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Abstract: The incidence and societal burden of cancer is increasing globally. Surgery is indicated in the
majority of solid tumours, and recent research in the emerging field of onco-anaesthesiology suggests
that anaesthetic-analgesic interventions in the perioperative period could potentially influence long-
term oncologic outcomes. While prospective, randomised controlled clinical trials are the only
research method that can conclusively prove a causal relationship between anaesthetic technique
and cancer recurrence, live animal (in vivo) experimental models may more realistically test the
biological plausibility of these hypotheses and the mechanisms underpinning them, than limited
in vitro modelling. This review outlines the advantages and limitations of available animal models
of cancer and how they might be used in perioperative cancer metastasis modelling, including
spontaneous or induced tumours, allograft, xenograft, and transgenic tumour models.
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1. Introduction

In 2020, an estimated 18 million cancer cases were newly diagnosed (excluding non-
melanoma skin cancer), accounting for approximately 10 million cancer related deaths [1].
Surgical resection of solid tumours remains a mainstay of management of >60% tumours
because it offers the best chance of cure [2]. Cancer related mortality is rarely caused by
the primary tumour itself, but instead results from the metastatic process and consequent
organ dysfunction, which accounts for up to 90% of cancer-related deaths [3,4].

The original hypothesis that the anaesthetic technique during primary cancer resection
surgery of curative intent might influence the risk of cancer recurrence or later metastasis
was first proposed over a decade ago [5]. This included debate around a potential pro-
tumorigenic effect of opioids [6]. Subsequently, the question arose whether opioid sparing
anaesthesia-analgesia techniques (e.g., regional anaesthesia) and/or Total Intravenous
Anaesthesia (TIVA) techniques can reduce the risk of cancer recurrence and improve
survival outcomes for primary cancer surgery [7].

To ultimately prove these hypotheses, large prospective randomised-controlled clinical
trials are required to establish if a causal relationship exists between anaesthetic techniques
and the risk of cancer recurrence following primary cancer surgery. However, pre-clinical
laboratory models, primarily in vivo animal models, retain an important role in transla-
tional cancer research for several reasons [8]. Firstly, when designing a robust, prospective,
randomised clinical trial it is recommended that the hypothesis is underpinned by qual-
ity laboratory evidence to support the trial’s rationale. Secondly, animal models allow
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researchers with limited resources to test numerous hypotheses, within a more realistic
time frame than may be expected in the human clinical setting. Thirdly, in vivo models
allow investigators to study the pharmacodynamic effect of various anaesthetic, analgesic,
and perioperative interventions on a whole-organism model of cancer biology, which may
in turn generate new hypotheses. Lastly, evidence emerging from clinical trials is a slow
process and dependent on several external factors, including: the ability to recruit trial
participants, availability of personnel, environmental and equipment resources, and large
scale funding [9]. For example, the emergence of the CCOVID-19 pandemic had a pro-
found negative impact on ongoing clinical trials other than COVID-19 associated trials [10].
Therefore, experimental evidence from in vivo models will continue to play an important
role in supporting or refuting cancer treatment hypotheses.

The emergence of onco-anaesthesiology as a distinct clinical subspecialty has driven
the exploration of translational research utilising animal models of cancer, traditionally
undertaken by oncology researchers. Therefore, we aimed to summarise animal models of
cancer commonly encountered within in vivo translational cancer research and how they
may be applied to ongoing research in onco-anaesthesiology.

Animal models of cancer may be classified in a variety of ways. Most simply, they
are either spontaneous or induced and mammalian or non-mammalian. Alternatively,
they may be categorized by the method of inducing cancer occurrence. However, spon-
taneously occurring cancers may occur in genetically engineered animal strains or such
genetic-engineering may be induced following exposure to various carcinogens, so there is
some cross-over in these descriptions. Non-mammalian animals such as zebrafish benefit
from being high-throughput and low-cost, ideal for molecular investigation and chemical
screening studies, however, significant phenotypical differences limit their usefulness for
translational research so they will not be discussed further [11]. Table 1 summarizes the
commonly utilized animal models of cancer, each of which are described below.

Table 1. Animal models of cancer classification.

Classification Description Example

Spontaneous companion animals Spontaneous cancers in household pets Mammary carcinoma in dogs

Spontaneous Transgenic

• Knock-in or knock-out cell lines

Genetically engineered animals with specific
mutations the precipitate the development of
cancer during their normal lifespan

Mice with a rat C3(1) simian virus 40
large tumour antigen fusion gene

Induced Transgenic

• Carcinogen-exposed
• Conditional knock-in/knock-out

cell lines

Inducing genetic mutation via environmental
triggers that precipitate cancer development

N-butyl-N-(4-hydroxybutyl)
nitrosamine exposed mice &
Tetracycline induced Cre recombinase
gene expression system

Induced Allograft

• Non-syngenic
• Syngenic

Transplantation of cancer cells between animals
of the same species that may (syngenic) or may
not (non-syngenic) be genetically identical

4T1 mouse cancer cells transplanted
into Bagg Albino (BALB/c) mice

Induced Xenograft

• Patient derived xenograft (PDX)

Human cancer cells that may be commercially
obtained or patient-specific (PDX) transplanted
into other animals

Athymic nude mice
Severely compromised
immunodeficient
(SCID) mice

2. Xenograft Model

A xenograft model (Figure 1) involves the transplantation of cancer cells from one
species (e.g., human) into a host animal of a different species (e.g., mouse). This model
is immediately constrained because it requires an immunocompromised host animal to
prevent immunological rejection of the non-species cancer cells. Transplantation may be
ectopic (deposition of cancer cells beneath the skin) or orthotopic (deposition of cancer
cells targeted at the organ of interest). Alternatively, cancer cells may be administered
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intravenously to mimic metastatic spread or the seeding that is thought to occur during
solid tumour cancer surgery [12]. Patient-derived xenografts represent an evolution of this
approach utilizing transplantation of fresh tumour biopsies obtained directly from patients
into immunocompromised mice to create so-called tumour grafts or avatar mice to enable
testing and identification of individualized therapies [13,14].
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The advantages of xenograft models are that they are relatively inexpensive when
using commercially available cancer cell lines and attractive for translational research due
to the ability to mimic cancer cell biological traits and the direct evaluation of therapeutic
targets in human derived cancer tissue [15,16]. However, several disadvantages arise
from the requirement for immunocompromised animals, such as a lack of representative
immune response or inflammation, superficial vascularization of the grafts and limited
stroma-tumour interactions [15]. Tumour growth rate is variable and often slow, tumour
cell composition may not represent the heterogeneity present in the parent cancer and it
may not result in metastatic spread, all of which limit the detection of clinically significant
metastatic outcomes or falsely increase the perceived efficacy of experimental therapeutic
interventions [12,16,17]. The xenograft model also requires quality control because many
cell lines have unknown sources or poorly documented receptor expression, and regulatory
safeguards are needed to protect researchers from the high communicability risk from
handling human cancer tissue [16,18]. Despite these shortcomings, xenograft models have
been used extensively to identify potential molecular mechanisms underlying the observed
anti-tumour effects of propofol and local anaesthetics as well as pro- and anti-tumour
effects following exposure to inhalational anaesthetics [19–23].

3. Allograft Model

An allograft model (Figure 1) involves the transplantation of cancer cells between
animals of the same species (e.g., mouse cancer cells into another mouse), whereas a
syngeneic allograft specifically refers to transplantation of cancer cells between genetically
identical animals, which effectively eliminates confounding from inter-species interactions.
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The main advantage this has over xenograft models is the ability to evaluate the host
animal’s cancer-related immune response when assessing the effect of potential therapeutics.
Compared to xenografts, allografts produce larger tumours that metastasize more quickly
and reliably, enabling consistency when assessing for clinically relevant endpoints [18].
They do, however, present their own limitations. Firstly, allograft models are often artificial,
because mice may not form these cancers spontaneously [24]. They also differ from human
cancers in a variety of ways, including mice having more resilient immune systems than
humans, evident in both innate and adaptive immune responses and variability in the
observed stromal interactions [18].

The preservation of the host immune response underpins why these models are
often favoured for investigation in onco-anaesthesiology, where immunomodulation by
anaesthetic drugs is one of the most frequently proposed mechanisms to explain how
differences in perioperative pharmacotherapy may influence cancer outcomes [5,25,26]
A common example from onco-anaesthesiology literature is the 4T1 syngeneic allogenic
mouse model of breast cancer that has been used to demonstrate the anti-metastatic effects
of systemic lidocaine, in combination with propofol or sevoflurane anaesthesia as well as
the pro-metastatic effects of methylprednisolone on cancer progression [27–30].

4. Companion Animals

Testing potential therapeutics on spontaneous cancers that develop in household pets
(Figure 1) is an often-underutilized approach that can address some of the limitations
encountered in the traditionally favoured mouse models. Cancer occurs in dogs at twice
the frequency of humans at an average age of 8.4 years, and their shorter lifespan makes
it easier to collect and analyse survival data [31,32] Commonly occurring cancers in dogs
include lymphoma, melanoma, and mammary carcinoma and the resulting tumours are
the closest clinical and histopathological resemblance to human cancers of any other
animal model. This includes some identical tumour oncogenes and tumour suppressor
genes involved in promoting its development and progression [15]. To our knowledge,
companion animals have not been studied in onco-anaesthesiology research, however,
veterinary anaesthesiology could potentially be an avenue for further translational research
in this field.

5. Transgenic Models

Transgenic models (Figure 2) of cancer require genetic engineering that produces
genome mutations via either environmental exposure to carcinogens or genetic editing of
fertilized embryos to increase the likelihood of cancer occurrence. These are predominantly
performed in mice. Chemical carcinogens include N-butyl-N-(4-hydroxybutyl) nitrosamine
and asbestos, but induced mutations occur at random and require high-throughput genome
sequencing to identify them and extensive validation to identify the specific role of each
mutation [13,15]. Knock-in or knock-out mice can be generated that either promote the
expression of various oncogenes such as HRAS in breast cancer, or silence the effect of
tumour-suppressor genes such as Brca1 in breast cancer, respectively [33]. Genetic editing
may be performed in a variety of ways including retroviral infection, microinjection of
DNA (standard transgene approach) or the ‘gene-targeted transgene’ approach. The ‘gene-
targeted transgene’ approach involves targeted manipulation of embryonic stem cells where
the desired mutation is identified and expanded before reinjection into mouse blastocytes,
whereas it is not possible to control the location and pattern of gene expression using
traditional methods, which may lead to unexpected results due to effects on neighbouring
genes [15]. Novel alternatives include transposon-based insertional mutagenesis or the
clustered regularly interspaced short palindromic repeats (CRISPR)/associated (Cas9)
engineered nuclease system, which further enhance and/or simplify the ability to target
desired genetic mutations [34]. However, generating new genetically engineered mouse
models remains costly, labour-intensive, and time-consuming; it often requires multiple
generations of mice to achieve the desired pattern of gene expression and some mutations
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may be lethal to the embryos or cause developmental abnormalities or sterility [35]. This
issue may be partially addressed by the generation of conditional knock-in or knock-
out mice where further genetic engineering renders the mutation conditional on certain
environmental conditions such as the exposure to tetracycline or tamoxifen [34]. Despite
these limitations, several colonies of live mouse models of cancer are commercially available
and are frequently utilised for cancer research either alone or as donors for transplantation
in allogenic models.
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Transgenic cancer models may play a significant role in onco-anaesthesiology research
as they allow for testing of drug effects on the onset and progression of an expected
cancer in immunocompetent animals, such as what has already been performed with
morphine, which had no effect on the onset of cancer development but did hasten cancer
progression [36]. However, choosing a favourable strain can be one of the most challenging
parts of experimental design so a number of electronic databases such as Cancer Models
(CaMOD) have been developed to assist in the selection [37].

In conclusion, there are several in vivo animal models of cancer that may be utilized
for conducting translational research in onco-anaesthesiology. Whilst xenograft models are
attractive for the ability to tailor the cancer cell biology around the human cancer under
investigation, a lack of any representative immune response severely hinders its suitability
for onco-anaesthesiology research. Transgenic models demonstrate significant promise in
providing representative animal cancers and may be used alone or as donors for allogenic
models. Multiple transgenic mouse colonies and cancer cell lines are commercially available
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to enable rapid integration of in vivo mouse models into novel research, however, due
care must be taken to ensure the model chosen is most appropriate for the hypothesis
under investigation.
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