	Model.

4.1  |  Diagnostic performance

4.1.1  |  VCG	Model

Our	 study	 results	 showed	 that	 the	 VCG	 Model	 implementation	
yielded	 effective	 WCT	 differentiation	 (AUC	 0.94)	 for	 WCTs	 ex-
pected to be encountered in clinical practice. Overall performance 

TA B L E  2 Logistic	regression	model	diagnostic	performance

VCG Model WCT Formula WCT Formula II VT Prediction Model Hybrid Model

Accuracy	(%) 87.8	(82.4–	92.0) 87.8	(82.4–	92.0) 87.8	(82.4–	92.0) 83.3	(77.3–	88.2) 86.8	(81.3–	91.2)

Sensitivity	(%) 83.7	(74.2–	90.8) 82.6	(72.9–	89.9) 83.7	(74.2–	90.8) 75.6	(65.1–	84.2) 80.2	(70.3–	88.0)

Specificity	(%) 91.0	(84.1–	95.6) 91.9	(85.2–	96.2) 91.0	(84.1–	95.6) 89.2	(81.9–	94.3) 91.9	(85.2–	96.2)

PPV	(%) 87.8	(78.7–	94.0) 88.8	(79.7–	94.7) 87.8	(78.7–	94.0) 84.4	(74.4–	91.7) 88.5	(79.2–	94.6)

NPV	(%) 87.8	(80.4–	93.2) 87.2	(79.7–	92.6) 87.8	(80.4–	93.2) 82.5	(74.5–	88.8) 85.7	(78.1–	91.5)

AUC 0.94	(0.91–	0.97) 0.95	(0.92–	0.98) 0.94	(0.91–	0.97) 0.91	(0.87–	0.95) 0.95	(0.93–	0.98)

Summary	of	logistic	regression	model	performance	metrics.	Overall	accuracy,	sensitivity,	specificity,	positive	predictive	value,	and	negative	predictive	
value	rendered	according	to	a	pre-	specified	VT	probability	partition	of	50%	(i.e.,	VT	 ≥	50%	and	SWCT	<	50%).	Numbers	in	parentheses	are	95%	
confidence intervals.
Abbreviations:	AUC,	area	under	the	curve;	NPV,	negative	predictive	value;	PPV,	positive	predictive	value.

Accuracy Sensitivity Specificity AUC

Hybrid	Model	vs.	WCT	
Formula

0.81 0.75 1.0 0.53

Hybrid	Model	vs.	WCT	
Formula II

0.81 0.58 1.0 0.14

Hybrid	Model	vs.	VCG	Model 0.81 0.58 1.0 0.28

Hybrid	Model	vs.	VT	
Prediction	Model

0.15 0.29 0.51 0.01*

WCT	Formula	vs.	WCT	
Formula II

1.0 1.0 1.0 0.80

WCT	Formula	vs.	VCG	Model 1.0 1.0 1.0 0.86

WCT	Formula	vs.	VT	
Prediction	Model

0.05 0.11 0.45 0.02*

WCT	Formula	II	vs.	VCG	
Model

1.0 1.0 1.0 0.98

WCT	Formula	II	vs.	VT	
Prediction	Model

0.08 0.12 0.68 0.04*

VCG	Model	vs.	VT	Prediction	
Model

0.08 0.07 0.75 0.09

Summary of logistic regression model comparisons. Values depicted are p	values	(p value <.05	was	
considered	statistically	significant	[*]).
Abbreviations:	AUC,	area	under	the	curve;	VT,	ventricular	tachycardia;	WCT,	wide	complex	
tachycardia.

TA B L E  3 Comparison	of	logistic	
regression model performance
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was	similar	whether	or	not	the	VCG	Model	was	applied	to	patients	
who	were	diagnosed	by	the	traditional	“gold	standard”	methods,	in-
cluding rhythm classification based on the results of electrophysiol-
ogy	procedures	or	analysis	of	 intra-	cardiac	device	 (i.e.,	pacemaker	
or	 ICD)	 recordings.	The	use	of	a	pre-	specified	50%	VT	probability	
cut-	point	for	WCT	classification	(i.e.,	VT	 ≥	50%	and	SWCT	<	50%)	
yielded	 favorable	 diagnostic	 indices,	 including	 strong	 overall	 ac-
curacy	 with	 high	 diagnostic	 sensitivity	 and	 specificity	 for	 VT.	
Moreover,	VCG	Model's	performance	was	comparable	to	be	other	
high-	performing	 WCT	 differentiation	 approaches,	 including	 the	

WCT	 Formula	 (AUC	 0.95),	 VT	 prediction	 Model	 (AUC	 0.91),	 and	
WCT	Formula	II	(AUC	0.94).

4.1.2  |  Hybrid	Model

The	 Hybrid	 Model	 similarly	 demonstrated	 exceptional	 diagnostic	
performance	 when	 implemented	 on	 the	 validation	 cohort	 (AUC	
0.95).	 Again,	 like	 other	 automated	 WCT	 differentiation	 models,	
the	Hybrid	Model's	performance	did	not	significantly	differ	among	

F I G U R E  2 Comparison	of	the	diagnostic	performance	of	Hybrid	Model	against	other	WCT	differentiation	models.	AUC,	area	under	the	
receiver	operating	characteristic	curve;	VCG,	vectorcardiogram;	VT,	ventricular	tachycardia;	WCT,	wide	complex	tachycardia
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patients without and without electrophysiology procedures or an 
implantable	intra-	cardiac	device.	Upon	using	a	pre-	specified	50%	VT	
probability	cut-	point	(i.e.,	VT	≥	50%	and	SWCT	<	50%)	for	WCT	clas-
sification,	the	Hybrid	Model	achieved	strong	overall	accuracy	with	
favorable	diagnostic	sensitivity	and	specificity	for	VT.	Notably,	the	
Hybrid	Model	outperformed	the	VT	Prediction	Model	 (AUC	0.91),	
but	 demonstrated	 similar	 diagnostic	 performance	 with	 the	 WCT	
Formula	 (AUC	0.95),	WCT	Formula	 II	 (AUC	0.94),	 and	VCG	Model	
(AUC	0.94).

4.2  |  X- , Y- , and Z- lead QRS amplitude change

In	 prior	 works	 (Kashou,	 DeSimone,	 Deshmukh,	 et	 al.,	 2020;	 May	
et	al.,	2019a),	we	demonstrated	that	the	quantification	of	QRS	am-
plitude	or	TVA	changes	in	specific	leads	of	the	frontal	(aVR,	aVL,	aVF)	
and	horizontal	(V1,	V4,	V6)	ECG	planes	enable	accurate	WCT	differ-
entiation.	The	underlying	conceptual	basis	for	these	observations	is	
that	VT,	which	may	originate	and	spread	 from	any	 location	within	
the	 right	 or	 left	 ventricles,	 categorically	 demonstrates	 immense	
"electrical	 freedom"	compared	to	SWCT,	which	ordinarily	depolar-
izes the ventricular myocardium in a manner prescribed by the native 
His-	Purkinje	network	(Evenson	et	al.,	2021).	Consequently,	VT	may	
express	 a	 virtually	 unlimited	 diversity	 of	 distinct	 QRS	 complexes	

dissimilar	 from	 those	 present	 on	 the	 respective	 baseline	 ECG.	
Correspondingly,	VT	will	commonly	demonstrate	greater	changes	to	
the	electrical	vector	of	depolarization	than	SWCT	upon	WCT	onset	
or	offset.	The	 few	notable	exceptions	 to	 this	concept	 include	VTs	
that	 rapidly	 engage	 (e.g.,	 fascicular	 VT)	 or	 characteristically	make	
use	of	the	heart's	His-	Purkinje	network	(e.g.,	bundle	branch	reentry).	
In	contrast,	SWCTs	are	expected	to	ordinarily	demonstrate	a	more	
constrained range of mean electrical vectors and limited number of 
electrocardiographically	 distinct	QRS	 complexes	 compared	 to	 the	
patient's	baseline	ECG.	 In	 rarer	circumstances,	marked	mean	elec-
trical	vector	and	QRS	complex	changes	may	arise	from	SWCTs	that	
develop from impulse propagation using atrioventricular accessory 
pathways	(i.e.,	pre-	excitation).

Similar	 to	 other	 previously	 introduced	 variables	 (e.g.,	 frontal	
PAC,	horizontal	PTVAC,	and	QRS	axis	change)	(Kashou,	DeSimone,	
Deshmukh,	 et	 al.,	 2020;	 May	 et	 al.,	 2019a,	 2020),	 X-	,	 Y-	,	 and	 Z-	
lead	QRS	amplitude	change	are	designed	to	quantify	the	extent	of	
mean	electrical	vector	changes	that	occur	upon	WCT	onset	or	off-
set.	However,	unlike	previously	described	diagnostic	variables,	the	
collective	 evaluation	 of	 X-	,	 Y-	,	 and	 Z-	lead	 QRS	 amplitude	 change	
enables the direct quantification of mean electrical vector changes 
occurring	in	three,	instead	of	two,	spatial	planes	(i.e.,	patient's	right	
to	patient's	left	[X-	lead],	cranial-	to-	caudal	[Y-	lead],	and	anterior-	to-	
posterior	[Z-	lead])	(Figure	3).	Therefore,	we	hypothesized	X-	,	Y-	,	and	

F I G U R E  3 Mean	electrical	vector	changes	in	the	frontal,	horizontal,	and	sagittal	ECG	planes.	Summary	of	expected	changes	to	the	mean	
electrical	vector	of	ventricular	depolarization	following	WCT	initiation	within	three	orthogonal	ECG	planes	(i.e.,	frontal,	horizontal,	and	
sagittal).	Displayed	arrows	represent	mean	electrical	vectors	for	ventricular	depolarization.	The	directional	orientation	of	individual	arrows	
expresses	the	mean	electrical	axis	of	ventricular	depolarization	(i.e.,	QRS	axis).	The	heavy	yellow	arrows	denote	the	baseline	heart	rhythm's	
mean	electrical	vector	for	ventricular	depolarization.	Color-	shaded	regions	and	arrows	denote	the	expected	range	of	mean	electrical	vectors	
after	WCT	onset.	The	spatial	orientation	of	VCG	leads	is	depicted	with	blue	font	lettering.	The	directionality	of	ventricular	depolarization	
captured	by	VCG	leads	is	portrayed	by	a	“+”	symbol	(positive	voltage—	i.e.,	waveforms	above	the	isoelectric	baseline).	The	X-	lead	appraises	
electrical	changes	from	the	patient's	right	to	patient	left	direction	(frontal	and	horizontal	ECG	planes),	the	Y-	lead	appraises	electrical	changes	
from	the	cranial-	to-	caudal	direction	(frontal	and	sagittal	ECG	planes),	and	the	Z-	lead	appraises	electrical	changes	from	the	anterior-	to-	
posterior	direction	(horizontal	and	sagittal	ECG	planes).	Panels	show	various	examples	of	expected	changes	in	the	mean	electrical	vector	of	
depolarization	that	occur	upon	WCT	initiation	within	each	orthogonal	ECG	plane	(i.e.,	frontal,	horizontal,	and	sagittal).	VT	exhibits	a	virtually	
unlimited	range	of	potential	mean	electrical	vectors.	SWCTs	due	to	new	RBBB	or	new	LBBB	exhibit	a	relatively	constrained	range	of	possible	
mean	electrical	vectors.	SWCTs	arising	from	a	preexisting	RBBB	or	LBBB	demonstrate	minor	changes	to	the	mean	electrical	vector.	ECG,	
electrocardiogram;	LBBB,	left	bundle	branch	block;	RBBB,	right	bundle	branch	block	SWCT,	supraventricular	wide	complex	tachycardia;	VT,	
ventricular	tachycardia;	WCT,	wide	complex	tachycardia
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Z-	lead	QRS	amplitude	changes	may	offer	 a	more	 robust	means	 to	
quantify	 changes	 in	 the	 mean	 electrical	 vector	 of	 depolarization,	
thereby	enabling	more	accurate	automated	WCT	differentiation.

We	report	X-	,	Y-	,	and	Z-	lead	QRS	amplitude	change	are	strong	
independent	VT	predictors—	VT	generally	generates	greater	X-	,	Y-	,	
and	Z-	lead	QRS	amplitude	change	than	SWCT.	As	such,	X-	,	Y-	,	and	
Z-	lead	QRS	 amplitude	 change	 independently	 contributed	 to	WCT	
differentiation	as	part	of	the	VCG	Model.	However,	once	X-	,	Y-	,	and	
Z-	lead	QRS	amplitude	change	were	unified	with	other	highly	inter-
related	 variables	 (e.g.,	 frontal	 and	 horizontal	 PAC)	 as	 part	 of	 the	
all-	inclusive	Hybrid	Model,	these	parameters	no	longer	maintained	
diagnostic	 singularity.	Moreover,	 automated	models	 that	 incorpo-
rated	X-	,	Y-	,	and	Z-	lead	QRS	amplitude	change	did	not	demonstrate	
superior diagnostic performance compared to previously introduced 
automated	models,	except	in	the	case	of	the	Hybrid	Model	outper-
forming	the	VT	Prediction	Model.

4.3  |  Prospective applications and future directions

The	VCG	Model	 and	Hybrid	Model	 join	other	 recently	 introduced	
automated	approaches	(i.e.,	WCT	Formula	[2019]	(May	et	al.,	2019a),	
VT	Prediction	Model	 [2020]	 (May	et	al.,	2020),	and	WCT	Formula	
II	[2020]	(Kashou,	DeSimone,	Deshmukh,	et	al.,	2020))	that	are	de-
signed	 to	 leverage	 the	diagnostic	value	of	WCT	and	baseline	ECG	
comparison	and	provide	clinicians	an	impartial	estimation	VT	prob-
ability	 through	 computerized	ECG	 interpretation	 software.	 Similar	
to	other	recently	introduced	WCT	differentiation	models,	the	VCG	
Model	and	Hybrid	Model	may	be	of	practical	clinical	use	for	medical	
providers	upon	their	successful	integration	into	computerized	ECG	
interpretation	 software.	 Candidate	 computerized	 ECG	 interpreta-
tion	 software	 programs	 include	 those	 that	 are	 able	 to	 (i)	 identify,	
discriminate,	and	measure	QRS	complex	and	T-	wave	waveforms	ac-
curately	and	 reliably,	and	 (ii)	 simultaneously	process	computerized	
ECG	data	from	the	WCT	itself	and	the	baseline	ECG	recorded	(and	
archived)	before or after	the	WCT	event.	Once	automated	algorithms	
are	fully	integrated	into	computerized	ECG	interpretation	software,	
ECG	interpreters	and	clinicians	would	be	able	to	assimilate	automati-
cally	 delivered	VT	probability	 estimates	 (e.g.,	 90%	VT	probability)	
with	other	meaningful	 diagnostic	 information	 (e.g.,	 patient	history	
of	ischemic	heart	disease,	WCT	demonstrating	a	“northwest	axis,”	or	
VT	diagnosis	reached	by	the	3rd	step	of	the	Brugada	algorithm	[i.e.,	
presence	of	atrioventricular	dissociation]).

Despite	 what	 would	 be	 an	 incredible	 diagnostic	 advantage,	 a	
glaring	 limitation	of	 the	VCG	Model,	Hybrid	Model,	 and	other	 re-
cently introduced automated approaches is that they require the 
use	of	a	recorded	and	digitally	archived	baseline	ECG	for	their	ap-
plication.	 In	circumstances	where	WCT	patients	present	without	a	
baseline	ECG,	clinicians	and	ECG	interpreters	would	have	to	tempo-
rarily	rely	on	manual	WCT	differentiation	methods	until	the	patient’s	
baseline	ECG	is	acquired.

In	 future	 works,	 the	 customized	 variables	 that	 make	 up	 the	
VCG	Model	and	other	automated	WCT	differentiation	models	may	

be	 integrated	with	additional	computerized	ECG	measurements	or	
yet to be formulated diagnostic determinants to bolster diagnostic 
performance.	Additionally,	customized	variables,	which	comprise	al-
ready	described	logistic	regression	models,	could	be	used	by	more	
sophisticated	modeling	 techniques	 (e.g.,	 artificial	neural	networks)	
more	 apt	 to	 decipher	 meaningful	 non-	linear	 and	 non-	parametric	
relationships.

4.4  |  Study limitations

Study limitations were comprehensively described in prior works 
(Kashou,	 DeSimone,	 Deshmukh,	 et	 al.,	 2020;	May	 et	 al.,	 2019a,	
2020).	However,	there	are	two	important	limitations	that	warrant	
special	attention.	First,	our	study	evaluated	any	clinically	encoun-
tered	WCT	(i.e.,	 “all-	comers”)	that	was	formally	diagnosed	by	the	
patient's	overseeing	physician.	As	a	result,	this	analysis	did	not	ex-
clude patients who did not undergo an electrophysiology proce-
dure	or	did	not	have	an	implanted	intra-	cardiac	device	(e.g.,	ICD	or	
pacemaker).	Although	we	found	model	performance	did	not	differ	
among patients with or without an accompanying electrophysiol-
ogy	procedure	or	implanted	intra-	cardiac	device,	we	must	acknowl-
edge	that	a	substantial	proportion	of	VT	or	SWCT	diagnoses	were	
not	 established	 by	 the	 traditional	 “gold	 standard.”	 Furthermore,	
this	WCT	 selection	 process	 precluded	 a	 detailed	 assessment	 of	
automated	model	performance	among	various	SWCT	(e.g.,	SWCT	
due	to	bystander	conduction	over	various	accessory	pathways)	and	
VT	 (e.g.,	 fascicular	VT)	 subtypes.	Nevertheless,	by	not	excluding	
WCT	tracings	lacking	a	corroborating	electrophysiology	procedure	
or	implanted	intra-	cardiac	device,	our	analysis	counters	the	patient	
selection biases created by only evaluating a proportionally smaller 
subgroup	of	WCTs	seen	in	clinical	practice.	Second,	the	diagnostic	
performance of automated models was not directly compared with 
traditional	manual	WCT	differentiation	approaches	(Brugada	et	al.,	
1991;	Chen	et	al.,	2019;	Jastrzebski	et	al.,	2017;	Pava	et	al.,	2010;	
Vereckei	et	al.,	2008).	Additional	research	will	be	necessary	to	de-
termine	whether	automated	models	exhibit	diagnostic	superiority	
over conventional manual interpretation methods.

5  |  CONCLUSION

Custom	calculations	derived	from	mathematically	synthesized	VCG	
signals may be used to formulate accurate diagnostic models to dif-
ferentiate	VT	and	SWCT.	The	VCG	Model	and	Hybrid	Model,	which	
incorporate	customized	VCG	signal	calculations,	performed	similarly	
well	when	compared	to	other	high-	performing	automated	WCT	dif-
ferentiation	models	and	may	be	incorporated	into	existing	ECG	in-
terpretation software systems.
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