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Purpose: A multitude of animal studies substantiates the beneficial effects of Ang-
(1–7), a peptide hormone in the protective axis of the renin angiotensin system,
in diabetes and its associated complications including diabetic retinopathy (DR).
However, the clinical application of Ang-(1–7) is limited due to unfavorable pharma-
cological properties. As emerging evidence implicates gut dysbiosis in pathogene-
sis of diabetes and supports beneficial effects of probiotics, we sought to develop
probiotics-basedexpression anddelivery system to enhanceAng-(1–7) andevaluate the
efficacy of engineered probiotics expressing Ang-(1–7) in attenuation of DR in animal
models.

Methods: Ang-(1–7) was expressed in the Lactobacillus species as a secreted fusion
protein with a trans-epithelial carrier to allow uptake into circulation. To evaluate the
effects of Ang-(1–7) expressed from Lactobacillus paracasei (LP), adult diabetic eNOS−/−
and Akita mice were orally gavaged with either 1 × 109 CFU of LP secreting Ang-(1–7)
(LP-A), LP alone or vehicle, 3 times/week, for 8 and 12 weeks, respectively.

Results: Ang-(1–7) is efficiently expressed from different Lactobacillus species and
secreted into circulation in mice fed with LP-A. Oral administration of LP-A signifi-
cantly reduced diabetes-induced loss of retinal vascular capillaries. LP-A treatment also
prevented loss of retinal ganglion cells, and significantly decreased retinal inflammatory
cytokine expression in both diabetic eNOS−/− and Akita mice.

Conclusions: These results provide proof-of-concept for feasibility and efficacy of using
engineered probiotic species as live vector for delivery of Ang-(1–7) with enhanced
bioavailability.

Translational Relevance: Probiotics-based delivery of Ang-(1–7) may hold important
therapeutic potential for the treatment of DR and other diabetic complications.

Introduction

Diabetic retinopathy (DR) is a major microvascular
complication of diabetes mellitus and the leading cause
of blindness in the working-age population.1,2 A large
body of experimental and clinical evidence has demon-
strated that dysregulation of the renin angiotensin
system (RAS), resulting in elevated concentrations of
Angiotensin II (Ang II) systemically and locally at
tissue level, contributes to increased oxidative stress,
inflammation, development of metabolic syndrome,
obesity, diabetes, and its associated complications.3−7

Angiotensin-(1–7) (Ang-(1–7)) is a peptide hormone
in the protective axis of the RAS, generated through
cleavage of Ang II by the angiotensin converting
enzyme 2 (ACE2).8,9 Ang-(1–7) binds to the G protein
coupled receptor Mas and activate signaling pathways
that counteract the deleterious effects of Ang II.10−12

Ang-(1–7) has been shown beneficial in improving
metabolic dysfunction and diabetic complications by
inhibiting apoptosis, oxidative stress, and inflamma-
tion,12−17 and is also protective in diabetic retina in
rodents.18 However, clinical application of Ang-(1–7)
is limited due to its extreme short half-life and rapid
clearance in circulation and tissues.19,20
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As emerging evidence indicates that impaired gut
microbiota contributes to the pathogenesis of both
type 1 and type 2 diabetes21−27 and probiotic supple-
ments are beneficial in managing diabetes and other
metabolic diseases,28−34 we sought to develop an
expression and delivery system based on the use of
recombinant probiotic species of Lactobacillus bacte-
ria to serve as a live vector for the oral delivery
of Ang-(1–7) and evaluate the efficacy of recombi-
nant probiotics expressing Ang-(1–7) in improving
diabetes-induced retinal damage in animal models of
diabetes. Lactobacillus bacteria are components of
the normal gut microbiota35 and are also commonly
used in production of fermented food and beverages
in the food industry. Many species of Lactobacil-
lus bacteria are also used as probiotic supplements
with beneficial effects in humans.36−38 As ingested
bacteria can survive both gastric acid and bile to
reach the small intestine and colon, where they exert
their effects, making them ideal vehicle for delivery of
protein and peptide drugs. We generated an expres-
sion system based on the use of recombinant Lacto-
bacillus paracasei (LP) to serve as a live vector for
the oral delivery of the Ang-(1–7) using the strat-
egy that we have reported previously.39 The Ang-(1–
7) peptide is expressed as a secreted fusion protein
with the chorea toxin binding protein subunit B (CTB),
which facilitates the transmucosal transport into circu-
lation and tissue uptake by GM1 receptor mediated
endocytosis. We show that oral administration of LP
expressing Ang-(1–7) significantly attenuated diabetes-
induced loss of retinal capillaries and retinal ganglion
cells (RGCs), and reduced the inflammatory cytokine
expression in diabetic animals. These results provide
proof-of concept for the feasibility of using recombi-
nant probiotic species as live vector for delivery of Ang-
(1–7) and this approach may have important therapeu-
tic potential for treatingmetabolic diseases and diabetic
complications.

Results

Vector Construction to Express Secreted
Ang-(1–7) in Lactobacillus Species and In
Vivo Characterization in Mice

As reported previously,39 the backbone Lacto-
bacillus shuttle plasmid containing a GFP reporter
gene driven by the lactate dehydrogenase (LDH)
promoter from Lactobacillus acidophilus was from
Addgene (Plasmid #27167).40 The original GFP
reporter gene was replaced by a synthetic gene

Figure 1. Schematics of Lactobacillus vector expressing secreted
Ang-(1–7) (A) and serum levels of Ang-(1–7) in mice fed with differ-
ent species of Lactobacillus expressing Ang-(1–7) (B). The Ang-(1–7)
expression is under the control of the LDH promoter and expressed
as a secreted fusion protein to the non-toxic subunit of cholera toxin
B (CTB), separated by a furin cleavage site. Ang-(1–7) is efficiently
expressed and secreted into circulation inmice fedwith these bacte-
ria. N = 4. *P < 0.001 (versus unfed control). Error bars represent
standard deviation.

construct in which the Ang-(1–7) peptide is expressed
as a secreted fusion protein with the CTB (Fig. 1A),
which facilitates transepithelial transport into circu-
lation and tissue uptake.39 The CTB is separated by
a furin cleavage site to release Ang-(1–7) once it is
secreted.

The expression of fusion protein (CTB-Ang-
1–7) in Lactobacillus strains was confirmed by
Western blotting (data not shown). The ability of
the Lactobacillus-expressed proteins to enter the
circulation and uptake by different tissues follow-
ing oral administration in mice was evaluated by
ELISA. Six week old C57Bl/6J mice were orally fed
with Lactobacillus expressing Ang-(1–7) at 1 × 1010
cfu/mouse daily for 3 days. Mice were then eutha-
nized, and serum and tissue samples were collected
6 hours after the last oral gavage. Ang-(1–7) levels
were determined by a commercial enzyme immunoas-
say (EIA) kit (Peninsula Laboratories International,
Inc., San Carlos, CA). As shown in Figure 1B, serum
levels of Ang-(1–7) in mice fed with these bacte-
ria were approximately five-fold higher than unred
control animals, suggesting that Ang-(1–7) is efficiently
expressed from three probiotic species and secreted into
circulation.
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Figure 2. Body weight of non-diabetes mellitus (NDM) and diabetes mellitus (DM) eNOS−/− (A) and Akita (B) mice treated with vehicle
(PBS), wild-type Lactobacillus paracasei (LP) and recombinant LP expressing Ang-(1–7) (LP-A) at week 0 (wk 0) and the end of the experiment.
Error bars represent standard deviation. *P < 0.05 (DM versus NDM, N = 12 for eNOS−/− mice and Akita versus wild-type littermate control,
N = 8).

Oral Administration of Recombinant
L. paracasei Expressing Ang-(1–7) did not
Affect BodyWeight

Oral feeding of L. paracasei expressing Ang-(1–7)
(LP-A) did not have any effects on blood glucose levels
(data not shown).Non-diabetic animals gained approx-
imately 20% body weight during the period of the
study. The body weight was significantly reduced in all
diabetic animals. Treatment with LP or LP-A did not
affect the body weight (Fig. 2).

Oral Administration of Recombinant
L. paracasei Expressing Ang-(1–7) (LP-A)
Prevents Diabetes-Induced Retinal Capillary
Loss in Mice

The protective effect of Ang-(1–7) in DR has been
demonstrated previously using AAV vector mediated
gene delivery.18 To evaluate the efficacy of Ang-(1–
7) expressed from LP-A in diabetic retinopathy, we
used two mouse models of diabetes: the streptozo-
tocin (STZ)-induced diabetes in eNOS−/− mice, which
develop an accelerated time course and increased sever-
ity of retinopathy;18,39,41 and the Akita mice, which
carry a mutation in the insulin 2 gene resulting in
mice exhibiting reduced ß cell mass and reduced insulin
secretion.42 The Akita mice develop progressive retinal
abnormalities, including increased vascular permeabil-
ity, apoptosis, and inner retinal thinning as early as
12 weeks after the onset of hyperglycemia.43 Mice were
gavaged 3 times/week with either 1 × 109 CFU of
LP-A, wild-type bacteria (LP), or vehicle (PBS) for

8 weeks after STZ-induced diabetes in eNOS−/− mice.
The Akita mice were treated with the same dose for
12 weeks beginning at 6 weeks of age.

Ang-(1–7) level in serum and retinal samples
collected at the end points was measured by EIA using
a commercial kit. Both serum and retinal Ang-(1–7)
levels were significantly reduced in diabetic eNOS−/−
and Akita mice compared with non-diabetic controls
and were restored to normal levels by LP-A treatment
(Fig. 3).

Diabetes resulted in increased capillary loss in
eNOS−/− (Fig. 4A) as reported previously.18,39,41 Akita
mice also showed increased retinal acellular capillar-
ies compared with age-matched littermate controls
(Fig. 4C). LP-A treatment significantly reduced the
number of acellular capillaries in both diabetic
eNOS−/− (approximately 29% reduction) and Akita
(approximately 40% reduction) mice compared with
untreated diabetic animals (Fig. 4). Wild type LP alone
also showed small but insignificant reduction of capil-
lary loss in both diabetic eNOS−/− and Akita mice.

Oral Administration of L. paracasei Ang-(1–7)
Reduce Diabetes-Induced Retinal Ganglion
Cell Loss

In additional to microvascular change, diabetic
retina showed considerable loss of retinal ganglion
cells (RGCs), as detected by Brn3a immunostaining, a
specific marker for RGCs,44 in both diabetic eNOS−/−
andAkitamice (Fig. 5), as reported previously.39 RGCs
loss also occurs in human patients with diabetes as well
as other diabetic rodents.45−50 LP-A treatment, but not
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Figure 3. Ang-(1–7) levels in serum (A) and retina (B) samples from eNOS−/− and Akita mice fed with vehicle (PBS), wild-type L. paracasei
(LP), and L. paracasei expressing Ang-(1–7) (LP-A) measured by EIA (n = 5 per group). Error bars represent standard deviation. NDM: non-
diabetes mellitus. *: P < 0.01 (versus nondiabetic controls). # P < 0.01 (versus vehicle treated diabetic animals). There is not significant
difference in Ang-(1–7) levels between LP and vehicle treated groups (ns: not significant; P > 0.1) in both serum and retina of eNOS−/− and
Akita mice.

wild-type LP, prevented RGCs loss in both diabetic
eNOS−/− and Akita mice (Fig. 5).

Oral Administration of L. paracasei-
Ang-(1–7) Reduces Diabetes-Induced
Expression of Inflammatory Cytokines in
Diabetic Retina in Mice

Diabetes is associated with increased inflammatory
responses in the retina. The expression level of pro-
inflammatory cytokines and chemokines was evaluated
by real-time RT-polymerase chain reaction (PCR) in
the retina from each experimental group. LP-A treated
animals show significantly decreased retinal expression
of all these cytokines and chemokines in both diabetic
eNOS−/− mice (Fig. 6A) and Akita mice (Fig. 6B). LP
alone did not show any effect on the expression of these
genes in diabetic eNOS−/− mice (Fig. 6A), however,
the expression levels of MCP-1 and VEGF were
slightly but significantly reduced in Akita mice
(Fig. 6B). There was also a slight decrease in ICAM-1
expression in LP treated Akita mice, but not statis-
tically significant. The expression of Iba-1, a marker
of microglia, was also elevated in diabetic retina of

both eNOS−/− and Akita mice, and was significantly
reduced by LP-A treatment but not affected by LP
alone (Fig. 6). Elevated expression of Iba-1 in diabetic
retina was also detected by immunofluorescence.
Diabetic eNOS−/− mouse retina showed increased
number of Iba-1 positive microglial cells, which was
significantly reduced in LP-A treated mice (Fig. 7).

Materials and Methods

Bacterial Strains and Growth Conditions

The Lactobacillus strains used in this study were
from American Type Culture Collection (ATCC,
Manassas, VA): L. paracasei (LP) (ATCC 27092), L.
gasseri (ATCC 4963), and L. plantarum (ATCC 8014)
and were cultured in de Man, Rogosa, and Sharpe
(MRS) broth (Thermo Fisher Scientific, #DF0881-17-
5) at 37°C for 18 hours without shaking. The plasmid
pTRKH3-ldhGFP (Addgene, plasmid #27170) was
used as a backbone for cloning of secreted Ang-(1–
7) in fusion with the CTB, which allows for uptake
of the protein into the enterocytes via its binding to
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Figure 4. Evaluation of retinal acellular capillary in diabetic eNOS−/− (A, B) and Akita (C, D) mice.A andC Representative images of trypsin-
digested retinal vascular preparations from eNOS−/− (A) and Akita (C) mice treated with vehicle (PBS), WT-LP, or LP-A; and quantitative
measurements of acellular capillaries of eNOS−/− (B) andAkita (D)mice.Arrows indicate the acellular capillaries. Error bars represent standard
deviation. NDM, non-diabetes mellitus; DM, diabetes mellitus. *: P < 0.05; **P < 0.01. ns: not significant (P > 0.1). N = 6/group. Treatments
with LP-A significantly reduced acellular capillaries in both eNOS−/− and Akita mice.

the GM1 receptor. A mutant form of CTB, which
retains the binding to GM1-ganglioside for cellular
uptake but lacks immunomodulatory and toxic activ-
ity51,52 was used as reported previously39 to construct
the fusion construct. The resulting plasmid was electro-
porated into different Lactobacillus species by electro-
poration as described by Welker et al.53 Recombi-
nant Lactobacillus bacteria expressing Ang-(1–7) were
grown in the MRS media supplemented with 5 μg/mL
erythromycin (Sigma-Aldrich, St. Louis,MO). For oral
gavage of mice, bacteria were harvested by centrifuga-
tion at 5,000 × g for 20 minutes and resuspended in
sterile PBS.

Animals and Experimental Procedures

Wild-type C57Bl/6J (Stock Number: 000664),
eNOS−/− (Stock Number: 002684) and Akita mice
(Stock Number: 003548) were purchased from Jackson
Laboratories (Bar Harbor, ME) and maintained in the
Animal Care Service at the University of Florida. All
procedures adhered to the ARVO statement for theUse
of Animals in Ophthalmic and Vision Research, and
the protocol was approved by the Animal Care andUse
Committee of the University of Florida. The animals
were fed standard laboratory chow and allowed free
access to water in an air-conditioned room with a
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Figure 5. Quantification of retinal ganglion cell (RGC) density detected by Brn3a immunostaining in diabetic eNOS−/− (A, B) and Akita
(C, D) mice. Representative immunofluorescence images of Brn3a staining from eNOS−/− (A) and Akita (C) mice treated with vehicle (PBS),
WT-LP, or LP-A and quantification of Brn3a positive cells of eNOS−/− (B) and Akita (D) mice. Error bars represent standard deviation. NDM,
nondiabetes mellitus; DM, diabetic mellitus. **: P < 0.01. ns: not significant (P > 0.1). N = 6/group.

12 and 12-hour light dark cycle. Diabetes in adult
eNOS−/− mice (8–10 weeks old) was induced by STZ
injection, as reported previously.41 Gavage of diabetic
eNOS−/− mice was performed with either 1 × 1010
CFU of wild-type L. paracasei (WT-LP), LP express-
ing Ang-(1–7) (LP-A) or vehicle (PBS), 3 times/week
for 8 weeks. Akita mice were gavaged with the same
dose for 12 weeks. Mice were euthanized 2 days after
oral gavage for final tissue collection and analysis.

ELISA Analysis

Serum and retinal level of Ang-(1–7) was measured
using a commercial EIA kit (Bachem, San Carlos, CA),
following themanufacturer’s instructions. All measure-
ments were performed in duplicate and the data repre-
sent the mean of two separate assay results.

Retinal Vascular Preparation by
Trypsin-Digestion

Retinal vasculature was prepared using trypsin
digest, as described previously.41 Briefly, eyes were

fixed in 4% paraformaldehyde freshly made in PBS
overnight. Retinas were dissected out from the eyecups
and digested in 3% trypsin (GIBCO-BRL) for 2–3
hours at 37°C. Retinal vessels were separated from
other retinal neuronal cells by gentle shaking and
manipulation under a dissection microscope. The
vessels were then mounted on a clean slide, allowed
to dry, and stained with Periodic Acid Solution
hematoxylin and eosin, Gill No. 3 (PAS-H&E; , Sigma,
St. Louis, MO) according to the instruction manual.
After staining and washing in water, the tissue was
dehydrated and mounted using Permount mounting
media (Sigma).

Immunofluorescence and
Immunocytochemistry

For immunofluorescence studies, eyes were fixed
in 4% paraformaldehyde overnight at 4°C and subse-
quently processed for either quick freezing in optical
cutting temperature (OCT) compound or paraffin
embedding. For OCT embedding, the eyes were
cryoprotected in 30% sucrose/PBS for several hours or
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Figure 6. Retinal inflammatory cytokine expressionmeasured by real-time RT-PCR in diabetic eNOS−/− (A) and Akita mice (B) treated with
vehicle (PBS), WT-LP, or LP-A. Values on y-axis represent relative expression level compared to PBS treated group for each gene. Error bars
represent standard deviation. NDM, non-diabetes mellitus. *: P < 0.05; **: P < 0.01 (versus PBS treated diabetic groups). #: P < 0.01 (versus
PBS treated diabetic groups). There is no significant difference between vehicle and WT-LP treated groups. N = 4/group.

overnight before quick freezing in OCT compound,
then 12-μm-thick sections were cut at −20 to –22
degrees. For paraffin embedded eyes, 4μm-thick paraf-
fin sections were cut and mounted on Superfrost
Plus slides. The paraffin sections were first deparaf-
finized followed by antigen retrieval in low pH citric
acid buffer for 20 minutes. The sections were then
incubated in blocking solution (5% BSA+ 0.3% Triton

X-100 in PBS) for 1 hour. This was followed by
incubation overnight at 4°C with primary antibody
(mouse anti-Brn3a, 1:200,MAB1585;Millipore, Biller-
ica, MA). Iba-1 (1:500, 019-19741; Wako, Richmond,
VA) immunostaining was performed using OCT-
embedded frozen sections without antigen retrieval.
After washing, secondary antibody conjugated to
Alexa 488 (Molecular Probes/Invitrogen, Carlsbad,
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Figure 7. Quantification ofmicroglial cells by Iba-1 immunofluorescence. (A) Representative immunofluorescence images of Iba-1 staining
from eNOS−/− mice treated with vehicle (PBS), LP, or LP-A. (B) quantification of Iba-1 positive cells. Error bars represent standard deviation.
NDM: non-diabetes mellitus; DM: diabetes mellitus. *: P < 0.05; **: P <0.01. ns: not significant (P > 0.1). N = 4/group.

CA) was incubated for 1 hour at room tempera-
ture (RT). Sections were washed in PBS contain-
ing the nuclear counterstain DAPI (4′,6 diamidino-2-
phenylindole), and mounted in Dako mounting media.
The images were captured with a Leica Fluorescence
Microscope LAS X System (Leica Microsystems Inc.,
Buffalo Grove, IL).

Real Time RT-PCR analysis

Total RNA was isolated from freshly enucle-
ated eyes using Trizol Reagent (Invitrogen, Carlsbad,
CA) according to manufacturer’s instructions. Reverse
transcription was performed using Enhanced Avian

HS RT-PCR kit (Sigma-Aldrich, Inc., St. Louis, MO)
following manufacturer’s instructions. Real time PCR
was carried out on real time thermal cycler (iCycler;
Bio-RadLife Sciences,Hercules, CA) using iQTMSybr
Green Supermix (Bio-Rad Life Sciences). The thresh-
old cycle number (Ct) for real-time PCR was set by
the cycler software. Optimal primer concentration for
PCR was determined separately for each primer pair.
Each reaction was run in duplicate or in triplicate,
and reaction tubes with target primers and those with
Actin primers were always included in the same PCR
run. Primer sequences used in this study are shown
in the Table. All the reactions were repeated at least
twice.

Table. Primers Used for Real-Time RT-PCR Analysis

Gene Name Accession Number Sequences

IL-1β NM_008361.3 Forward: 5’-AAAGCCTCGTGCTGTCGGACC -3’
Reverse: 5’-CAGCTGCAGGGTGGGTGTGC -3’

TNF-α NM_013693.2 Forward: 5’-AGGCGCCACATCTCCCTCCA-3’
Reverse: 5’-CGGTGTGGGTGAGGAGCACG-3’

ICAM-1 NM_010493 Forward: 5’-AGATGACCTGCAGACGGAAG-3’
Reverse: 5’-GGCTGAGGGTAAATGCTGTC-3’

MCP-1 NM_011333 Forward: 5’-CCCCACTCACCTGCTGCTACT-3’
Reverse: 5’-GGCATCACAGTCCGAGTCACA-3’

β-Actin X03672 Forward: 5’-AGCAGATGTGGATCAGCAAG-3’
Reverse: 5’-ACAGAAGCAATGCTGTCACC-3’

Iba-1 XM_006523503.4 Forward: 5’-TCCCCCAGCCAAGAAAGCTA- 3’
Reverse: 5’ -TGACCCACTAGGAGCGTCAT- 3’

VEGF NM_001025250.3 Forward: 5’-TTCAGCTCGCTCCTCCACTT- 3’
Reverse: 5’TTTTCTCTGCCTCCGTGAGG- 3’
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Statistical Analysis

Data are expressed as the mean+ SD of at least two
independent experiments. Differences between mean
values of multiple groups were analyzed by 1-way
ANOVAwith Dunnett’s test for post hoc comparisons.
A P value < 0.05 was considered statistically signifi-
cant.

Discussion

Dysregulation of RAS, resulting in elevated Ang
II, contributes diabetes and diabetic complications,
including DR. The protective axis of RAS, involv-
ing ACE2/Ang-(1–7)/Mas, opposes these effects by
degradation of Ang II to generate Ang-(1–7), which
binds to a G-protein coupled receptor, Mas, and
activates signaling pathways that counteract the effects
of Ang II.10−12 We have previously demonstrated that
increased expression of ACE2 or Ang-(1–7) dimin-
ishes diabetes-induced retinal pathophysiology18,54 and
ocular inflammation55−57; providing the “proof-of-
principle” that enhancing the ACE2/Ang-(1–7) axis is
a promising approach for treating DR. Moreover, a
large number of studies have shown that enhanced
expression of Ang-(1–7) and ACE2 reduces inflamma-
tion58−61 and oxidative damage,62−65 increases glucose
uptake,63 improves lipid and glucose metabolism,66,67
ameliorates insulin resistance and dyslipidemia,14,67−69

improves pancreatic β-cell function,70−72 improves the
reparative function of dysfunctional endothelial cells
and progenitors,73−75 and confers protection against a
variety of pathological conditions including diabetes-
induced nephropathy76−83 and cardiovascular dysfunc-
tion.83−88 Despite the mounting evidence for benefi-
cial effects of Ang-(1–7), its clinical studies and appli-
cations are limited, largely due to extreme short half-
life and rapid clearance in circulation and tissues,19,20
making it challenging to develop a pharmaceutical
composition of Ang-(1–7) that delivers the peptide to
target tissues with sufficient bioavailability.

In this study, we designed an expression and deliv-
ery system based on the use of Lactobacillus bacteria
to serve as a live vector for the oral delivery of Ang-
(1–7) peptide. Using the similar strategy as reported
previously,39 the expression of Ang-(1–7) is driven
by the LDH promoter from Lactobacillus acidophilus,
a strong promoter that is active in different bacte-
rial hosts.40,89 The peptide is expressed as a secreted
fusion proteinwith theCTB,which facilitates the trans-
mucosal transport into circulation and tissue uptake
by monosialotetrahexosylganglioside (GM1) mediated
endocytosis. The Usp45 secretion signal peptide, CTB,

and furin cleavage site enable Ang-(1–7) to be secreted
into the gut lumen and its transepithelial transport
into circulation as described previously.39 We show
that the Ang-(1–7) peptide is efficiently expressed from
three different Lactobacillus species and secreted into
circulation in mice fed with these bacteria. Treat-
ment with L. paracasei expressing Ang-(1–7) reduced
diabetes-induced increase in retinal acellular capil-
laries, prevented RGC loss and decreased inflamma-
tory cytokine expression in the retina in both diabetic
eNOS−/− and Akita mice.

We sought to develop probiotics-based expression
and delivery system to enhance Ang-(1–7) based on
the following rationale. First, diabetes inflicts multi-
ple tissues including the retina and Ang-(1–7) has been
shown to be beneficial in many tissues. Second, increas-
ing evidence implicates the gut and its microbiota in
pathogenesis of diabetes and its associated compli-
cations,21−24,26,90−104 including DR,105−107 and probi-
otics are beneficial in management of diabetes.108−112

The probiotic-based delivery of Ang-(1–7) offers many
advantages. First, probiotics have been consumed by
humans for thousands of years, are generally recog-
nized as safe (GRAS) to consume and offer many
beneficial effects on their own.113 Probiotics are known
to promote host health by modulating immune system,
interfere with potential pathogens, improving intesti-
nal barrier function, positively modulating the compo-
sition and function of the commensal microbiota, as
well as many other protective actions.114−121 Second,
ingested probiotics can survive both gastric acid and
bile to reach the small intestine and colon, where they
exert their effects, making them an ideal vehicle for
delivery of protein drugs. Third, unlike conventional
approaches, the probiotics-based oral delivery system,
using a carrier fused with the therapeutic protein, facil-
itates efficient transmucosal transport into the circula-
tion, increases half-life and target tissue uptake, thus
enhancing bioavailability.39,122,123 Moreover, probiotic
bacteria are inexpensive to produce and oral deliv-
ery of therapeutics is patient-friendly, thus probiotics-
based approach ismore cost-effective. Thus, a probiotic
enriched with Ang-(1–7) represent potential therapy
to improve metabolism, and intestinal and immune
functions, thereby preventing DR and other diabetic
complications. Our results provide proof-of concept
for feasibility using probiotics-based oral delivery of
Ang-(1–7) with enhanced bioavailability and efficacy in
two mouse models of DR.

In current study, we have used LP expressing Ang-
(1–7) to test the efficacy in animal models of DR. The
rationale for choosing LP is that, first, it is part of
the healthy gut microbiota124 and is widely used as
a probiotic125−127 and, second, LP has been shown
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to be beneficial in colitis-induced gut inflammation
and barrier dysfunction,128−130 as well as improving
diabetes in experimental models.131−134 LP-A treat-
ment protected development of DR in both models.
However, wild-type LP alone did not show protective
effects, as reported previously,39 this is likely due to the
strain used in this study. A number of experimental
and clinical studies has demonstrated that probiotics
supplements of several Lactobacillus species (includ-
ing LP) are beneficial in management of both type
1 and type 2 diabetes and other metabolic diseases;
however, these various beneficial effects are strain and
species-specific.109−112 For example, Dang et al. evalu-
ated eight strains of LP, only one of those showed
antidiabetic effects.132 It would be interesting to deter-
mine whether Ang-(1–7) expressed from this strain
would provide better protection againstDR.Moreover,
our results showed that Ang-(1–7) can be expressed
from several species of Lactobacillus, each of which
may offer different beneficial effects, future studies will
be required to determine whether specific probiotics
species or strains can be selected for oral delivery to
optimally target specific patient populations to achieve
personalized precision medicine paradigm. It is inter-
esting to note that although LP alone did not provide
significant protection against diabetes-induced loss of
retinal capillaries and RGCs, but it did slightly reduce
the expression of some inflammatory cytokines (e.g.
MCP-1 and VEGF), but not other cytokines measured
in this study. The reduction of these cytokines was only
detected in Akita mice but not in diabetic eNOS−/−.
This likely due to the fact that diabetic eNOS−/− mice
not only develop more severe retinopathy, but also
other tissue damage and impaired immune functions
compared with Akita mice.

Ang-(1–7) has been shown to be beneficial under
various pathologic conditions in various tissues,
including diabetes and diabetic complications, by
improving metabolism and insulin sensitivity, inhibit-
ing apoptosis, oxidative stress, and inflammation.12−17

Here, we showed that Ang-(1–7) is increased in both
circulation and retina in mice fed with LP-A, suggest-
ing that the protective effects of LP-A in diabetic retina
may be mediated by both local effects of Ang-(1–7)
in the retina as well as general beneficial effects in
other tissues of diabetic animals. It is also possible
that LP-A may provide protective effects by modulat-
ing gut microbiome. A previous study showed that oral
administration of LP-A in rats increased abundance
of gutAkkermansia muciniphila (A. muciniphila).123 As
decreased abundance of A.muciniphila has been associ-
ated with increased prevalence of metabolic disorders,
such as obesity and type 2 diabetes,135−137 such increase
in A. muciniphila by LP-A treatment, which remains to

be confirmed in diabetic mice by ongoing study, may
provide additional beneficial effects in diabetic animals.
More comprehensive studies will be required to further
understand the effects and underlying mechanisms of
LP-A treatment in various tissues.

In conclusion, Ang-(1–7) is efficiently expressed
from different probiotic species and secreted into circu-
lation in mice fed with these bacteria. Oral adminis-
tration of L. paracasei secreting Ang-(1–7) provides
protection against diabetes-induced DR. Thus, LP-
based delivery of Ang-(1–7) may hold important thera-
peutic potential for the treatment of DR and other
complications.
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