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Abstract

Antibodies often undergo substantial engineering en route to the generation of a therapeutic

candidate with good developability properties. Characterization of antibody libraries has shown

that retaining native-like sequence improves the overall quality of the library. Motivated by recent

advances in deep learning, we developed a bi-directional long short-term memory (LSTM) network

model to make use of the large amount of available antibody sequence information, and use this

model to quantify the nativeness of antibody sequences. The model scores sequences for their

similarity to naturally occurring antibodies, which can be used as a consideration during design

and engineering of libraries. We demonstrate the performance of this approach by training a

model on human antibody sequences and show that our method outperforms other approaches

at distinguishing human antibodies from those of other species. We show the applicability of this

method for the evaluation of synthesized antibody libraries and humanization of mouse antibodies.
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Introduction

Antibodies are a preferred treatment modality, particularly in cancer
and autoimmune diseases, with more than 50 approved antibodies
and more than 500 molecules in various stages of clinical devel-
opment (Kaplon and Reichert, 2019). Therapeutic antibodies are
derived from a variety of approaches, with two of the major sources
being natural repertoires (either naïve or immune) (Hust et al., 2012),
and synthetic designed libraries (Adams and Sidhu, 2014). Antibodies
derived from these sources often undergo further engineering to
improve affinity, specificity, and developability profiles. It has been

shown that design schemes that more closely resemble the sequence
profile and features of natural antibodies lead to better synthetic
libraries, with improved rates of expression (Zhai et al., 2011) and
stability (Prassler et al., 2011). This concept of antibody ‘nativeness’
is also applied during humanization, where the similarity to human
antibodies, or ‘humanness’ is a major driver when engineering to
improve the safety profile and reduce immunogenicity concerns of
sequences derived from non-human sources (Safdari et al., 2013).

With the increased use of antibody engineering, there is a need for
improved methods to rapidly and accurately estimate the nativeness
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of these sequences. A common approach to determine the humanness
of an antibody is to assess its proximity to the closest human
germline sequence. Indeed, the World Health Organization (WHO)
previously categorized monoclonal antibodies based on the per-
centage of human content in the variable region, requiring ≥85%
human germline identity for designation of humanized antibodies
(−zumab) (Jones et al., 2016). While straightforward, this approach
has several limitations, one of which is that it considers all mutations
relative to a germline as equal. However, analyses of natural antibody
sequences have shown that somatic hypermutations are not equally
distributed (Burkovitz et al., 2014). Alternative metrics, such as the
Human String Content (Lazar et al., 2007) and T20 score (Gao
et al., 2013), consider similarities to larger sets of reference sequences
such as all available human germline sequences or to curated sets of
known human antibody sequences. More recent methods, such as the
MG score (Clavero-Álvarez et al., 2018), also consider covariation
between pairs of amino acids at different positions, better accounting
for the context of a particular residue within the sequence.

With the large amounts of antibody sequence data from next
generation sequencing (NGS) data of B-cell receptor repertoires
that have become available in the last few years, it is possible to
analyze antibody sequences and the sequence space they explore in
far greater detail (Rouet et al., 2018). This wealth of data enables
determination of not just position-specific amino acid propensities,
but also coupling between different positions in the sequence. Com-
putationally designed libraries encoded with this additional coupling
information can be synthesized given the recent advances in DNA
library synthesis, such as the use of oligo-pools, where each variant
in the library is a custom and specific design (Chevalier et al., 2017;
Rocklin et al., 2017).

Encouraged by recent advances in machine learning, we sought
to develop a model that is capable of learning a representation of
natural antibodies that captures higher order relationships between
positions to provide a more sensitive measure of antibody nativeness.
Recurrent neural networks (RNNs) have demonstrated great success
for natural language understanding and have previously been applied
to biological sequence analysis to predict protein function. Here, we
developed a bi-directional long short-term memory (LSTM) network
model (Hochreiter and Schmidhuber, 1997), a specialized form of an
RNN framework, capable of learning the distribution of antibody
sequence data by selectively remembering patterns for long dura-
tion of time. We demonstrate the performance of this approach by
training a model on human antibody sequences and show that our
method outperforms other approaches at sequence classification by
distinguishing human antibodies from those of other species. We also
show that this method can be applied to evaluate subtle differences in
designed libraries. Further, we demonstrate how this method can be
applied to antibody engineering, such as humanization, by identifying
human frameworks that are predicted to be the most favorable for
CDR grafting for a panel of mouse antibody sequences. Lastly, we
use the model as an evaluation of antibody humanness and show that
it outperforms several other methods when applied to humanization
classification of available therapeutic antibody sequences.

Materials and Methods

Problem formulation

Given a sequence
[
x(1), x(2), · · · , x(T)

]
∈ XT, where X denotes the set

of all distinct amino acids, the learning task is to estimate the proba-

bility pt

(
x(t)|x(1), · · · , x(t−1), x(t+1), · · · , x(T)

)
for t ∈ {1, 2, · · · , T}.

The underlying assumption here is that if a sequence is drawn from
a target antibody repertoire, a well-trained model would be able to
predict any single residue by learning appropriate information from
its neighbors with high confidence. For each antibody sequence, we
can compute an overall score (which we also refer to as an LSTM
score) defined as the averaged sum of negative logarithms (NLS) of
all conditional probabilities defined as

NLS = − 1
T

T∑

t=1

log pt

(
x(t)|x(1), · · · , x(t−1), x(t+1), · · · , x(T)

)
.

(1)
A single NLS score can be computed for each antibody sequence,

where lower scores indicate a higher degree of nativeness. Here, pt is

defined by the Boltzmann distribution e−ε(t)
/
∑

x′∈Xe
−ε

(t)
x′ without

temperature, and the energy term ε(t) is a learned parameter.

Long short-term memory network model

RNNs have been used previously for capturing complex patterns in
biological sequences. The LSTM framework was introduced recently
to overcome the issues related to traditional RNN frameworks such
as vanishing gradients and long-term dependencies (Hochreiter and
Schmidhuber, 1997). As a specific sub-class of RNN, the LSTM model
still takes the traditional recurrent form of h(t) = f (x(t), h(t−1)), where
f denotes the recurrent cell function, h(t) denotes the hidden state (or
output) at time t, h(t−1) denotes hidden state at the previous time (t −
1), and x(t) is the input at time (t). The structure inside an LSTM cell
is defined as follows:

i(t) = σ
(
Wi·

[
h(t−1), x(t)

]
+ bi

)
, (2)

f (t) = σ
(
Wf ·

[
h(t−1), x(t)

]
+ bf

)
, (3)

∼
c
(t) = tanh

(
W∼

c
·
[
h(t−1), x(t)

]
+ b∼

c

)
, (4)

o(t) = σ
(
Wo·

[
h(t−1), x(t)

]
+ bo

)
, (5)

c(t) = f (t) � c(t−1) + i(t) � c̃(t), and

h(t) = o(t) � tanh
(
c(t)

)
.

(6)

Here,
⊙

denotes the Hadamard product operator, [· , ·] is the
vector concatenation and σ(·) is the sigmoid function. The LSTM

introduces four gates i(t), f (t),
∼
c
(t)

, and o(t), which denote input gate,
forget gate, modulation gate, and output gate, respectively. For each
gate, an affine transformation is applied on [h(t−1), x(t)] along with
an activation function (i.e. σ or tanh). By combining them, the LSTM
cell is capable of deciding the appropriate set of information that
needs to be passed or suppressed in favor of a given task. We used
this framework to learn the nativeness of a given antibody sequence
(Fig. 1).

The LSTM model can take an antibody sequence as its input
by reading a single amino acid residue at a time and learning its
context as it contributes to the nativeness of the sequence. As our
model is bi-directional, the antibody sequence was scanned from
the N-terminus to the C-terminus once and then scanned again in
the opposite direction. Each residue in the antibody sequence was
converted into a one-hot encoded vector (size: 21 × 1), where each
element of the vector is assigned a value of 0, except at the position
of the amino acid, where it was assigned a value of 1. Before passing
the antibody sequence to the LSTM model, we first embedded all the
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Fig. 1 Schematic of the LSTM framework. The LSTM model is comprised of a

linear embedding layer followed by a bi-directional LSTM layer along with a

fully connected layer and an output layer. The bi-directional LSTM layer was

padded on both sides.

amino acids into a vector. This step was implemented by introducing
a 21 × M matrix, where M = 32 is the embedding dimension.

Preparation of antibody sequence datasets

NGS sequences from different antibody repertoires were prepared for
training and testing the LSTM models. Human heavy and light chain
sequences were obtained from the pre-processed antibody repertoire
NGS datasets in the Observed Antibody Space database (Kovaltsuk
et al., 2018). To reduce sequence errors, only reads observed at least
4 times were selected. These sequences were further clustered at
the 97% identity level to avoid sampling highly related sequences
between the training and testing sets. Mouse heavy chain antibody
sequences were processed based on a high-quality mouse antibody
repertoire dataset (Greiff et al., 2017). Chicken antibody heavy chain
sequences were processed from a naïve B-cell library, and a set of
llama sequences were obtained from two enriched llama immune
libraries of VHH antibodies. Due to the smaller library size for the
llama set, reads were kept if they were observed at least twice, while
still clustering at the 97% level. For human and mouse sequences,
25000 sequences of each dataset were randomly selected for training,
10 000 for validation, and 10 000 for testing. For chicken and
llama 10 000 and 4000 sequences, respectively were selected for
testing. All mouse, chicken, and llama datasets were obtained by
Illumina MiSeq paired-end NGS sequencing and processed using
the Repertoire Sequencing Toolkit (pRESTO) (Vander Heiden et al.,
2014). ANARCI (Dunbar and Deane, 2015) was used to assign
germline annotations and sequence clustering was performed using
CD-HIT (Fu et al., 2012). To facilitate comparison with other models,
antibody sequences were aligned using the AHo antibody number-
ing scheme (Honegger and Plückthun, 2001), as implemented by
ANARCI.

Performance metrics

The LSTM score (Eq. (1)) was used to evaluate the nativeness of each
antibody sequence. We generated receiver operating characteristic
(ROC) curves and computed area under curve (AUC) for each
model in order to assess performance. Additionally, we computed
the maximum value of the Youden’s J-statistic (YJS) and Matthews

correlation coefficient (MCC) on each set of model predictions. YJS
is defined as:

YJS = sensitivity + specificity − 1, (7)

for all points of the ROC curve. The maximum value of the YJS can
be used as a criterion for selecting the optimum cut-off point, when
a diagnostic test gives a numeric result rather than a dichotomous
result. MCC is a balanced measure of quality for dataset classes of
different sizes of a binary classifier, defined as follows:

MCC = [(TP × TN) − (FP × FN)]

[(TP + FP) (TP + FN) (TN + FP) (TN + FN)]0.5
(8)

Here, TP denotes true positive values, FP and FN denote false
positive and false negative cases, respectively, and TN denotes true
negative values.

Results

Training the LSTM model

LSTM models were generated by training on a dataset of human anti-
body VH sequences. Model training took approximately 12 hours
for 50 epochs on a 6-core Intel Xeon CPU, with the same task taking
about 20 minutes on a GPU (NVIDIA GTX 1060). Query sequences
scored rapidly, taking < 2 minutes to process 10 000 sequences.

We assessed the number of sequences required for generation
of a robust model. Models were generated using training sets of
increasing size, and we observed that the performance of the model
(as determined using MCC, AUC, and YJS), plateaued for training
sets larger than 20 000 sequences (Fig. S1). Based on this observation,
the LSTM model was trained on a dataset of 25000 human antibody
VH sequences, using a validation set of 10 000 sequences during
training to ensure the model was not overfit.

Classification of human antibody sequences

The performance of the LSTM model was assessed by determining
its ability to correctly distinguish natural human antibody sequences
from those originating from other species. Test datasets of anti-
body VH sequences from mouse, llama, chicken, and human were
prepared, and LSTM scores were calculated for each sequence. An
analysis of the distribution of LSTM scores demonstrated a near
complete separation between human sequences and chicken, but with
some overlap in scores between mouse and human sequences, and
a more substantial overlap between llama sequences and human
(Fig. 2a). An ROC analysis showed that in classifying sequences as
human-like, the model had an AUC of 0.999 for chicken sequences,
0.995 for mouse sequences, and 0.976 for llama sequences (Fig. 2b).

Given that human antibody sequences in the database, and
therefore in our training set, evolved from a limited set of germline
genes, one might expect the LSTM model to favor sequences that
are more germline-like since the germline sequences should be near
central to sequence clusters. As expected, we found the LSTM score to
be correlated to the sequence identity of the closest human germline
v-gene (Fig. 3), and this correlation appears more pronounced
for llama and mouse sequences, and less for human and chicken
antibody sequences. Some of the llama and mouse sequences in the
test dataset have LSTM scores that compare very favorably with
human sequences and would be considered indistinguishable from
human sequences by the LSTM model. These low-scoring non-human
antibody sequences have higher sequence similarity to human

https://academic.oup.com/peds/article-lookup/doi/10.1093/peds/gzz031#supplementary-data
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Fig. 2 Performance of the LSTM model trained on human sequences. (a) LSTM scores were calculated based on a model trained on human antibody sequences,

and the distribution of scores shown for test datasets of human, mouse, chicken, and llama antibody sequences. (b) ROC plot showing the performance of the

LSTM model in distinguish human antibody sequences from antibodies from mice, chicken, or llamas.

Fig. 3 Relationship between LSTM score and the identity to human germline

sequences shown, for simplicity, as a Kernel Density Estimate (KDE) plot.

LSTM scores were calculated for antibody sequences in test datasets for

human, mouse, chicken, and llama, and related to the sequence identity to

the closest human germline sequence.

germline genes than many native human antibodies (Fig. 3). A closer
inspection of these low scoring non-human antibody sequences
confirms the striking similarity to human VH sequences (Fig. S2),
with most of the differences concentrated in the CDR region. This
level of similarity to a human VH germline gene is comparable to
that seen for human antibody sequences leading to low LSTM scores
for non-human antibody sequences.

Since the LSTM score was found to correlate with germline iden-
tity, we investigated whether the LSTM model favored some human
germlines over others. The training dataset was randomly selected
from a large dataset of human sequences, leading to unequal repre-
sentation of germlines. Interestingly, there is a general trend where
sequences derived from germlines that have lower representation
have higher (worse) LSTM scores (Fig. S3), which can be attributed to

their relative scarcity in the training set. It should be noted that in this
particular application, we intended to train the model on a dataset
that was representative of the distribution of antibody sequences
found in a native repertoire. However, depending on the application
needs, the training set can be modified to represent each germline
equally.

We also investigated the long tail in the score distributions for
human sequences to determine why some human sequences had very
poor LSTM scores. For this analysis, we considered sequences that
had an LSTM score > 1.0 as having a poor score, which represents
<2.5% of sequences in the test set, and explored sequence features,
which may be contributing to the poor scores. We found the deviation
from human germline to be a strong indicator for sequences having
a high score; more than 20% of sequences with human germline
identity < 70% had high LSTM scores (Fig. S4a). Sequences that had
lengths of HCDR1 and HCDR2 that were rarely observed in the
training set also tended to have higher LSTM scores (Fig. S4b), again
demonstrating that the model is able to identify sequences with rare
attributes as being outliers. Sequences with long HCDR3 portions
(>24) also tended to be more likely to have a high score (Fig. S4c).
This indicates that the LSTM model is learning many of the attributes
of human antibodies that make up the bulk of sequences in the
training set, and human antibodies that have unfavorable scores tend
to have one or more features that are uncommon in the training set.

Assessing an LSTM model trained

on mouse sequences

When assessing the performance of the LSTM model that was trained
on human sequences, the model performed very well at distinguishing
mouse-derived antibodies from human sequences, but some mouse
sequences scored better than actual human antibody sequences. One
question that arises is whether this observation is due to a limitation
in the LSTM model or due to the breadth of the sequence space cov-
ered by human sequences. Mouse sequences are known to have fewer
somatic hypermutations relative to their germline genes compared to
human sequences, essentially forming tighter sequence clusters. This
can be seen in Fig. S5, where over 83.4% of mouse sequences have
> 90% sequence identity to the closest germline, whereas only 32.4%
of human sequences show > 90% sequence identity.

https://academic.oup.com/peds/article-lookup/doi/10.1093/peds/gzz031#supplementary-data
https://academic.oup.com/peds/article-lookup/doi/10.1093/peds/gzz031#supplementary-data
https://academic.oup.com/peds/article-lookup/doi/10.1093/peds/gzz031#supplementary-data
https://academic.oup.com/peds/article-lookup/doi/10.1093/peds/gzz031#supplementary-data
https://academic.oup.com/peds/article-lookup/doi/10.1093/peds/gzz031#supplementary-data
https://academic.oup.com/peds/article-lookup/doi/10.1093/peds/gzz031#supplementary-data
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Table I. Comparison of AUC values computed on four different models

Area under curve LSTM MG Germ Profile

Mouse 0.9947 0.9847 0.9646 0.8572
Chicken 0.9998 0.9998 0.9836 0.9842
Llama 0.9759 0.9471 0.8887 0.7977

We trained an LSTM model using a training set of 25000
mouse sequences and assessed its performance in distinguishing a
test set of mouse sequences from a test set of human, llama, and
chicken antibody sequences. Interestingly, the LSTM model trained
on mouse sequences could almost completely distinguish mouse
sequences from antibodies from the other species (Fig. S6), showing
an AUC of 0.9991, 0.9997, and 0.9999 for human, llama, and
chicken sequences, respectively, outperforming the LSTM model that
was trained on human antibody sequences. This indicates that the
performance of the LSTM model is related to the underlying sequence
space used in the training set. We hypothesize that when training
on human sequences, which are more sequence-diverse relative to
their cluster centers (i.e. germline sequences) compared to mouse,
the LSTM model must learn to allow for greater diversity and so
antibodies from other species are captured in this search space. In
contrast, when trained on mouse sequences, the LSTM model learns
that sequences show little deviation from their cluster centers, and so
the search space learned by the LSTM model is more restrictive and
thus more specific to mouse antibodies.

Comparison of the LSTM model to other models

for prediction of humanness

The performance of the LSTM model trained on human sequences
was compared to that of several competing models in its ability to cor-
rectly distinguish human antibody sequences from those from mouse,
chicken, and llama. The models evaluated included the sequence iden-
tity to the closest human V-gene, a profile score (using log-odds ratios
of the observed frequency of each amino acid at each position), and
the MG score (which uses the corresponding negative log probability
density obtained from a multivariate Gaussian distribution). Table I
shows AUC values for model performance, which demonstrates that
the performance of competing models was inferior to the LSTM
model. Overall, LSTM performed the best, followed by MG score,
sequence identity to germline, and finally profile-scores. All models
performed well in distinguishing chicken sequences from human,
with the LSTM and MG score models both having near perfect
performance.

Application to evaluation of synthetic libraries

In our initial evaluation of the LSTM model, we demonstrated
the ability to outperform other models at distinguishing native
human antibody sequences from those of other species. While some
non-human sequences show a high degree of similarity to human
sequences, in most cases, these differences between species are in the
relatively conserved framework regions, making this classification
easier. We set out to assess the performance of the LSTM model on
a more difficult scenario, where sequence differences were limited
to the CDR regions of the antibody, which are known to be much
more sequence diverse. The purpose of this test was two-fold: (1)
to assess the LSTM model as a means to computationally evaluate

designed synthetic libraries for their nativeness, and (2) to more
methodically evaluate the performance of the LSTM across a range
of CDR hypervariable sequences where the degree of nativeness is
more systematically varied.

To evaluate the performance of the LSTM in learning the rep-
resentation of the hypervariable CDR regions, we computationally
generated several sets of designs, which varied the origin and degree
of variability in the CDR regions (Fig. 4a). For this test, we generated
four sets of designed sequence; for SetG (graft) entire intact CDR
fragments from native human sequences were grafted into a human
framework sequence derived from a different germline; for SetR
(random) CDR sequences were designed by randomly choosing any
of the 20 amino acids at each position; for SetPA (profile-all) CDR
sequences were designed by randomly choosing an amino acid at
each position, weighted by its frequency of occurrence observed in
the training set of all human antibodies; SetPG (profile-germline)
was similar to SetPA, but the profile used is germline-specific (i.e.
derived only from sequences that have the same germline as the host
framework). A set of native antibody sequences (SetN) was included
to serve as a baseline for comparison. In all cases, mutations at non-
CDR positions were reverted back to the amino acid found in the
appropriate germline, to ensure sequence differences were limited to
CDR regions.

These designed sets enable us to probe several different aspects
of the LSTM model. SetG provides sequences that have native CDR
sequences in the wrong framework context; SetR provides sequences
that are essentially scrambled and thus do not look like natural
antibodies; SetPA provides sequences where CDR amino acid profiles
match all antibodies in the training set, but where the profiles may
not be optimal for a given framework; lastly, SetPG provides a very
stringent test of the model since the amino acid profile at each CDR
position should be indistinguishable from native antibodies with the
same germline. Importantly, for both SetPA and SetPG since residues
in a CDR are selected independently, the coupling between residues
that is present in native sequences will be lost.

To demonstrate the stringency of these datasets, profile scores
were calculated for each of the sets of designed antibody sequences as
well as the native set. As expected, the distribution of profile scores
for each of the sets is almost identical except for SetR, which contains
randomized residues in the CDRs. In contrast, the LSTM model is
able to discriminate between the different designed sets including
between stringent SetPG and native (Fig. 4b). Unsurprisingly, SetR
had the highest (worst) LSTM scores, with a median score of 1.6
compared to a median score of 0.3 for SetN. SetG had higher LSTM
scores than native sequences, with a median score of 0.6. SetPG, the
most stringent test dataset, also scored higher than native, with a
median score of 0.4.

An analysis of the performance on these designs shows that the
LSTM has learned couplings between residues and is aware of the
sequence context when considering CDR residues. Scores for SetPG,
the best scoring designed set, were still higher (worse) than native
sequences, despite having amino acids at the same frequency as

https://academic.oup.com/peds/article-lookup/doi/10.1093/peds/gzz031#supplementary-data
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Fig. 4 Distribution of LSTM scores for several designed synthetic libraries. (a) Schematic describing the approach for generating each design set. (b) Distribution

of LSTM scores for each designed set.

those found in the native sequences. This can be attributed to the
lack of couplings between residues in the CDRs; since the LSTM
scores native sequences more favorably, this demonstrates that the
LSTM has learned to identify relationships between residues in the
native sequences, favoring sequences that contain these couplings.
Designs from SetG, where native CDRs were grafted into non-
matching germlines, scored more poorly than native sequences. Here,
even though coupling has been retained within the CDR, couplings
between the framework and CDR have been lost. In addition, the
frequency of amino acids found in the grafted CDRs can differ from
that expected for the receptor framework when originating from
different germlines, demonstrating that the LSTM model is able to
identify that these CDR sequences are in the wrong context. Scores
for SetPA were higher than SetPG, indicating that the LSTM has
learned positional preferences for amino acids that are specific to the
germline of the antibody.

Application to humanization

We also assessed the performance of the LSTM model for dis-
tinguishing human from humanized and mouse sequences, using
a dataset of 46 pharmaceutical antibodies whose sequences have
been previously compiled and used for assessment of humanization
scoring methods (Clavero-Álvarez et al., 2018). We compared the
LSTM model to the MG score model, and to a widely used T20
score, which is used for scoring of humanized constructs. For the
LSTM and MG score, two models each were trained using a dataset
of 25000 VH human sequences or 25000 VK human sequences,
and the T20 score was obtained using an online tool (https://dm.
lakepharma.com/bioinformatics/). As can be seen in (Fig. 5), the
LSTM model outperforms the other models in distinguishing human
from humanized and mouse antibodies. The LSTM model for the
VH sequences shows a very clear separation between the human
and humanized sequences, and also between humanized and mouse

antibodies; humanized antibodies score well in general, but do not
score as well as the fully human antibodies. In contrast, the MG
score model has a large overlap between human and humanized, with
more substantial overlap between humanized and mouse antibodies.
The T20 model also shows substantial overlap between human and
humanized. The same trend is seen for the VK sequences, where the
LSTM model outperforms the other two models.

In addition to scoring humanized sequences to assess their human-
ness, the LSTM model can be used during the humanization proce-
dure to select germline sequences that would serve as better receptors
for CDR grafting from non-human sources. As demonstrated with
the analysis of designed sequences, the LSTM model is able to assess
whether CDR loops are in the right context. Here, we investigated
the utility of the LSTM model to select frameworks that would be
expected to be most compatible with a given CDR (Fig. 6).

Three mouse antibodies (mab1, mab7, and mab8) were selected
for humanization, and all three HCDRs were grafted into 9 of
the most commonly used human frameworks for therapeutic appli-
cations. Assessment of the LSTM scores of the grafted sequences
indicated that each of the mouse antibody CDR loops are more
compatible (lower LSTM scores) with specific human germlines. For
example, for mab7, the chimeric antibody sequences generated by
grafting its CDRs into the human germlines IGHV3–23, IGHV3–30,
and IGHV3–48 score much more favorably than when grafted into
the other germlines. In fact, grafting the mouse CDRs from mab7
into these three germlines results in a humanized sequence that scores
favorably compared to other natural human sequences derived from
these germlines. These three germlines, however, are not identified as
the most compatible germline for grafting all mouse CDRs—these
frameworks appear to be less favorable than others, for example,
for grafting CDRs from mab1. This analysis can be extended to
humanization of light chains by training on an appropriate set of
human light chain sequences. Given the LSTM’s demonstrated ability
to capture coupling between CDR regions and framework regions, we

https://dm.lakepharma.com/bioinformatics/
https://dm.lakepharma.com/bioinformatics/
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Fig. 5 Performance of several models at scoring known therapeutic antibody sequences. LSTM scores, MG scores, and T20 scores were evaluated on therapeutic

antibodies derived from human, mouse, and those that were humanized.

Fig. 6 LSTM scores of CDR-grafted variants derived from three mouse anti-

bodies. CDR loops from each mouse antibody VH sequence were grafted

into each of nine different human germline frameworks, and LSTM scores

calculated (color dots). Box plots represent the distribution of LSTM scores

in a test dataset of human sequences matching the corresponding human

germline framework.

posit that the LSTM model is a sensitive approach for selection of an
appropriate template for humanization.

Discussion

We have developed an LSTM network approach that is capable
of learning the nativeness of antibody sequences. The approach
makes use of the increasing amount of sequence data available from

naturally occurring antibody repertoires, and given the large number
of sequences in the training set, is able to learn signature features of
native antibodies. When trained only on human antibody sequences,
for example, this model outperforms state-of-the-art methods at dis-
tinguishing human antibody sequences from antibodies derived from
other species. The ability to identify these key features, which may
include higher-order coupling between residues, enabled the LSTM
model to also outperform other methods at successfully classifying
humanized antibodies in a set of therapeutic antibodies.

The LSTM framework is an efficient variant of the traditional
RNN. The gates of an LSTM cell facilitate decisions such as allowing
the data to enter the cell, leave or be deleted through an iterative
process, preserving the error that can be back propagated, and
adjusting weights via gradient descent. This characteristic allows for
the LSTM model to capture diverse interactions in a computationally
efficient fashion along with capturing remote dependencies. In the
case of evaluating nativeness of an antibody sequence, even though
each amino acid residue is passed sequentially to the LSTM cell, the
architecture was able to capture long-range effects (Fig. S7).

The LSTM model that we have developed has several favorable
properties that enable it to be applied to antibody engineering. The
method is computationally efficient and can assess a large number of
sequences rapidly; in our benchmarks, a library of 10000 antibody
sequences can be evaluated in a few minutes, making it computation-
ally tractable to apply to synthetic libraries which can contain >1e7
sequences. An additional benefit of using an LSTM approach is that
sequences do not have to be aligned, which can be time-consuming
and ambiguous when the diversity of the underlying sequences is
high (such as in HCDR3). In contrast, other approaches, such as
the MG score (Clavero-Álvarez et al., 2018), are dependent on the
training and query sets being pre-aligned. Also, the ability for the
LSTM framework to process a single amino acid residue at a time
enables the analysis of thousands of sequences with variable lengths.

Recent advances in DNA library synthesis, such as the use of
oligo-pools, has enabled design of libraries where each variant in
the library is a custom and specific design (Chevalier et al., 2017;

https://academic.oup.com/peds/article-lookup/doi/10.1093/peds/gzz031#supplementary-data
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Rocklin et al., 2017). Information from the LSTM model can then be
used to improve these designed libraries by accounting for residue
coupling information to make more native-like designs. Even for
more traditional library synthesis approaches, an LSTM model can
aid design by learning amino acid preferences in CDRs that best
match the germline scaffolds being used.

In this application, we have used a curated random sample of
antibody sequences in the training set to learn the representation
of nativeness of human antibodies. This approach can be extended
to learn representations of a variety of sub-populations of anti-
body sequences that may be enriched in properties of interest. For
example, it has been observed that the majority of glycan-binding
antibodies are derived from select germlines. The LSTM approach
we have developed could be applied to a subset of known glycan-
binding antibodies to learn signature features of these antibodies; this
model could then provide an assessment on whether query antibody
sequences resemble glycan-binding antibodies. Such an approach
could be used with other specific populations of antibodies such as
DNA-binding or membrane-protein binding antibodies. By using this
approach, synthetic libraries could be designed that retain not only
native-like sequences but are also enriched in sequence features found
in antibodies known to bind a specific class of antigens.

The LSTM model can also be used in concert with computational
protein design approaches which, due to continued improvements in
the field, have begun to find more routine application in antibody
engineering. Several recent approaches have used observed sequence
profiles of antibodies to bias toward more native-like designs
(Adolf-Bryfogle et al., 2018). These implementations use a one-
body energy term to favor appropriate amino acids at each position,
but typically ignore explicit pairwise and higher order couplings
between positions which can impact structural stability. Since the
LSTM model we have implemented can rapidly evaluate entire
antibody sequences, it can be incorporated into computational design
approaches as a whole-body energy term to favor sequences that are
more representative of the training set. A similar approach has been
successfully applied for protein deimmunization (King et al., 2014).

Conclusion

We have developed an LSTM model that is able to learn the repre-
sentation of protein sequences. This approach is able to learn higher-
order linkages between positions in the sequence and is aware of its
surrounding sequence context. We applied this model to the analysis
of antibody sequences and showed that this model outperforms other
published approaches at assessing antibody humanness. The LSTM
model described here can help design synthetic libraries that better
represent native-like sequences and can also be used for selection
of appropriate scaffolds and mutations to guide humanization of
antibodies.
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