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Abstract: The bromodomain containing protein 4 (BRD4) recognizes acetylated histone proteins and
plays numerous roles in the progression of a wide range of cancers, due to which it is under intense
investigation as a novel anti-cancer drug target. In the present study, we performed three-dimensional
quantitative structure activity relationship (3D-QSAR) molecular modeling on a series of 60 inhibitors
of BRD4 protein using ligand- and structure-based alignment and different partial charges assignment
methods by employing comparative molecular field analysis (CoOMFA) and comparative molecular
similarity indices analysis (CoMSIA) approaches. The developed models were validated using various
statistical methods, including non-cross validated correlation coefficient (r2), leave-one-out (LOO)
cross validated correlation coefficient (q%), bootstrapping, and Fisher’s randomization test. The highly
reliable and predictive COMFA (g? = 0.569, 2 = 0.979) and CoMSIA (g? = 0.500, 1 = 0.982) models were
obtained from a structure-based 3D-QSAR approach using Merck molecular force field (MMFF94).
The best models demonstrate that electrostatic and steric fields play an important role in the biological
activities of these compounds. Hence, based on the contour maps information, new compounds
were designed, and their binding modes were elucidated in BRD4 protein’s active site. Further,
the activities and physicochemical properties of the designed molecules were also predicted using the
best 3D-QSAR models. We believe that predicted models will help us to understand the structural
requirements of BRD4 protein inhibitors that belong to quinolinone and quinazolinone classes for the
designing of better active compounds.

Keywords: BRD4 protein inhibitors; molecular docking; 3D-QSAR; CoMFA; CoMSIA

1. Introduction

The bromodomain containing protein 4 (BRD4) is a key therapeutic target for Bromodomain and
extra-terminal domain (BET) inhibitors, a group of pharmaceutical drugs that have recently gone
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under the clinical trials [1,2]. BRD4 plays a vital role in the expression of “tumor driving” oncogenes,
as shown in myeloid leukemia, multiple myeloma, and basal-like breast cancer [3,4]. It has been
observed that the BRD4 protein regulates the expression of the MYC transcription factor (a master
regulator) in cellular proliferation of numerous cancerous pathways [5]. The decreased amount of
BRD4 expression results in reduced activity of MYC oncogene, which is a potential therapeutic target
in different cancer studies [5-7]. The inhibition of this protein is of significant interest for the usage of
BET inhibitors as therapeutic interventions for the treatment of various cancer types, inflammatory
reactions, and cardiovascular diseases [8].

The BRD4 protein interacts with different classes of compounds based on their chemical structures.
These classes of compounds are known as thienotriazolodiazepine (JQ1, the very first BRD4 inhibitors
reported in 2010), tetra hydro-quinoline, 3,5-dimethylisoxzole, and 2-thiazolidinone derivatives [9].
Several other known inhibitory molecules, such as MS417, AZD5153, ZL0420, and ZL0454, interact with
the BRD4 protein to interrupt its cellular activities. The interaction with BRD4-inhibitor MS417 causes
downregulation of NF-«B transcriptional activity, as observed in HIV- associated renal disease [10].
In another study, MS417 has been used in the treatment of colorectal cancer due to its inhibitory
effects [11]. The compound AZD5153 is involved in the treatment of thyroid carcinoma, which
activates apoptosis and caspase activities in the cell [12]. The latter two compounds, ZL0420 and
710454, have been recently identified for the treatment of airway inflammation in mouse models using
molecular docking studies [13].

In the current study, we investigated structural requirements to design better active inhibitors
of BRD4 protein from quinolinone and quinazolinone classes. We employed comparative molecular
field analysis (CoMFA) [14] and comparative molecular similarity indices analysis (CoMSIA) [15]
methods to drive three-dimensional quantitative structure activity relationship (3D-QSAR) models
along with molecular docking simulations. In this case, structural properties were correlated with
the biological activities of small molecules, which were further evaluated using different statistical
methods. In CoMFA modeling, steric and electrostatic fields of molecules were correlated with their
biological activities [16], while in CoMSIA modeling, hydrophobic, hydrogen bond donor and acceptor
fields, along with steric and electrostatic fields were correlated with activities [17]. Afterwards, key
structural features were identified based on the best generated model, and then, new molecules were
designed to explore better active compounds.

2. Results and Discussion

2.1. Statistical Analyses of COMFA and CoMSIA Models

Different CoMFA- and CoMSIA-based 3D-QSAR models were generated using partial least square
method (PLS) by correlating biological activities of BRD4 inhibitors in a training dataset with their
field descriptors. There are several factors that affect the quality of the developed CoMFA and CoMSIA
models [18]. However, the alignment of the dataset molecule and the charges assigned to them are the
two major factors that affect the predictability of the generated models [19]. In this study, alignment
methods, such as ligand- and receptor-based, as shown in Figure 1, along with partial charges methods
like Merck molecular force field (MMFF94), Gasteiger Huckle (GH), and Gasteiger Marsilli (GM)
were evaluated to obtain the best predictive CoOMFA and CoMSIA models [20]. The structure-based
conformation alignment method with MMFF94 charges yielded the best models. The leave-one-out
(LOO) cross validated correlation coefficient (qz) value with both steric and electrostatic fields in
CoMFA is 0.569, along with optimum number of components (ONC) = 5, standard error of estimate
(SEE) = 0.102, non-cross validated coefficient (r’ncy) = 0.979, F-value = 336.72, and r2pred = 0.816,
as given in Table 1. The model shares 47% contribution of steric and 53% electrostatic fields. In CoMFA
modeling, different charges did not influence the predictive quality of the models (data shown in
Supplementary File, Tables S1 and S2). Similarly, models generated using ligand-based alignment and
MMFF94 charge method yielded q? = 0.399 value with both steric and electrostatic fields in COMFA
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with ONC = 2 (see Table 1). The effects of different charges on the statistical models in ligand-based
alignment method are given in the Supplementary File, Tables 53 and S4.

For CoMSIA models using the MMFF94 charge method with structure-based alignment yielded
q* = 0.500 with ONC = 6, SEE = 0.094, F-value = 396.442, r’cy = 0.982, and r%peq =0.834 (Table 1).
Different field contributions, such as steric, electrostatic, hydrophobic, hydrogen bond donor,
and hydrogen bond acceptor were 0.130, 0.345, 0.254, 0.127, and 0.144, respectively, for this model.
The results showed that both electrostatic and hydrophobic fields played a substantial role in the
CoMSIA model, while steric and electrostatic fields played an important role in the CoMFA models
with 0.470 and 0.530 contribution, respectively. CoMSIA models generated based on GH and GM
charges were not statistically significant. The reasons for the better performance of one charge method
over the other in a COMFA /CoMSIA model is unknown as of yet, as the prior literature provides
conflicting results of different charge-based methods.

Figure 1. Alignment of dataset compounds (a) Ligand-based alignment of the conformers obtained
from omega software; (b) Structure-based alignment of docked compounds.

Table 1. Statistical Results of Structure- and Ligand-Based Models.

Structure-Based Model Ligand-Based Model

MMFF94 Charges
50 Compounds
Parameters CoMFA CoMSIA CoMFA CoMSIA
ONC 5 6 2 6
22 (00) 0.569 0.500 0.399 0.403
I (nev) 0.979 0.982 0.873 0.873
SEE 0.102 0.094 0.251 0.251
F 336.723 396.442 49.120 49.133
Pred-r? 0.816 0.834 0.762 0.769
Steric (S) 0.470 0.130 0.474 0.120
Electrostatic (E) 0.530 0.345 0.526 0.328
Hydrophobic (H) - 0.254 - 0.213
Donor (D) - 0.127 - 0.166
Acceptor (A) - 0.144 - 0.173
12 bs 0.988 0.988 0.915 0.927
SDy,s 0.004 0.005 0.066 0.058

Merck molecular force field (MMFF94); comparative molecular field analysis (CoMFA); comparative molecular
similarity indices analysis (CoOMSIA); ONC = optimal number of components; q> = cross-validated correlation
coefficient; 12 = determination coefficient; r2ncy = non-cross validated coefficient; SEE = standard error of estimate;
F = Fischer’s F-value; Pred-r? = predictive 1?; 1?5 = r? obtained after bootstrapping; and SDy, = bootstrapping

standard deviation.
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Further, receptor-based CoMFA and CoMSIA models were used to predict the activities of the
training and test dataset compounds. The experimental and predicted activities are shown in Figure 2.
The scatter plots depict that all points are situated around the diagonal lines, and there is no obvious
deviated point present on them. The higher rzpred values for both CoOMFA and CoMSIA models for
external validation confirm that the models are of good quality. Similarly, internal validations like
’nev, F-values, and 2y, (bootstrapping) values show that the models are quite stable and accurate
which can be further used to design better active compounds. As the statistical significance of a model
is affected by individual fields that are totally independent from each other, so the best models were
selected to design new compounds with improved activities. The designing was performed with the
help of indicated regions in 3D color contour maps [21].
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Figure 2. Experimental vs. predicted biological activities (pICsg) values from best structure-based
three-dimensional quantitative structure activity relationship (3D-QSAR) models.

2.2. CoMEFA Contour Maps

Contour maps are the graphical interpretation of the generated statistical models that provide
information about the compounds in a 3D space where substitution with functional groups may alter
the biological activities of the compounds. The CoMFA contour maps of steric and electrostatic fields
from the best COMFA model of a highly active compound are shown in Figure 3a,b. In Figure 3a,
the green contour represents the favored area of bulky group substitution, while the yellow contour
indicates that the lighter group substitution will be favorable to enhance the biological activities of the
compounds. In Figure 3b, the blue contour indicates the electron-donating group, and the red contour
represents that the electron-withdrawing group will be favorable to improve the activity.

The obtained 3D-QSAR models were used to explain the structure activity relationship of the
dataset compounds (see “material and methods” section). The bulky group substitution at the green
contour near the R3 position of the highly active compound, as shown in Figure 3a, becomes the
R1 position for the compounds (1-13); however, the lighter group at the yellow contour located
towards N-methyl piperdine will enhance the biological activity of the compound. These contours may
explain why compounds, such as 4-11, having bulkier groups with substituted phenyl rings, are more
active than compounds 1-3, having lighter groups. Similarly, compounds 14, 17, and 28, having lighter
groups at R2 position, are more active than compounds 32-38, which possess the bulkier groups at
this position.

In electrostatic contours, as shown in Figure 3b, the presence of the large blue contour near
the R3 position of 3-methyl-1,7-naphthyridin-2(1H)-one suggests that electron-donating groups will
likely enhance the biological activity of the designed compounds. Compounds 55, 57-59, which have
pyridine rings with different electron-donating substituent groups, are more active than compounds
51, 54, 56, and 60 possessing only heterocyclic rings. Similarly, the large red contour near the
R2 position suggests that an electron-withdrawing group is desirable for improving the activity.
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Therefore, compounds such as 14, 15, 28, and 30 are less active than 22 and 34 because they have an
electron-donating group near the R2 position.

-

Figure 3. Contour maps of structure-based model on the most active compound (42) as template
(sticks). (a) CoMFA steric field contour maps; (b) CoMFA electrostatic fields contour maps;
(c) CoMSIA hydrophobic field contour maps; (d) CoMSIA hydrogen bond acceptor fields contour
maps; and (e) CoMSIA hydrogen bond donor fields contour maps.

2.3. CoMSIA Contour Maps

CoMSIA contour maps of the steric and electrostatic fields were similar to CoMFA models.
The contour maps of the hydrophobic, hydrogen bond donor, and acceptor fields are shown in
Figure 3c—e. The hydrophobic field contour reveals that the big yellow contour at the R2 position is
hydrophobic in nature, while the white contour at R3 is hydrophilic in nature to enhance the activity
(see Figure 3c). In the dataset, we can observe that compounds 34, 37, and 38, having hydrophobic
groups at the R2 position, are exhibiting higher activities compared to other compounds having
hydrophilic groups at this position.

Hydrogen bond acceptor and donor fields of the CoMSIA model are shown in Figure 3d,e,
respectively. The magenta contour in Figure 3d indicates the region where hydrogen bond-accepting
substituents enhance the inhibitory activity, while the red contour specifies the regions where hydrogen
bond-accepting moiety may deteriorate the biological activity of the compounds. Further, the hydrogen
bond acceptor contour in Figure 3d corresponds to the electron-donating group in the electrostatic
field contour map of Figure 3b. Similarly, the cyan contour at the R2 position in Figure 3e favors the
hydrogen bond-donating moieties for enhancing the activity, whereas the purple contour disfavors
the areas for such moieties to increase the activity of the compounds. This hydrogen bond-donating
contour is near to the electropositive contour in the electrostatic contour of Figure 3b. Hence, from the
information in these contour maps, it is clear that the hydrogen bond acceptor/donor contours nearly
coincide to the electron-donating and -accepting favored contours for enhancing the biological activities
of the compounds. In these figures, the contribution of the hydrogen bond acceptor and donor regions
is 70% for favorable and 30% for non-favorable areas in terms of enhancing the activity.
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2.4. Analysis of Structure-Based Generated Conformations

Molecular docking studies were performed to assess the performance of the glide docking score.
The co-crystal ligand (I-BET151) in human BRD4 was first removed from the protein structure and
then sketched, minimized, and redocked at the binding site. The best binding mode, with a glide score
of -6.76 kcal/mol, was superimposed on the co-crystal ligand as shown in Figure 4A. The docked
pose exhibited a similar interaction pattern as was present in the crystal structure [22]. The ASN140
residue of the BRD4 protein and one water molecule were making the hydrogen-bonding interaction
with nitrogen and oxygen atoms of the isoxazole moiety, respectively. The distances between these
interacting atoms was 2 A and 2.3 A. The presence of water molecules at the bottom of the active site is
essential, because co-crystal ligand interacts with TYR97 [23] indirectly by hydrogen bonding through
a water molecule. The water molecules also prevent the direct contact of acetylated lysine of histone at
the bottom of the active site [24]. Keeping this in mind, water molecules were kept in the binding site
while docking all dataset compounds. The binding pose of the best active compound (42) with the
co-crystal ligand is shown in Figure 4B. The best pose yielded a —6.70 kcal/mol glide score with side
chain hydrogen bonding interactions. The hydrogen-bonding pattern is similar to the co-crystal ligand,
in which ASN140 and the water molecules present at the bottom are interacting with carbonyl oxygen
of 3-methyl-1,7-naphthyridin-2(1H)-one scaffold. Similarly, an extra hydrogen bond is also present in
the form of a salt bridge between the ASP144 and N-H of the pipridine moiety of the compound.

A

Figure 4. Docking pose of the ligands in the active site of the BRD4 protein (cyan) along with water
molecules (red and white sticks). (A) Superposition of best pose of the co-crystal ligand (green) on the
bound ligand (magenta) after redocking experiments; (B) Superposition of the docked pose of the
most active compound (yellow) on the co-crystal ligand (magenta). The yellow dotted lines represent
hydrogen bonds.

2.5. Designing of New Compounds and Their Physicochemical Properties” Calculations

Using the best COMFA and CoMSIA models generated by receptor-based modeling, ten new
BRD4 inhibitors were designed using contour map information by attaching different substituents at
various positions of 3-methyl-1,7-naphthyridin-2(1H)-one. The physicochemical properties, as shown
in Table 2, were predicted using QikProp software. We have found that most of the newly designed
compounds followed the Lipniski drug-like rules with almost one rule violation. The predicted
octanol/water partition coefficient (QPlogPo/w) values between 1.232 and 4.433, HERG K+ channels
(QPlogHERG) blocking ICs values between —6.894 and —5.899, caco-2 cell permeability (QPPCaco)
values between 13.145 and 195.227, brain/blood partition coefficient (QPlogBB) values between
—3.049 and —1.354, and human serum albumin binding (QPkhsa) values between —0.067 and 0.722 are
within the acceptable ranges for 95% oral drugs as described in [25]. These physicochemical properties
(e.g., QPlogPo/w and QPlogHERG) within the recommended ranges ensure the smooth distribution
of drug functioning and prevention against sudden risks of cardiac arrest, respectively.
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Table 2. Predicted physicochemical/pharmacokinetic properties of the newly designed compounds.

Comp MW

HBD HBA QPlogPo/w

QPlogHERG QPCaco2

QPlogBB QPlogKhsa

405.41
416.43
404.38
403.39
432.49
432.49
451.31
420.47
431.88
451.41

O I DNUI = WN =

Juy
o

B O\ Wk UGN O

7 1.232 -5.899
6 2.732 —6.434
6 1.606 —6.432
5 1.373 —6.352
8 2.371 —6.23
5 3.191 —6.294
4 4.433 —6.894
5 3.653 —6.669
5 2.937 —6.857
5 3.546 —6.692

15.239

76.171

23.449

13.145

62.067

80.298
195.227
107.71

44.197

75.418

—2.972 —0.046
—2.227 0.358
—2.752 —0.022
—3.049 —0.067
—2.187 0.246
—2.084 0.478
—1.354 0.717
—1.933 0.722
—2.357 0.332
—1.887 0.54

MW = molecular weight, HBD = hydrogen bond donor, HBA = hydrogen bond acceptor, QPlogPo/w = octanol/water
partition coefficient (recommended rage —2.0 to 6.5), QPlogHERG = blockage of HERG K+ channels (recommended range
<—5), QPCaco2 = Caco2 cell permeability (recommended range <25 poor, >500 great), QPlogBB = brain/blood partition
coefficient (recommended range —3.0 to 1.2), and QPlogKhsa = binding to human serum albumin (recommended range

—15to 1.5).

2.6. Biological Activities Prediction of Newly Designed Compounds

The biological activities of newly designed compounds listed in Table 3 were predicted using
the best CoMFA and CoMSIA models. Before the activities” prediction, molecular alignment of the
newly designed molecules was achieved using docking simulations. The docking studies showed that
these compounds possessed similar binding modes, as shown in Figure 5. The interaction pattern is
similar to that of the other compounds present in the dataset. All of the designed compounds make
H-bonding with ASN140 and indirectly with TYR97 through water molecules that lie at the bottom
of the active site. The docking scores and predicted activities are reported in Table 3. The predicted
activities of these newly designed compounds are better than most of training dataset compounds.
These results prove that generated 3D-QSAR models with significant predictive ability could be used

for structural optimization of the newly designed compounds.

Table 3. Newly designed compounds structures with their docking scores and predicted biological activities.

Substituents Predicted pICsg
Glide-Score
No. R R’ CoMFA Model CoMSIA Model
/ HO
1 N o J —7.348 7.675 6.757
NH N OH
HO
(o]
2 \ J —7.140 7.293 6.523
HN \ ” OH
NH HO
NS
3 7.116 6.219
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Table 3. Cont.

Substituents Predicted pICsg
Glide-Score
No. R R’ CoMFA Model CoMSIA Model

HN \
4 “ ot ~7.010 7.113 6.074
HN N OH

5 i \ HN —5.953 6.922 6.255
HN \

S
6 \ %j@\ —6.691 6.740 6.614
HN \ N OH
- C|@NH u;{i@\ ~6.959 6.664 6.612
N OH
74
8 {j@\ N —6.421 6.367 7.058
N
Cl
HoN /
9 : —6.429 6.347 7.035
HN N OH
F

.
7
10 F \ —7.352 6.302 6.123
o N OH

Figure 5. Docking pose of the newly designed compounds in the active site of the BRD4 protein (cyan)
along with water molecules (red and white sticks). The yellow dotted lines represent hydrogen bonds.

3. Material and Methods

3.1. Biological Data Collection

The set of 60 chemically diverse inhibitors of BRD4 protein, having similar chemical scaffold,
were collected from the literature. The compounds used as racemic mixtures for biological activities [26-28]
were not selected for the final data set. The chemical structures of the compounds and biological data
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along with their pIC50 values are listed in Table 4. Further, for model building and validation, the selected
compounds were divided into training and test datasets using a random selection method [29]. In total,
50 compounds were included in training, while 10 were added in test datasets to evaluate the predictability
of the generated models.

Table 4. Structures of the BRD4 inhibitors and their biological activities.

Ry

Z X
R4 X/ / ’ \ | |
/K X N H ° HQ ) n O
H
N 0] N
H Ry H
(1-13) (14-38) (39-60)
No. R1 X pICs() No. R1 X pIC50
~7 @\ .
1 S N 5.3 8 / N 6.4

O// \H/\ o//s\u/

I
i
2 Owﬁ N 5.7 9 y. N 6.3
S
e
0 a
0 o]
3 \s//\ N 53 0 / N 6.1
o// N o // \H/
o]
F. cl /0
4 Y N 6.7 1 Yi N 6.0
S\ / S
I Van'd
N
5 / N 6.6 12 Vi N 6.0
AN ~
J A
o CN
N
6 Vi N 6.6 13 i N 5.6
S
V' / ~
4 H
;
7* Oi Vi N 6.4
~
I
No. R2 X pIC50 No. R2 X pIC50

| HN
14 N 4.6 27 N 4.6
HQN/\/ ~ O\/H\

15 HO/\/\N/ 4.4 28 * M\X/'L N 3.8
H — ~
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Table 4. Cont.

No. R1 X pICss  No. R1 X pICso

Y
16¢ o > N 5.3 29 El N 48
W
H
/ NH
17 H 43 30 * ! N 49
N ~ e ”/
| HN
18 H CH 5.0 31 " N 49
/N\/\/N\ O\/N\
| n
19 H N 47 32 N 52
AN (J\/n\
HN \N
20 CH 52 33+ N 55
v e
H H
21 N 5.4 34 /O N 53
N/ \N
]
~
20 P CH 52 35 N 5.1
N N SN
H
~
23 o N 48 36 N 5.4
N PN

HN

d N/
24 . N 44 37 — N 5.5
H
NH N/
25 N 49 38 ﬂ N 5.4
\N NH
H ~
26 \NAQ” N 4.6

No. R3 X pICss  No. R3 X pICso

/
39 N 61 50 | N 56
\N

I
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Table 4. Cont.

No. R1 X pICso No X PICso

. R1
HO. / N
41 N 6.2 52 | N 5.9
\ O/
f
\ N
N
42 Y N 6.9 53 M N 59
= O/

N =
43 ] N 57 54 | N 52
N ~
N
/N
7 . |
44 v N 61 55 N o N 54
HN
NH,
A
45 | N 55 56 N N 51
N
/ N /
N\ HoN /
46* | N 53 57 | N 57
/ \N
/N
N
e (o]
47 S N 59 58 ~7 | N 6.1
— a A
o) H
N o
X
18+ | N 52 59 J\ a N 5.9
Z X

N\ W
19 | N 6.0 60 k \ N 48
= X

* Test set compounds.

3.2. Dataset Compounds Modeling and Alignment

The 3D structures of the inhibitors were sketched in the SYBYL-X 2.1.1 molecular modeling
package. The omega tool from OpenEye Scientific Software [30] was used for conformational search
of each molecule. Finally, the lowest energy conformer was selected from all the resulting structural
conformations. The partial charges were calculated using different methods including GH, GM,
and MMFF94 charges [31,32]. Because the alignment of molecules is believed to be the most crucial
and important requirement for a 3D-QSAR model’s robustness and predictability, the alignments were
performed based on common substructures of the template molecule and all the other compounds
present in the dataset. Due to the highest inhibitory activity, compound 42 was considered to be a
template molecule. For ligand-based modeling, alignment was obtained after superposition of the
lowest energy conformation of each molecule obtained from the omega tool on the compound 42.
However, for structure-based modeling, the alignment was performed on the conformations obtained
after the molecular docking simulations.
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3.3. CoMFA and CoMSIA Fields Calculations

For CoMFA steric and electrostatic field calculations, a 3D cubic lattice with 2.0 A grid spacing
in the X, Y, and Z coordinates was generated using a default value in SYBYL. The energy cut-off
was fixed to +30 kcal/mol to get rid of high energy values. For the steric probe, an sp3-hybridized
carbon was taken while +1.0 charge was selected as an electrostatic probe atom. The five fields of
CoMSIA including steric, electrostatic, hydrophobic, and hydrogen bond donor and acceptor were
also calculated using a probe atom with a radius of 1.0 A. The default value of 0.3 for the attenuation
factor (v) was used, which calculates the standard distance dependent similarity indices. Similarly,
an indices calculation was performed by the following equation 1. All the numerical calculations were
executed in the same way as for the CoMFA analysis [31,33,34].

. —ar2.
AL () = Y Wprobexwive™ ™" iq (1)

In the above equation, A7 means the similarity index of point g; k denotes the physiochemical
properties of steric and electrostatic descriptors; wppex represents the probe atom; i denotes the
summation index of molecule j, while wy is the observed value k of a specific property of the atom I,
and r is the atomic radius [35].

3.4. Partial Least Squares (PLS) Regression Analyses and Validations of the Models

PLS regression analysis remained very useful for 3D-QSAR models in which CoMFA and CoMSIA
descriptors were used as dependent variables and biological activities are taken as independent
variables [36]. For selecting the best model, which probably has the maximum predictability,
the cross-validation analysis using the LOO method was used, which can be defined by the following
Equation (2):

2

5 Zy (ypred ~ Yobs )
- =1- > 2)

Ly (Yobs — Ymean )
where each value represents the predicted (1), experimental (y,ps), and mean (Ymean) values of the
target property. By using ONC, non-cross validated analysis was performed without column filtering.
Along with cross and non-cross validated 12, SEE values were calculated using SYBYL. For further
validation of generated models, bootstrapping analyses were performed for 100 runs to evaluate the
effectiveness of the derived models. Predictive r2, based on the test set molecules, was used to express the

predictive ability of the generated models. The predictive r? is defined by the following Equation (3):

SD — PRESS
r?ﬂred = ( ) (3)

SD
In the above equation, SD is the sum of the squared deviations between the biological activities
of the test set and the mean activities of the training set molecules. Whereas PRESS is the sum of the
squared deviations between the observed and the predicted activities of the test molecules.

3.5. Preparation of Ligands and Protein Structure

For the molecular docking studies, dataset compounds were prepared using the ligprep tool
embedded in Schrodinger software (www.schrodinger.com). The possible ionization states and
stereoisomers were generated by keeping a maximum of 32 conformations of each molecule using an
OPLS2005 forcefield. The BRD4 protein crystal structure [37] (PDB ID: 3zyu), having the resolution
of 1.5 A, was retrieved from the protein data bank (www.rcsb.org). Missing hydrogen atoms were
added and other unnecessary crystal ligands such as 1,2-ethanediol and buffer reagents were removed.
The water molecules were also removed except the four present at the bottom of the active site.
Finally, restrained minimization was performed using the OPLS2005 forcefield to remove steric clashes.


www.schrodinger.com
www.rcsb.org

Molecules 2018, 23, 1527 13 of 16

Meanwhile, conformation of entire protein-ligand complex was allowed to deviate 0.30 A root mean
square deviation from its native structure.

3.6. Molecular Docking Protocol

To predict the plausible binding modes of the compounds and get the structure-based alignment
for the CoMFA and CoMSIA modeling, the prepared crystal structure of the BRD4 protein was
employed for receptor grid generation using Schrodinger software. During the grid box generation,
the active site was considered where the co-crystalized ligand (GSK1210151A) is present in the
protein. The X, Y, and Z coordinates at 0.76, —8.19, and 22.37 were defined with 10 A length in each
dimension. The hydrogen atoms of the hydroxyl and thiol groups of amino acids present in the
active site were permitted to rotate during the molecular docking simulations. No other torsional
or positional restraint was applied except the hydrogen bond formation with the ASN140 residue.
During the docking simulation, softening potential for the non-polar parts of the receptor was applied
by adjusting the scaling factor of van der Waal’s radii to 0.80 with a cut-off value of 0.15 along with
other parameters’ default settings. Among the all docking poses of the docked compounds, only
the top five poses of each compound were subjected to minimization. Eventually, the best pose was
selected based on the highest glide score and best binding mode using standard precision (sp) mode in
glide [38].

4. Conclusions

The BRD4 protein plays various roles in the progression of different types of cancers, which makes
it an attractive drug target. In this study, we performed a 3D-QSAR modeling using CoMFA and
CoMSIA approaches on series of 60 BRD4 protein inhibitor molecules containing quinolinone and
quinazolinone as central scaffolds. Several statistical models were generated using the lowest
energy- and structure-based bioactive conformations using different charge methods. The best
predictive models were generated using different molecular alignment and charges-based methods.
The docking-based alignment method with MMF94 charges yielded the best COMFA and CoMSIA
models. The contour maps suggest that the bulky electron-donating group near the R3 position and
the lighter electron-withdrawing groups near the R2 position will help to enhance the biological
activities of this series of compounds. Based on contour maps information of the best models,
ten new compounds were designed, and their biological activities were predicted. Their binding
interactions with BRD4 protein were also assessed using docking simulations. Finally, the predicted
pharmacokinetic properties showed that most of the designed molecules are in the acceptable ranges
of the majority of the oral drug values. Hence, we believe that developed 3D-QSAR models could be
useful for the development of more potent BRD4 inhibitors.
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