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Drug repositioning offers new clinical indications for old drugs. Recently, many computational approaches have been developed to
repurpose marketed drugs in human diseases by mining various of biological data including disease expression profiles, pathways,
drug phenotype expression profiles, and chemical structure data. However, despite encouraging results, a comprehensive and
efficient computational drug repositioning approach is needed that includes the high-level integration of available resources.
In this study, we propose a systematic framework employing experimental genomic knowledge and pharmaceutical knowledge
to reposition drugs for a specific disease. Specifically, we first obtain experimental genomic knowledge from disease gene
expression profiles and pharmaceutical knowledge fromdrug phenotype expression profiles and construct a pathway-drug network
representing a priori known associations between drugs and pathways. To discover promising candidates for drug repositioning,
we initialize node labels for the pathway-drug network using identified disease pathways and known drugs associated with the
phenotype of interest and perform network propagation in a semisupervisedmanner. To evaluate our method, we conducted some
experiments to reposition 1309 drugs based on four different breast cancer datasets and verified the results of promising candidate
drugs for breast cancer by a two-step validation procedure. Consequently, our experimental results showed that the proposed
framework is quite useful approach to discover promising candidates for breast cancer treatment.

1. Introduction

Developing and discovering a new drug is a very costly and
time consuming process, which can take 10–17 years with
a cost of 1.3 billion dollars. Despite large investments in
research and development each year, there are still only a
small number of new drugs approved successfully by the
Food and Drug Administration (FDA) each year. Increasing
failure rates, high costs, and the lengthy testing process
for drug development have led to a process called drug
repositioning [1], which refers to identifying and developing
new uses for existing drugs to reduce the risk and cost.

Traditional drug repositioning methods primarily use
information on chemical structure, side effects, and drug

phenotypes and explore similar drugs based on the assump-
tion that structurally similar drugs tend to share common
indications [2–4]. In other words, the key idea behind these
approaches is that molecularly similar drug structures often
affect proteins and biological systems in similar ways [4].
For example, Swamidass [5] used chemical structure data to
identify unexpected connections between a known drug and
a disease and explored the hypothesis that if a drug has the
same target as a known drug, then this new drug would also
have activity against the disease. As another approach, Keiser
et al. used 3665 US FDA-approved and investigational drugs
that together had hundreds of targets, defining each target by
its ligands. The chemical similarities between the drugs and
ligand sets predicted thousands of unanticipated associations,
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which have been used to develop new indications for many
drugs.

Alternatively, some approaches use a drug phenotype,
which is the expression profile of patients undergoing treat-
ment with a drug. For example, the Connectivity Map
(CMap) [6, 7] project is exploring the effects of a large number
of FDA-approved chemicals (1309 drugs) on gene expression,
and these effects are measured in four different cell lines,
allowing researchers to analyze the different expression pat-
terns of drug’s target genes. Many computational approaches
have been introduced to reposition drugs using CMap by
analyzing drug-associated expression signatures to match
a repositioned drug’s effect with a shared perturbed gene
expression profile for another disease, under the assumption
that drugs that share similar CMap expression signatures
have similar therapeutic applications. Using the CMap data,
Iorio et al. [8] developed a drug repositioning method by
constructing a drug-drug similarity network using gene set
enrichment analysis (GSEA) [9] that could compute the
similarity between pairs of drugs. Several different studies
[3, 10–13] showed that using CMap expression profiles with
a combination of various data sources such as drug target
databases, drug chemical structures, and drug side effects was
an improvement over the current drug target identification
methods.

Moreover, the rapid developments in genomics and high-
throughput technologies have produced a large volume of
disease gene expression profiles, protein-protein interactions,
and pathways. The high-level integration of these resources
using network-based approaches is reported to have great
potential for discovering novel drug indications for existing
drugs [14]. For example, Chen et al. [15] introduced two dif-
ferent inference methods for predicting drug-disease associa-
tions based on basic network topology using a bipartite graph
constructed from DrugBank [16] and Online Mendelian
Inheritance in Man (OMIM) [17]. Emig et al. [18] integrated
gene expression profiles, drug targets, disease information,
and interactions for drug repositioning. Hu and Agarwal
[19] created a disease-drug network using disease microarray
datasets and predicted new indications for existing drugs
using their disease-drug network.

Although many of the above methods have shown
encouraging results for finding new indications for old drugs,
there are still some limitations. For example, Yildirim et
al. [20] concluded that most drugs with distinct chemical
structures target the same proteins, and Keiser et al. [21]
reported that structurally similar drugs may also target
proteinswith dissimilar functions, stating that using chemical
structure alone is insufficient for successful drug reposi-
tioning [22]. In addition, care should be taken when using
only the drug phenotype (drug treated) expression profile
(such asCMAP) for drug repositioning because someportion
of the genes or pathways that show statistically significant
expression differences in cell lines treated with the drug may
be expressed only because of the drug’s side effects or toxicity.
Furthermore, the genes expressed in the drug treated profiles
for specific disease cell line or tissue only represent a small
subset of the biological pathways, whereas the cooperation
of genes plays an important role in complex diseases such

as cancer. Pathway-based drug repositioning may be a better
alternative for drug repositioning for specific diseases such as
cancer.

To overcome the above limitations, the current drug
repositioning methods require a comprehensive and efficient
computational drug repositioning approach that incorpo-
rates powerful machine learning approaches using the high-
level integration of available data such as disease gene expres-
sion profiles (disease profile), drug treated expression profiles
(drug phenotype profile), and drug databases (STITCH [23],
DrugBank [16], therapeutic target database (TTD) [24]) to
discover new drugs for a human diseases. In this study, we
aim to develop a systematic computation framework that
repositions drugs by employing disease profile and drug
phenotype profiles on the drug network along with integrated
omics data.

2. Materials and Methods

In the framework as shown in Figure 1, we firstly identify
disease-specific pathways by using an integrative analysis of
multiple disease gene expression profiles and construct a
pathway-drug network structure using pathway-drug associ-
ations derived from the CMap drug phenotype profile. Then
to discover promising candidates, for drug repositioning, we
initialize node labels for the pathway-drug network using
identified disease pathways and known drugs associated
with breast cancer and perform network propagation in a
semisupervised manner.

In the following, the detailed explanations of our pro-
posed framework for repositioning and evaluation method
are described.

2.1. Finding Disease-Specific Pathways from Multiple Disease
Expression Profiles. To identify disease pathways related to
a specific disease, conventional approaches have usually
focused on identifying enriched pathways between cases and
controls using data from a single experiment. Specifically,
when using real experimental data such as microarray gene
expression data, it is possible for different studies to report
different results for disease-specific pathways. That is, the
results are often not reproducible or not robust even to
the mildest data perturbation, so the integrated analysis
of multiple existing studies can increase the reliability and
generalizability of results [25]. To address these issues, our
approach identifies a disease-specific pathway based on
disease pathway enrichment using multiple gene expression
profiles for a given phenotype, in which the disease pathway
enrichment results are integrated. Each disease expression
profile is preprocessed, and the pathways that show sig-
nificant differences between case and control samples are
identified by GSEA [9], which returns the enrichment score
(ES) and nominal 𝑝 value for each pathway. These scores
are used for comparison analysis across pathways to detect
significant pathways.

Here, we considered that the integration of pathways
significantly enriched for each expression profile could better
represent “disease-specific pathways” for the phenotype of
interest. To integrate, the pathways with a nominal 𝑝 value
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Figure 1:The proposed framework for drug repositioning. The proposed framework consists of several steps. First, disease-specific pathways
are identified by disease pathway enrichment of multiple expression profiles for the disease of interest. Second, the drug pathway network is
constructed from the drug pathway associations obtained from the drug phenotype profiles. Once the network is constructed, initial labels
are assigned using disease-specific pathways and known drugs associated with the given disease. Finally, pathway-based drug repositioning
is performed using semisupervised network propagation. The identified drugs are evaluated, and the final results are obtained.

less than 0.01 (𝑝 < 0.01) are selected as significant pathways
for each expression profile, and their union is defined as
“disease-specific pathways.” Figure 2 presents an illustration
of the integration process.

2.2. Deriving Pathway-Drug Associations from CMap Drug
Phenotype Profiles. To define a pathway-drug association,
pathway-drug enrichment is established from the drug phe-
notype expression profile (CMap: Connectivity Map) [6, 7],
which contains the gene expression profiles obtained from
five different cancer cell lines treated with 1309 (v2) small
drug molecules, most of which are FDA-approved drugs, for
a total 6100 data points representing gene expression results
with control vehicle samples. The CMap data are prepro-
cessed, batch effects are removed, and pathway enrichments
are estimated by GSEA as in previous studies [11, 26, 27]. As a
result, each pathway (1077) has an ES for each drug molecule
(1309).The strength of the ES indicates the association degree
of a pathway with a drug. As shown in Figure 3, the pathway-
drug association can be represented as a 1077 × 1309 matrix,

where the columns list the drugs and the rows list the
pathways.

2.3. Pathway-Drug Network Construction. A pathway-drug
network was established from the drug pathway associa-
tion profile. By using the pathway-drug enrichment matrix
(Figure 3), the pathway-drug bipartite graph structure 𝐺 =
(𝑈,𝑉, 𝐸, 𝑤) was constructed, whose vertices can be divided
into two disjoint sets: 𝑈 (pathways) and 𝑉 (drugs) such
that every edge 𝑒 ∈ 𝐸 with weight 𝑤 represents the
enrichment of pathway 𝑢𝑖 ∈ 𝑈 by drug V𝑗 ∈ 𝑉. In other
words, each node in the network corresponds to a drug
or pathway, and each edge corresponds to the association
between them. It can be observed that drugs tend to bindwith
disease-specific pathways. All nodes were initially unlabeled
as 0. Semisupervised learning on a network requires a small
amount of labeled data with a large amount of unlabeled data.

To use the constructed bipartite graph for drug reposi-
tioning, we made following assumption as in [4]: If phar-
macologically different drugs induce the same phenotype of
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Figure 2: Disease pathway enrichment. Disease-specific pathways are identified frommultiple gene expression profiles for the same disease.
For each profile, enriched pathways with 𝑝 < 0.01 are selected and integrated by taking their union. The resulting pathways are considered
disease-specific pathways for the given disease.

interest, then most of molecular pathways they target must
be shared. In other words, drugs used to treat the same disease
(phenotype) target similar pathways. For example, if we have
some prior knowledge on certain drugs that are used to
treat a specific disease, then most of the molecular pathway
they target should be similar. In Figure 4, the blue drugs
(breast cancer treatment drugs) target pathway “B,” and the
green drugs (prostate cancer treatment drugs) target pathway
“D.” From this information, it is can be concluded that drug
“K” can likely be used to treat prostate cancer, when the
weight (ES) is high enough. This is main assumption that we
make in our proposed framework for pathway-based drug
repositioning. Defining the initial knowledge (or initial labels
for nodes) is also one of the key steps in this work.

2.4. Label Initialization on a Pathway-Drug Network. To
initialize the pathway-drug labels for the 𝑈 (pathways) and
𝑉 (drugs) disjoint sets, we used disease-specific pathways
inferred from the multiple gene expression profiles and
known treatment drugs for the given phenotype (breast can-
cer) were obtained from three different public resources: the
Maya Clinic, Cancer Organization, and TTD. The identified
disease-specific pathways were mapped to the U (pathways)
set and labeled as 1, and the remaining pathways were labeled
as 0.

For the 𝑉 (drugs) set, a more accurate prediction is
possible if we can set the labels for the drug set in the pathway-
drug network using previously known information about the
disease-related drugs prior to using network propagation to
predict drugs associated with the disease. Therefore, we first
verified known drugs used for the treatment of the disease
of interest using public drug-related sources, including the
Maya Clinic database, Cancer Organization database, and
TTD, and then determined the labels for the drug set in the
pathway-drug network. These drugs were mapped to the 𝑉
(drugs) set and labeled as 1, and the remaining drugs were
labeled as 0.

2.5. Drug Repositioning by Semisupervised Learning. Once
the initial labeling of the pathway-drug network was com-
pleted, we predicted the repositioned drugs by learning the
drug nodes and pathway nodes with the network propagation
algorithm. The bipartite graph can be defined as 𝐺 =
(𝑉,𝑈, 𝐸, 𝑤), where 𝑉 and 𝑈 are the node sets that are the
disjoint node, in which the nodes of each node set are
expressed as V and 𝑢, respectively. 𝐸 is the set of edges
between 𝑉 and 𝑈, and 𝑤 represents the weights of these
edges. The weight of a specific edge is expressed as 𝑤(V, 𝑢).
The function for the sum of all weight values for a node
can be defined as 𝑑(V) = ∑(V,𝑢)𝑤(V, 𝑢). Now, let us examine
the network propagation algorithm based on the definition
of the previously defined bipartite graph. First, the network
propagation algorithmnormalizes theweights of the bipartite
graph using the following formula:

𝐵 = 𝐷−1/2V ∗𝑊 ∗ 𝐷
−1/2
𝑢 . (1)

Here, W is a matrix containing the weights of the bipartite
graph,𝐷V and𝐷𝑢 are the diagonal matrices with the values of
𝐷𝑖V𝑖V = 𝑑(V) and𝐷𝑖𝑢𝑖𝑢 = 𝑑(𝑢), respectively, and 𝐵 is the matrix
of the normalized weights. Second, network propagation is
performed for the bipartite graph using formulae (2) and
(3), iterating over the objective function of the graph-based
semisupervised learning algorithm.

For each V ∈ 𝑉,

𝑓 (V)𝑡 = (1 − 𝛼) 𝑦 (V) + 𝛼∑
𝑢∈𝑈

𝐵𝑖V𝑖𝑢𝑓 (𝑢)
𝑡−1 . (2)

For each 𝑢 ∈ 𝑈,

𝑓 (𝑢)𝑡 = (1 − 𝛼) 𝑦 (𝑢) + 𝛼∑
V∈𝑉
𝐵𝑖V𝑖𝑢𝑓 (V)

𝑡−1 . (3)

Here, 𝑡 is the number of iterations and 𝑦 is the initial label of
the corresponding node.Theparameter𝛼 has a value between
0 and 1 and acts to regulate the relative weight of the initial
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label and the learned label. 𝑦(V) and 𝑦(𝑢) are the initial labels
for the drugs and pathway, respectively, whereas 𝑓(V) and
𝑓(𝑢) are the final label scores. Finally, network propagation
is completed when the values of 𝑓(V) and 𝑓(𝑢) converge.

If the network propagation algorithm is executed over
the pathway-drug bipartite according to the above method,
the learned drugs label scores can be obtained. As the label
score of a drug increases, the drug can be considered a more
promising candidate for drug repositioning for the given

phenotype. Therefore, we define the values of the final drug
label scores as the drug repositioning scores and use them
to predict disease-associated drugs from the pathway-drug
network. In addition, all obtained label scores are normalized
by the 𝑍-score using the following equation:

𝑍drug
𝑖

=
𝑙drug

𝑖

−mean (𝑙)
std (𝑙)

, (4)
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where 𝑙 is the label score vector for all drugs and 𝑙drug
𝑖

is the
final label score for drug𝑖. For each drug, the corresponding
𝑝 value was estimated based on the 𝑍-score for Gaussian
distribution. For more conservative results, we chose drugs
with 𝑝 < 0.001 as promising drug candidates for drug
repositioning for the given disease. The selected promising
drug candidates are evaluated by our validation methods and
chosen for further investigation.

3. Results and Discussion

We tested our proposed framework to reposition 1309 drugs
for breast cancer.

3.1. Finding Disease-Specific Pathways in Breast Cancer. To
obtain breast cancer-specific pathways, we used publicly
available breast cancer expression profiles (GSE15852 [28],
GSE20437 [29], GSE2043 [30], and GSE2990 [31]) from
the Gene Expression Omnibus (GEO) [32]. Table 1 shows
the detailed characteristics of the expression profiles used
in our study. Each dataset was preprocessed using RMA
techniques [33] and implemented in R using the BioCon-
ductor package, which includes a large number of metadata
packages appropriate for different types of microarrays.
Supplementary Figure 1, in Supplementary Material available
online at http://dx.doi.org/10.1155/2016/7147039, shows the
results of preprocessing. For each dataset, the corresponding
annotation databases were downloaded separately, and each
probe was mapped to a HUGO [34] gene symbol; a probe
was discarded if it did not match any symbol. In addition, if a
gene hadmultiple probes (many-to-one), the gene expression
values were averaged over the probes.

The human metabolic and signaling pathways were
obtained from the Molecular Signature Database (MSigDB)
[35]. As shown in Table 2, we chose the canonical path-
ways in the curated gene sets that contain 1077 pathways

collected from KEGG [36], Reactome [37], and BioCarta
(http://www.biocarta.com/).

For each dataset, a pathway was defined as breast cancer
enriched by GSEA when 𝑝 < 0.01. To integrate, the enriched
pathwayswith nominal𝑝 values less than 0.01 (𝑝 < 0.01) were
selected as significant pathways for each expression profile,
and their union was defined as the “disease-specific path-
ways.” Table 3 shows the number of enriched pathways for
each dataset and the integrated pathways obtained by taking
their union. Table 4 shows an example of enriched pathways
in breast cancer by using experiment dataset (GSE2990). In
the Supplementary Material, Tables 1–4 provide the GSEA
analysis results for each cancer expression profile and list the
identified disease-specific pathways that were used for label
initialization on the pathway-drug network.

3.2. Breast Cancer Drug Repositioning Using the Proposed
Approach. From the four different breast cancer expres-
sion profiles, 143 pathways were identified as significantly
enriched. On the pathway-drug network, these pathways
were mapped to the 𝑈 (pathways) set and initially labeled
as 1, and the remaining 934 pathways were labeled as 0.
In addition, known drugs used for the treatment for breast
cancer were obtained from three different public resources,
the Maya Clinic, Cancer Organization, and TTD. Sixty-
one drugs approved to treat breast cancer were obtained
from the Maya Clinic, 49 drugs were obtained from the
Cancer Organization, and 11 drugs were obtained from
TTD. Next, after mapping these drugs to the drug pathway
network only 10 drugs were successfully mapped. Moreover,
the 10 mapped drugs (tamoxifen, letrozole, doxorubicin,
vinblastine, exemestane, aminoglutethimide, methotrexate,
paclitaxel, megestrol, and fulvestrant) were labeled as 1 on V
(drugs), whereas all remaining drugs (1299) were labeled as 0.

Once the initial labels of the pathway-drug network
were chosen, we predicted promising candidates related to
breast cancer using semisupervised network propagation, as
shown in Figure 5. As a result, we considered 17 drugs with
𝑝 < 0.001, as shown in Table 5, and found that 10 of them
are already known drugs. The remaining seven drugs were
considered as promising drug candidates for breast cancer
and used for further validation to examine their association
with breast cancer.

3.3. Validation of Promising Candidate Drugs. To validate
the predicted drugs, we recommend the use of two different
methods. Drugs that have been successfully validated by both
methods are considered to be confirmed for repositioning for
breast cancer.

3.3.1. Biological Validation. Biological validation was per-
formed by manually checking the evidence in the biolog-
ical literature on promising drug candidates. We manually
searched for any possible indication of the repositioned drugs
for breast cancer. As shown in Table 6, for each promising
drug candidate, several different lines of evidence in the liter-
ature were found indicating its possible use for breast cancer.
Based on these results, we concluded that six drugs of seven
drugs were confirmed by biological validation for their new

http://dx.doi.org/10.1155/2016/7147039
http://www.biocarta.com/
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Table 1: Breast cancer gene expression datasets.

# Dataset id Samples (control/case) Probes Platform References
1 GSE15852 86 (43/43) 22283 GPL96 (HG-U133A) Pau Ni et al. [28]
2 GSE20438 42 (18/26) 22283 GPL96 (HG-U133A) Graham et al. [29]
3 GSE2043 286 (180/106) 22283 GPL96 (HG-U133A) Wang et al. [30]
4 GSE2929 193 (64/129) 22283 GPL96 (HG-U133A) Sotiriou et al. [31]
The gene expression datasets were downloaded from the NCBI Gene Expression Omnibus (GEO).

Table 2: Pathway data.

Database Pathways # of gene sets URL

MSigDB
(c2-canonical
pathways)

KEGG 186 http://www.genome.jp/kegg/
Reactome 674 http://www.reactome.org/
BioCarta 217 http://www.biocarta.com/

Total 1077

Table 3: Breast cancer disease-specific pathways for each dataset.

GSE15852 GSE20438 GSE2043 GSE2929 Integrated
pathways

# of pathways
𝑝 < 0.01 109 7 17 21 143

Enriched pathways were identified by GSEA. For integration, the pathways with (𝑝 value < 0.01) were selected as significant pathways for each expression
profile and their union was defined as “disease-specific pathways.”

Table 4: Breast cancer pathways from GSE2990 (𝑝 < 0.01).

# Name ES NES 𝑝 value

1 REACTOME DEFENSINS −0.767 −1.599 0.008230452

2 REACTOME ORGANIC CATION ANION ZWITTERION TRANSPORT 0.771 1.668 0.004016064

3 REACTOME G0 AND EARLY G1 −0.771 −1.601 0.008213553

4 REACTOME CELL SURFACE INTERACTIONS AT THE VASCULAR WALL −0.601 −1.670 0

5 REACTOME SYNTHESIS OF BILE ACIDS AND BILE SALTS VIA 7ALPHA
HYDROXYCHOLESTEROL 0.756 1.644 0.00617284

6 REACTOME PECAM1 INTERACTIONS −0.855 −1.685 0.001972387

7 REACTOME GABA SYNTHESIS RELEASE REUPTAKE AND DEGRADATION 0.773 1.558 0.003891051

8 REACTOME ACTIVATION OF THE PRE REPLICATIVE COMPLEX −0.773 −1.613 0.008438818

9 BIOCARTA GATA3 PATHWAY 0.746 1.688 0.002004008

10 REACTOME NEUROTRANSMITTER RELEASE CYCLE 0.709 1.747 0

11 BIOCARTA G2 PATHWAY −0.705 −1.704 0.00625

12 REACTOME PASSIVE TRANSPORT BY AQUAPORINS −0.757 −1.718 0.001865672

13 REACTOME PYRIMIDINE METABOLISM −0.702 −1.726 0.001964637

14 BIOCARTA ACTINY PATHWAY −0.734 −1.749 0.001945525

15 REACTOME SYNTHESIS OF GLYCOSYLPHOSPHATIDYLINOSITOL GPI 0.703 1.699 0.001976285

16 REACTOME ENDOGENOUS STEROLS −0.762 −1.694 0.005703422

17 REACTOME GLYCOSPHINGOLIPID METABOLISM 0.590 1.763 0.006048387
Supplementary files 2, 3, 4, and 5 provide the full pathway enrichment analysis results for the breast cancer expression profiles.

http://www.genome.jp/kegg/
http://www.reactome.org/
http://www.biocarta.com/
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Table 5: Predicted drugs after pathway-based drug repositioning.

Drug name Ranking score 𝑍-score p value Description

Doxorubicin∗ 0.999 8.935 0 It works by intercalating DNA, with the most serious adverse
effect being life threatening heart damage.

Exemestane∗ 0.803 6.880 2.99𝐸 − 12 Tyrosine kinase inhibitor which selectively inhibits HER2

Methotrexate∗ 0.708 5.892 1.91𝐸 − 09
blocks the production of steroids derived from cholesterol and
is clinically used in the treatment of Cushing’s syndrome and
metastatic breast cancer.

Megestrol∗ 0.668 5.464 2.33𝐸 − 08

It binds to and inhibits the enzyme dihydrofolate reductase,
resulting in inhibition of purine nucleotide and thymidylate
synthesis and, subsequently, inhibition of DNA and RNA
syntheses.

Paclitaxel∗ 0.646 5.235 8.26𝐸 − 08
It binds to and stabilizes microtubules, preventing their
depolymerization and so inhibiting cellular motility, mitosis,
and replication.

Aminoglutethimide∗ 0.637 5.148 1.32𝐸 − 07
It blocks the production of steroids derived from cholesterol and
is clinically used in the treatment of Cushing’s syndrome and
metastatic breast cancer.

Tamoxifen∗ 0.634 5.113 1.59𝐸 − 07

It is an antagonist of the estrogen receptor in breast tissue via its
active metabolite, hydroxytamoxifen. In other tissues such as
the endometrium, it behaves as an agonist and thus may be
characterized as a mixed agonist/antagonist.

Vinblastine∗ 0.625 5.020 2.59𝐸 − 07

It is an antimicrotubule drug used to treat certain kinds of
cancer, including Hodgkin’s lymphoma, non-small cell lung
cancer, breast cancer, head and neck cancer, and testicular
cancer.

Fulvestrant∗ 0.604 4.802 7.86𝐸 − 07

It is drug treatment of hormone receptor-positive metastatic
breast cancer in postmenopausal women with disease
progression following antiestrogen therapy. It is an estrogen
receptor antagonist with no agonist effects, which works by
downregulating the estrogen receptor.

Letrozole∗ 0.579 4.539 2.83𝐸 − 06 It is an oral nonsteroidal aromatase inhibitor for the treatment
of hormonally responsive breast cancer.

MS-275∗∗ 0.530 4.023 2.87𝐸 − 05
Entinostat, also known as SNDX-275 and MS-275, is a
benzamide histone deacetylase inhibitor undergoing clinical
trials for treatment of various cancers.

GW-8510∗∗ 0.477 3.467 0.000263332 Cyclin-dependent kinase 5 inhibitors: inhibition of dopamine
transporter activity.

Camptothecin∗∗ 0.475 3.452 0.000278495
It is an alkaloid isolated from the stem wood of the Chinese tree,
Camptotheca acuminata. This compound selectively inhibits the
nuclear enzyme DNA topoisomerase.

Phenoxybenzamine∗∗ 0.461 3.303 0.000478379
It is an alpha-adrenergic antagonist with long duration of
action. It has been used to treat hypertension and as a peripheral
vasodilator.

Tyrphostin AG-825∗∗ 0.447 3.159 0.000792504 It is tyrosine kinase inhibitor, which selectively inhibits HER2.

Alsterpaullone∗∗ 0.447 3.150 0.000815292 CDC2 protein kinase, antiangiogenic potential of small
molecular inhibitors of cyclin-dependent kinases in vitro.

Celastrol∗∗ 0.442 3.100 0.000966191

Celastrol is a remedial ingredient isolated from the root extracts
of “Tripterygium wilfordii” (Thunder of God vine) and
“Celastrus regelii.” In “in vitro” and “in vivo” animal
experiments, celastrol exhibits antioxidant, anti-inflammatory,
anticancer, and insecticidal activities.

∗Known breast cancer drug. ∗∗Potential drug candidate for repositioning.
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Table 6: Literature evidences for the promising drug candidates for breast cancer.

Promising drugs Biological
validation Related literature for possible usage for breast cancer

MS-275∗∗ o

(i) [45]: the potential anticancer activity of MS-275 in combination with
pentoxifylline in panel of cell lines and human breast cancer xenograft model in
vitro and in vivo.
(ii) [46]: MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits
angiogenesis andmetastasis, and reverses epithelial-mesenchymal transition in vivo.
(iii) [47]: HDAC inhibitors (MS-275) enhance the apoptosis-inducing potential of
TRAIL in breast carcinoma.

GW-8510∗∗ ⬦

(i) [48]: repositioning of a cyclin-dependent kinase inhibitor GW-8510 as a
ribonucleotide reductase M2 inhibitor to treat human colorectal cancer. In addition,
GW-8510 induced autophagic cell death.
(ii) [49]: in cell viability tests, four candidate drugs, GW-8510, etacrynic acid,
ginkgolide A, and 6-azathymine, are identified as having high inhibitory activities
against cancer cells.

Camptothecin∗∗ o

(i) [50]: the camptothecin targets WRN protein: mechanism and relevance in
clinical breast cancer.
(ii) [51]: CRLX101, an investigational camptothecin-containing nanoparticle-drug
conjugate, targets cancer stem cells and impedes resistance to antiangiogenic
therapy in mouse models of breast cancer.
(iii) [52]: STI571 sensitizes breast cancer cells to 5-fluorouracil, cisplatin, and
camptothecin in a cell type-specific manner.
(iv) [53]: acquired camptothecin resistance of human breast cancer MCF-7/C4 cells
with normal topoisomerase I and elevated DNA repair.
(v) known as “Happy Tree” in Chinese traditional cancer treatment.

Phenoxybenzamine∗∗ x (i) Not enough evidence.

Tyrphostin AG-825∗∗ o

(i) [54]: C-Src activation by ErbB2 leads to attachment-independent growth of
human breast epithelial cells.
(ii) [55]: using in vivo mouse models of breast cancer: using gefitinib, ERBB1
inhibition rapidly inhibits tumor cell motility and invasion but not intravasation,
whereas ERBB2 inhibition by AG825 rapidly blocks intravasation.
(iii) [56]: tyrphostin AG 825 has been used in combination with
hypericin-mediated photodynamic therapy (HY-PDT) for evaluating its therapeutic
effects in HER2 overexpressing human breast cancer cells.

Alsterpaullone∗∗ o

(i) [57]: the antitumor effects of ALP through induction of apoptosis in breast
cancer and leukemia cells. Identification of alsterpaullone as a novel small molecule
inhibitor to target group 3 medulloblastoma.
(ii) [58]: baicalein blocked survivin expression in lung and breast cancer cells.
Alsterpaullone is a CDC2 kinase inhibitor (43). Both CDC25 phosphatase and
CDC2 kinase inhibitors enhanced the baicalein-induced cancer cell death.

Celastrol∗∗ o

(i) [59]: anticancer effect of celastrol on human triple negative breast cancer:
possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis, and
PI3K/Akt pathways.
(ii) [60]: celastrol induces that apoptosis of breast cancer cells and inhibits invasion
via downregulation of MMP-9.

∗∗Potential drug candidate for repositioning.

usage in breast cancer treatment, with phenoxybenzamine
not being confirmed.

3.3.2. Computational Evaluation on the Validation Network.
In drug repositioning, it is difficult to compare and evaluate
the performances of computational methods. To address this
issue, several recent studies have focused on curating a com-
prehensive and public catalog of existing drug indications
using a manual process [4].

Therefore, to develop a better evaluation method using
computational methods, a validation network was con-
structed using information on three different relationships,
drug-drug, drug-gene, and gene-gene, from the STITCH
and STRING databases [38]. The drug-drug relationship
information was obtained from the STITCH (v4) [39]
database, which contains data on the interactions between
small molecules and the edges between two chemicals that
are expressed using a score between 0 and 900 defined
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Table 7: Degree centrality of promising drug candidates on the
validation network.

Rank Drug name Degree
centrality

1 Tamoxifen∗ 0.661
2 Doxorubicin∗ 0.554
3 Paclitaxel∗ 0.536
4 Fulvestrant∗ 0.268
5 Methotrexate∗ 0.268
6 Camptothecin∗∗ 0.232
7 Letrozole∗ 0.214
8 Vinblastine∗ 0.196
9 Exemestane∗ 0.179
10 Megestrol∗ 0.125
11 Aminoglutethimide∗ 0.107
12 MS-275∗∗ 0.089
13 Alsterpaullone∗∗ 0.071
14 GW-8510∗∗ 0.036
15 Phenoxybenzamine∗∗ 0.036
16 Celastrol∗∗ 0.036
17 Tyrphostin AG-825∗∗ 0.018
∗Known breast cancer drug. ∗∗Potential drug candidate for repositioning.

from the chemical similarity between drugs. The drug-gene
network was constructed fromSTITCH (for human) protein-
chemical interactions with the help of the STRING database
which provides 4,523,609 relationships for humans with the
correlations between proteins and chemicals recorded as
scores using information obtained from experimental results,
text-mining, or predicted correlations. The gene-gene net-
work was constructed from the STRING database, where A
PPI network can be described as a complex system of proteins
linked by interactions. Two proteins or genes that physically
interact are represented as adjacent nodes connected by an
edge. Each protein id (unipro id) is converted to the corre-
sponding gene symbols using annotation databases provided
in the STRING protein-protein interaction database. For
computational evaluation, we have selected a maximum of
40 neighbors of drugs (17 drugs) with a weight criterion of
𝑟 > 0.4 from the validation network derived from STITCH.
The constructed validation network is illustrated in Figure 6.

To investigate the node properties in a network, network
topology measurements (degree centrality and betweenness)
and linkage analysis (PageRank) are often used. Degree
centrality represents the number of interactions/edges/con-
nections for a node. Biological networks are mostly scale-
free networks, in which most nodes have few edges and
a small number of nodes (hub) have a very high degree
centrality. Betweenness is measured by the shortest paths
between all nodes in the network and nodes that have the
“shortest path” going through them are called bottlenecks.
These hub and bottleneck nodes are topologically important
and are usually functionally essential nodes (genes and drugs
that have significant biological roles). Nodes connected to the

hub and bottleneck node directly can also be functionally
important. In addition, link analysis is a technique used to
evaluate relationships (connection weights). The PageRank is
a popular link analysis algorithm based on idea that a node
should be significant if other significant nodes contain links
to it.

By answering the following biological questions for the
promising drug candidates, we identified the most promising
drugs among them.

(i) Which candidate drug has an interesting/important
relationship (connections) with known drugs?

(ii) Which candidate drug has the hub/bottleneck prop-
erty on the validation network?

(iii) Which candidate drugs are connected to known
breast cancer target genes?

For this purpose, we checked the network properties of
promising drug candidates on the validation network using
degree centrality, betweenness, and PageRank. Among them,
the network topology measurements (degree centrality and
betweenness) are designed to produce a ranking which allows
indication of the most important vertices and not designed
to measure the influence of neighbor nodes in general.
Therefore, for better validation of promising candidates on
validation network, PageRank algorithm seems to be more
preferable which evaluates the nodes by considering their
connection weights to the influential neighbors nodes.

From the results shown in Table 7, the popular breast
cancer drug “tamoxifen” was identified as the most impor-
tant hub node with degree centrality of 0.661 on the val-
idation network. Among the promising drug candidates,
camptothecin showed the hub node property with the high-
est degree centrality (0.232) among the other five (MS-
275, GW-8510, phenoxybenzamine, tyrphostin AG-825, and
alsterpaullone). Table 8 shows the neighbor nodes of the
camptothecin on the validation network where it has a strong
chemical similarity with the known drugs doxorubicin,
paclitaxel, vinblastine, and methotrexate. A close look at this
relationship is shown in Figure 7(a), and this evidence seems
to point to the possibility of using the camptothecin for breast
cancer treatment because structurally similar drugs usually
bind the same disease targets. In addition, from Table 8 and
Figures 7(a) and 7(b), it can be seen that camptothecin has
a strong target relation with the genes that play active role
in breast cancer including TOP1, ABCB1, TOP2A, CASP3,
and TP53 (neighbors) and EGFR (second-degree neighbor).
TOP1 and TOP2A were reported to inhibit the breast can-
cer resistant proteins [40]. ABCB1 is known as prognostic
factor in breast cancer patients [41]. CASP3 expression loss
represents an important cell survival mechanism in breast
cancer patients [42] and it inhibits the growth of breast cancer
cells. EGFR was one of the first identified important targets
in breast cancer, and half of breast cancer cases overexpress
EGFR.

The candidate drugs MS-257 and alsterpaullone showed
relatively higher degree centrality values among the remain-
ing drugs. Table 9 and Figure 8 show the neighbor nodes
relationship of MS-257 on the validation network, where it
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Table 8: The neighbors of candidate drug “camptothecin” on the validation network.

Nodes Description Weight

TOP1 Topoisomerase (DNA) I: the reaction catalyzed by topoisomerases leads to the
conversion of one topological isomer of DNA to another. 0.999

CASP3 Caspase 3: apoptosis-related cysteine peptidase: it is involved in the activation
cascade of caspases responsible for apoptosis execution. 0.965

TP53
Tumor protein p53: it acts as a tumor suppressor in many tumor types and induces
growth arrest or apoptosis depending on the physiological circumstances and cell
type.

0.965

Doxorubicin∗ It is a drug used in cancer chemotherapy; it works by intercalating DNA, with the
most serious adverse effect being life threatening heart damage. 0.890

ABCG2

ATP-binding cassette, subfamily G (WHITE), member 2; xenobiotic transporter that
may play an important role in the exclusion of xenobiotics from the brain. It may be
involved in brain-to-blood efflux. It appears to play a major role in the multidrug
resistance phenotype of several cancer cell lines.

0.873

CDK1

Cyclin-dependent kinase 1: it plays a key role in the control of the eukaryotic cell
cycle. It is required in higher cells for entry into S phase and mitosis. p34 is a
component of the kinase complex that phosphorylates the repetitive C-terminus of
RNA polymerase II.

0.846

ABCB1 ATP-binding cassette, subfamily B (MDR/TAP), member 1; energy-dependent efflux
pump responsible for decreased drug accumulation in multidrug-resistant cells. 0.843

BCL2

B-cell CLL/lymphoma 2: it suppresses apoptosis in a variety of cell systems including
factor-dependent lymphohematopoietic and neural cells. It regulates cell death by
controlling the mitochondrial membrane permeability. It appears to function in a
feedback loop system with caspases. It inhibits caspase activity either by preventing
the release of cytochrome c from the mitochondria and/or by binding to the
apoptosis-activating factor (APAF-1).

0.820

Paclitaxel∗
It binds to and inhibits the enzyme dihydrofolate reductase, resulting in inhibition of
purine nucleotide and thymidylate synthesis and, subsequently, inhibition of DNA
and RNA syntheses.

0.812

CDK2 Cyclin-dependent kinase 2; involved in the control of the cell cycle; interacting with
cyclins A, B1, B3, D, or E. Activity of CDK2 is maximal during S phase and G2. 0.754

Vinblastine∗
An antimicrotubule drug used to treat certain kinds of cancer, including Hodgkin’s
lymphoma, non-small cell lung cancer, breast cancer, head and neck cancer, and
testicular cancer.

0.560

Methotrexate∗ It blocks the production of steroids derived from cholesterol and is clinically used in
the treatment of Cushing’s syndrome and metastatic breast cancer. 0.554

TOP2A Topoisomerase (DNA) II alpha 170 kDa; control of topological states of DNA by
transient breakage and subsequent rejoining of DNA strands. 0.431

∗Known breast cancer drug.

Table 9: The neighbors of candidate drug “MS-257” on the validation network.

Genes Description Weight

HDAC1
Histone deacetylase 1; responsible for the deacetylation of lysine residues on the N-terminal part of the
core histones (H2A, H2B, H3, and H4). Histone deacetylation gives a tag for epigenetic repression and
plays an important role in transcriptional regulation, cell cycle progression, and developmental events.

0.987

TP53 Tumor protein p53: it acts as a tumor suppressor in many tumor types and induces growth arrest or
apoptosis depending on the physiological circumstances and cell type. 0.831

CASP3 Caspase 3, apoptosis-related cysteine peptidase; involved in the activation cascade of caspases responsible
for apoptosis execution. 0.827

CCND1 cyclin D1; essential for the control of the cell cycle at the G1/S (start) transition. 0.822

CYP3A4 Cytochrome P450, family 3, subfamily A, polypeptide 4; cytochromes P450 are a group of heme-thiolate
monooxygenases. 0.433
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Figure 5: Breast cancer drug repositioning. Ten known drugs approved to treat breast cancer were obtained from the Maya Clinic, Cancer
Org, and TTD. A total of 143 breast cancer-specific pathways were identified from multiple breast cancer expression profiles. Successfully
mapped pathways and drugs were labeled as 1. Once labels were initialized on the pathway-drug network, we repositioned drugs for breast
cancer using semisupervised learning. Predicted drugs with 𝑝 < 0.001 were considered promising candidate drugs, and their associations
with breast cancer were investigated using two different validation methods.

has strong target relationships with the genes HDAC1, TP53,
CASP3, CCND1, and CYP3A4. Overexpression of HDCA1
represents clinicopathological indicators of disease progres-
sion in human breast cancer [43]. CCDN1 was reported to
be a therapeutic target in breast cancer [44], and it has an
indirect relationship with breast cancer susceptibility gene
BRCA1.The betweenness results are summarized in Table 10.
Among promising drug candidates only camptothecin and
MS-275 showed some bottleneck node properties. Tamoxifen
was defined as the most important bottleneck drug for
breast cancer. Finally, we evaluated the connection weights
of candidate drugs on the validation network using PageRank
algorithm. We chose the alpha parameter as 0.85, which is the
most commonly used value for this parameter with original
Google PageRank algorithm. As shown in Table 11, camp-
tothecin (0.257), alsterpaullone (0.102), and MS-275 (0,088)
exhibited higher ranking scores than the other promising
candidate drugs.

From the evidences shown above, we concluded that
camptothecin, MS-257, and alsterpaullone exhibited the

strongest network property evidences for breast cancer on
the validation network. In general, all of the promising
candidates successfully passed the computational evaluation
on the network.

After performing biological and computational evalua-
tions of the promising candidate drugs, we selected camp-
tothecin as the most promising candidate because it was
the most successful in both evaluation processes. For MS-
278, GW-85, AG825, alsterpaullone, and celastrol, there
was strong literature evidence with a reasonable network
property.Thus, as shown in Figure 9, camptothecin, MS-278,
alsterpaullone, GW-85, and AG825 and were validated as
repositioned drugs and indicated for further investigation in
breast cancer treatment.

4. Summary

We introduced a new systematic framework for disease-
specific drug repositioning from integrated gene expression
profiles on a pathway-drug network constructed from drug
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Drug names
Doxorubicin
Exemestane
Methotrexate
Megestrol
Paclitaxel
Aminoglutethimide
Tamoxifen
Vinblastine
Fulvestrant
Letrozole
MS-275
GW-8510
Camptothecin
Phenoxybenzamine
Tyrphostin_AG-825
Alsterpaullone
Celastrol

Number of nodes: 57
Number of drugs: known drugs: 10, promising candidate drugs: 7
Number of genes: 40
Number of edges: 385, average degree: 13.5

Drug-drug
Drug-gene
Gene-gene

Figure 6: Known drugs and promising drug candidates on the validation network.The validation network for 16 drugs was constructed from
STITCH. Each node is a drug or a gene.The green edges represent drug-gene interactions, and the red edges indicate drug-drug interactions;
the blue edges represent gene-gene relationships obtained from STRING. Wider edges reflect stronger relationships between nodes. For
easier implementation and visualization, a maximum of 40 neighbors of drugs (17 nodes) with a weight criterion of 𝑟 > 0.4 were selected. As
indicated in the figure, some drugs have significant topological features on the validation network.

(a) (b)

Figure 7: The candidate drug camptothecin on the validation network. (a) Camptothecin has a strong relationship (chemical similarity)
with known breast cancer drugs: doxorubin, paclitaxel, vinblastine, and methotrexate. (b) Camptothecin has direct target relationship with
the genes playing active roles in breast cancer including TOP1, ABCB1, TOP2A, CASP3, and TP53 (neighbors). Moreover, it has an indirect
relationship with the breast cancer target gene EGFR.
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Genes Description Weight

HDAC1
Histone deacetylase 1; responsible for the deacetylation of lysine residues on the N-

terminal part of the core histones (H2A, H2B, H3, and H4). Histone deacetylation gives a 
tag for epigenetic repression and plays an important role in transcriptional regulation, cell 

cycle progression, and developmental events

0.987

TP53 Tumor protein p53; it acts as a tumor suppressor in many tumor types; it induces growth
arrest or apoptosis depending on the physiological circumstances and cell type 0.831

CASP3 Caspase 3, apoptosis-related cysteine peptidase; it is involved in the activation cascade of 
caspases responsible for apoptosis execution 0.827

CCND1 Cyclin D1: it is essential for the control of the cell cycle at the G1/S (start) transition 0.822

CYP3A4 Cytochrome P450, family 3, subfamily A, polypeptide 4; cytochromes P450 are a group of 
heme-thiolate monooxygenases 0.433

Directly connected genes

Genes Description Weight

CDK4 Cyclin-dependent kinase; probably involved in the control of the cell cycle 0.999
MDM2 mdm2 p53 binding protein homolog (mouse), inhibiting TP53/p53 and TP73/p73 cell cycle 0.999

CDKN1A Cyclin-dependent kinase inhibitor 1A (p21, Cip1), whose role is mediated by p53/TP53 as an 
inhibitor of cellular proliferation in response to DNA damage

0.999

ATM Ataxia telangiectasia mutated; serine/threonine protein kinase 0.999
CDK6 Cyclin-dependent kinase 6; probably involving the control of cell 0.999
RB1 Retinoblastoma 1; key regulator of entry into cell division that acts as a tumor suppressor 0.999

SIRT1 Sirtuin (silent mating type information regulation 2 homolog) 1 (S. cerevisiae); NAD-
dependent

0.999

BRCA1
Breast cancer 1, early onset; the BRCA1-BARD1 heterodimer coordinates a diverse range

of cell pathways such as DNA damage repair, ubiquitination, and transcriptional regulation 
to maintain genomic stability

0.999

CDKN1B Cyclin-dependent kinase inhibitor 1B (p2, Kip1); important regulator of cell cycle progression 0.999

KAT2B K(lysine) acetyltransferase 2B; it has histone acetyl transferase activity with core histones 
and nucleosome core particles 0.999
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Figure 8:The candidate drugMS-275 on the validation network.MS-275 has a strong target relationshipwith the breast cancer genesHDAC1,
TP53, CASP3, CCND1, and CYP3A4. Furthermore, it has an indirect relationship with the well-known breast cancer gene BRCA1.
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# Drugs Biological
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1 Camptothecin o o

2 MS-275 o o

3 Alsterpaullone o o

4 GW-8510 o

5 Tyrphostin_AG-825 o

6 Celastrol o

7 Phenoxybenzamine x

o Strong relationship with breast cancer
Relationship with breast cancer

x Not enough evidence

Validated drugs

Figure 9: Validated drugs. Candidate drugs with successful results for both the biological validation and computational evaluation are
considered repositioned drugs for breast cancer.

Table 10: Betweenness of promising drug candidates on the valida-
tion network.

Rank Drug name Betweenness
1 Tamoxifen∗ 172
2 Paclitaxel∗ 37
3 Doxorubicin∗ 32
4 Camptothecin∗∗ 13
5 Exemestane∗ 13
6 Fulvestrant∗ 12
7 Methotrexate∗ 10
8 Vinblastine∗ 6
9 Megestrol∗ 6
10 Aminoglutethimide∗ 2
11 Letrozole∗ 2
12 MS-275∗∗ 2
13 GW-8510∗∗ 0
14 Phenoxybenzamine∗∗ 0
15 Tyrphostin AG-825∗∗ 0
16 Alsterpaullone∗∗ 0
17 Celastrol∗∗ 0
∗Known breast cancer drug. ∗∗Potential drug candidate for repositioning.

phenotype expression profiles (CMap) using semisupervised
learning. The proposed pathway-based drug repositioning
process showed encouraging resultswhenusing four different
disease expression profiles to predict candidate drugs for
disease-specific repositioning.

Two different methods were employed to evaluate the
repositioned drugs. The drugs that passed both evaluation
methods successfully were considered the most promising
drugs to target breast cancer. As a result, several drugs,
including camptothecin, MS-275, alsterpaullone, GW-8510,
AG 825, and celastrol were identified as possible drugs to
be repositioned to treat breast cancer, and these results
are supported by multiple lines of evidence in the public

Table 11: PageRank of promising drug candidates on the validation
network (𝛼 = 0.85).

Rank Drug name Ranking score
1 Tamoxifen∗ 0.990
2 Doxorubicin∗ 0.692
3 Paclitaxel∗ 0.663
4 Methotrexate∗ 0.373
5 Fulvestrant∗ 0.316
6 Camptothecin∗∗ 0.257
7 Letrozole∗ 0.252
8 Vinblastine∗ 0.235
9 Exemestane∗ 0.176
10 Aminoglutethimide∗ 0.108
11 Alsterpaullone∗∗ 0.102
12 Megestrol∗ 0.101
13 MS-275∗∗ 0.088
14 Phenoxybenzamine∗∗ 0.080
15 GW-8510∗∗ 0.026
16 Celastrol∗∗ 0.023
17 Tyrphostin AG-825∗∗ 0.010
∗Known breast cancer drug. ∗∗Potential drug candidate for repositioning.

literature. Specifically, camptothecin was the most promising
drug candidate because it showed a high network property on
the validation network and was supported by evidence in the
literature.

Despite the interesting results, our method for drug
repositioning was developed and validated in only using
integrated mRNA gene expression profiles. However, the
strategy can be easily improved to include other experimental
data types, such as RNA-seq, miRNA, DNA-methylation,
and single nucleotide polymorphism (SNP) information.
Finally, the increasing number of genomic and pharmaceu-
tical databases necessitates the further development of the
method to identify new drugs and targets for rare cancer
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subtypes, develop personalizedmedicine, and design targeted
cancer therapies.
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