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Patterns of inflammatory responses 
and parasite tolerance vary with malaria 
transmission intensity
Temitope W. Ademolue1, Yaw Aniweh1, Kwadwo A. Kusi2 and Gordon A. Awandare1,2* 

Abstract 

Background:  In individuals living in malaria-endemic regions, parasitaemia thresholds for the onset of clinical 
symptoms vary with transmission intensity. The mechanisms that mediate this relationship are however, unclear. Since 
inflammatory responses to parasite infection contribute to the clinical manifestation of malaria, this study investigated 
inflammatory cytokine responses in children with malaria from areas of different transmission intensities (ranging 
from low to high).

Methods:  Blood samples were obtained from children confirmed with malaria at community hospitals in three areas 
with differing transmission intensities. Cytokine levels were assessed using the Luminex®-based magnetic bead array 
system, and levels were compared across sites using appropriate statistical tests. The relative contributions of age, 
gender, parasitaemia and transmission intensity on cytokine levels were investigated using multivariate regression 
analysis.

Results:  Parasite density increased with increasing transmission intensity in children presenting to hospital with 
symptomatic malaria, indicating that the parasitaemia threshold for clinical malaria increases with increasing trans-
mission intensity. Furthermore, levels of pro-inflammatory cytokines, including tumour necrosis factor alpha (TNF-α), 
interferon-gamma (IFN-γ), interleukin (IL)-1β, IL-2, IL-6, IL-8, and IL-12, decreased with increasing transmission intensity, 
and correlated significantly with parasitaemia levels in the low transmission area but not in high transmission areas. 
Similarly, levels of anti-inflammatory cytokines, including IL-4, IL-7, IL-10 and IL-13, decreased with increasing transmis-
sion intensity, with IL-10 showing strong correlation with parasitaemia levels in the low transmission area. Multiple 
linear regression analyses revealed that transmission intensity was a stronger predictor of cytokine levels than age, 
gender and parasitaemia.

Conclusion:  Taken together, the data demonstrate a strong relationship between the prevailing transmission inten-
sity, parasitaemia levels and the magnitude of inflammatory responses induced during clinical malaria.
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Background
In endemic areas, protection against clinical malaria 
results from repeated exposure to Plasmodium falci-
parum parasites [1, 2], such that individuals residing in 

holo-endemic areas can tolerate high levels of parasites 
without showing clinical symptoms. In low transmission 
areas however, clinical malaria has been associated with 
low parasite thresholds [3], suggesting that the thresh-
old parasitaemia for clinical malaria differs in children of 
similar ages who reside in areas with different transmis-
sion intensities [4–6]. These patterns demonstrate that 
the mechanisms of anti-parasite immunity are distinct 
from those responsible for anti-disease immunity or par-
asite tolerance.
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Increase in the breadth and magnitude of parasite-
specific antibody responses following repeated parasite 
exposures [7] is expected to control parasitaemia, and 
reduce the incidence of clinical disease [8]. However, 
this is not always true in high transmission areas, where 
children could harbour relatively high parasitaemia but 
remain asymptomatic [1, 2, 7]. Therefore, while adaptive 
immune responses may adequately account for anti-para-
site immunity, the mechanisms for anti-disease immunity 
or parasite tolerance remain unclear.

Clues to the mechanisms of parasite tolerance may lie in 
the role of inflammatory cytokines, which have been shown 
to correlate with the onset of symptomatic disease during 
P. falciparum infection [9–15]. Plasmodium falciparum 
infection causes paroxysmal fever that is triggered by strong 
pro-inflammatory responses involving pyrogenic cytokines 
such as interleukin (IL)-1β and tumour necrosis factor alpha 
(TNF-α) [16]. Although inflammatory responses, including 
interferon gamma (IFN-γ), IL-12, IL-1β, IL-2, and TNF-
α, play important roles that facilitate parasite clearance [9, 
17, 18], circulating high levels of these cytokines have been 
associated with malaria immunopathology [11, 12, 14, 19–
23]. Similarly, high levels of pro-inflammatory cytokines 
released during malaria infection have been associated 
with several pathologic processes such as sequestration 
of infected red blood cells (iRBCs) [24, 25], organ-specific 
inflammation that results in complications such as cerebral 
malaria [15, 26, 27], and placental malaria [28]. To prevent 
these deleterious effects, anti-inflammatory cytokines such 
as IL-10, IL-4, IL-17, and IL-13 are secreted to balance the 
effects of pro-inflammatory cytokines [29, 30].

The intensity of transmission has been shown to be a 
major predictor of clinical manifestations and outcomes 
of malaria  in endemic areas [6, 31]. In holo-endemic 
areas, disease severity is predominantly related to hyper-
parasitaemia and severe malarial anaemia [6, 31, 32], 
whereas in low to medium transmission areas, there is 
a high rate of cerebral malaria [6, 31, 33, 34]. Given the 
importance of pro-inflammatory mediators in determin-
ing manifestations of malaria, this study investigated the 
relationship between transmission intensity and inflam-
matory cytokine responses in children with symptomatic 
malaria. The roles of these factors in influencing the levels 
of parasitaemia were also examined. The results provide 
evidence of a strong relationship between transmis-
sion intensity and inflammatory responses during acute 
malaria infection, and suggest that these factors influence 
the levels of parasitaemia at clinical presentation.

Methods
Study sites
Three outpatient hospitals at locations (Kintampo, 
Navrongo and Accra) representing distinct malaria 

transmission intensities in Ghana were selected for this 
study. Kintampo is holo-endemic for malaria with year-
round transmission, and an entomological inoculation 
rate (EIR) of >250 infective bites/person/year [35]. Nav-
rongo is hyperendemic for malaria with seasonal rain-
fall and transmission (high transmission from May to 
November, low transmission from December to April) 
and EIR of 50–250 infective bites/person/year [36]. Accra 
is the capital city and has a relatively low transmission 
intensity (<50 infective bites/person/year) that peaks 
between June and August annually [37]. Samples were 
collected from 2011 to 2013 during the peak transmis-
sion seasons at the respective study sites.

Participants and sample collection
Ethical approvals were obtained from the ethics com-
mittees of the Ghana Health Service, Navrongo Health 
Research Centre, Kintampo Health Research Centre and 
Noguchi Memorial Institute for Medical Research, Uni-
versity of Ghana, Accra, Ghana. Participation was vol-
untary, and written informed consent was obtained from 
parents/guardians of the children. Study participants 
were children aged 2–14 years who were showing signs of 
clinical malaria, and had been referred for malaria tests 
by the attending physician. Parasitaemia was detected 
by malaria rapid diagnostic tests (RDTs) and confirmed 
by microscopic examination of thick and thin blood 
smears. Parasite density was estimated by counting the 
number of parasites per 200 white blood cells as previ-
ously described [38, 39]. Haemoglobin levels were quan-
tified using an automated haematology analyzer. Before 
delivery of anti-malarial and/or any other treatment 
interventions, 5 mL of venous blood was obtained from 
each child. Plasma samples were separated from whole 
blood by centrifugation at 2500 rpm (Eppendorf, model: 
5810 R) for 10  min and aliquoted into Eppendorf tubes 
for storage at −80  °C until further experiments. Sample 
collection, storage and analysis were done using the same 
protocols and procedures to ensure uniformity and com-
parability of data from the different hospitals.

Cytokine assays
Plasma concentrations of cytokines were measured using 
the highly sensitive xMAP technology (Luminex Cor-
poration), which allows the simultaneous quantification 
of several biological analytes in a 96-well format. The 
MILLIPLEX® MAP  13-Plex Kits from Millipore (Merck 
Group, magnetic beads) were used because of their 
higher detection accuracy and reproducibility of results 
compared to other vendors [40]. These kits were used to 
quantify eight pro-inflammatory cytokines (TNF-α, IFN-
γ, IL-1β, IL-2, IL-8, granulocyte monocyte colony stim-
ulating factor (GM-CSF), IL-6 and IL-12p70) and four 
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anti-inflammatory cytokines (IL-4, IL-7, IL-10, IL-13) 
in duplicate wells for each plasma sample. These ana-
lytes were selected based on relevance and association 
with malaria. The assays were conducted strictly follow-
ing the manufacturer’s instructions without any modi-
fication. The kits used were from the same lot, and the 
samples were randomly distributed across plates. Prior 
to assay, samples were thawed and clarified by centrifu-
gation (2000  rpm for 10  min). There were no readings 
from the background wells while the quality control 
and the Standards wells were within the specified range 
of the kits. Samples with percentage coefficient of vari-
ation (%CV) >15% were excluded from further analysis. 
Cytokine detection limits are found in Additional file 1.

Statistical analyses
Data analyses and graphs were done using GraphPrism 
version 6.01 (GraphPad Software, Inc.) and Minitab ver-
sion 17.1.0.0 (Minitab Inc.). After initial normality tests, 
patients’ demographics and clinical parameters were 
compared across the three sites either by Pearson’s Chi 
square (χ2) test (to compare proportions in categori-
cal variables) or One-way  ANOVA or Kruskal–Wallis 
H (K–W) test (for continuous data sets), depending on 
normality of data. An across-site comparison of cytokine 
levels was performed with the K–W test, while Dunn’s 
multiple comparison test was used to reveal between-site 
pairwise significant differences. Spearman’s correlation 
analyses were performed for associations of cytokines 
levels with age and parasite density. In addition, a Spear-
man’s correlation matrix was built to detect associations 
between cytokines. Multiple linear regression analy-
ses were conducted to detect the variable(s) that is/are 
the best predictor(s) of cytokine levels. For the regres-
sion models, cytokine levels served as the outcome vari-
ables while parasitaemia, age, gender and transmission 
intensity served as the predictor variables. Statistical 

significance was generally set at P < 0.05, however, after 
Bonferroni’s procedure, the critical value (α) of the 
regression models was adjusted to 0.004.

Results
Demographic and clinical characteristics of patients 
across the study sites
To investigate the role of inflammatory responses in the 
development of malaria parasite tolerance in endemic 
areas, this study examined the relationship between 
transmission intensity and the patterns of cytokine pro-
duction in children with malaria. Using a cross-sectional 
approach, a total of 173 children who tested positive for 
malaria by RDTs and microscopy were recruited from 
three community hospitals in three areas with varying 
transmission intensities: Accra (N  =  71)  <  Navrongo 
(N = 44) < Kintampo (N = 58). The proportions of both 
sexes were comparable across the study sites (P = 0.270; 
Table  1). Children in Accra were relatively older than 
those in Navrongo (P = 0.010) and Kintampo (P = 0.025), 
however, the ages of children from Navrongo and Kin-
tampo did not differ (P = 0.999). Parasitaemia reflected 
the intensity of transmission, with children from Kin-
tampo having higher parasitaemia compared with 
those in Accra (P =  0.005) and Navrongo (P =  0.070), 
although these differences were not statistically signifi-
cant for Navrongo (Table 1; Additional file 2). Haemoglo-
bin levels decreased as transmission intensity increased 
(P  =  0.007), with children from Accra having signifi-
cantly higher haemoglobin levels compared with those 
from Kintampo (P = 0.008). Although haemoglobin lev-
els in children in Accra were also higher than those in 
Navrongo, this difference was not statistically significant 
(P = 0.076). Children from Navrongo and Kintampo had 
comparable haemoglobin levels (P = 0.545). The median 
temperature at clinic also decreased with increasing 
transmission intensity (P  <  0.001), with children from 

Table 1  Demographic and clinical parameters of patients across the study sites

IQR interquartile range

*Significant difference
a  Kruskal–Wallis H test
b  χ2 test
c  One-way ANOVA

Characteristics Accra Navrongo Kintampo P value

Participants (number) 71 44 58 –

Female (number, %) 35.3 50.0 43.2 0.270b

Median age (IQR), years 6 (4–9) 4 (3–6) 4 (2–6) 0.005a*

Median parasitemia (IQR), per µL 21,805 (7,172–64,355) 46,351 (18,524–66,679) 70,215 (11,342–209,335) 0.004a*

Mean hemoglobin level (IQR), g/dL 10.5 (9.0–11.6) 9.8 (8.8–10.9) 9.6 (8.1–11.2) 0.007c*

Median temperature (IQR), °C 38.8 (38.0–39.4) 38.0 (37.0–39.0) 37.1 (36.5–38.3) 0.0001a*
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Accra having significantly higher median tempera-
ture compared to Navrongo (P  <  0.001) and Kintampo 
(P < 0.001). Children in Navrongo also had higher median 
temperature than those from Kintampo (P < 0.001). Since 
these children were recruited at presentation to hospital 
with symptoms of malaria, the pattern of parasitaemia 
suggests that the parasitaemia threshold for clinical man-
isfestation of infection seems to increase with increasing 
transmission intensity.

Levels of pro‑inflammatory mediators decline 
with increasing transmision intensity
The secretion of pro-inflammatory cytokines during 
malaria infection has been shown to culminate in the 
clinical manifestations of disease [13, 14]. Consequently, 
the role of cytokine levels in mediating parasite toler-
ance was investigated in children exposed to different 
malaria transmission intensities. Quantification of levels 
of pro-inflammatory cytokines, including TNF-α, IFN-γ, 
IL-1β, IL-2, IL-8, IL-6, IL-12, and GM-CSF in children 
with malaria in the three transmission areas revealed 
a pattern of decreasing cytokine levels with increasing 
transmission intensity (Accra  >  Navrongo  >  Kintampo; 
Fig. 1). Levels of all pro-inflammatory cytokines were sig-
nificantly lower in children from Kintampo compared to 
those in Accra (P < 0.005 for all cytokines; Fig. 1a–h). In 
addition, levels of all pro-inflammatory cytokines except 
IFN-γ (P = 0.834), IL-8 (P = 0.056) and IL-6 (P = 0.260) 
were lower in the Kintampo group compared to the 
Navrongo group (P  <  0.05 for all comparisons; Fig.  1). 
Given that parasitaemia levels increased with increasing 
transmission intensity (Table  1), the reverse pattern of 
pro-inflammatory cytokine suggest that lower cytokine 
responses appear to favour increased parasite tolerance.

Levels of anti‑inflammatory mediators also decline 
with increasing transmission intensity
Since pro-inflammatory responses are usually fol-
lowed by the secretion of anti-inflammatory media-
tors to balance their effects [13, 14, 29, 30], the levels 
of four key anti-inflammatory cytokine including IL-4, 
IL-7, IL-10, and IL-13 were also examined. The pat-
tern observed was similar to that of the pro-inflamma-
tory cytokines, with cytokine levels decreasing with 
increasing transmission intensity across the three areas 

(Accra > Navrongo > Kintampo; Fig. 2). Specifically, lev-
els of all four cytokines were significantly lower in chil-
dren recruited in Kintampo compared to those in Accra 
(P  <  0.01 for all comparisons; Fig.  2). Taken together, 
these data buttress the patterns observed for pro-inflam-
matory responses, and further confirm an association 
between transmission intensity and the magnitude of 
inflammatory responses induced during clinical malaria, 
and suggest a likely association with parasitaemia levels.

Correlation between parasitaemia and pro‑infammatory 
cytokine levels varies with transmission intensites
Given the strong relationship between cytokine levels 
and transmission intensity, the correlations between lev-
els of pro-inflammatory mediators and parasitaemia were 
directly examined in each of the three sites. There were 
significant positive correlations between parasite density 
in children with malaria and levels of key pro-inflamma-
tory cytokines, including TNF-α, IFN-γ and IL-6 (Fig. 3). 
However, these correlations were observed in the Accra 
group only, with none showing significant correlation in 
the Navrongo group, and only IL-6 showing a significant 
correlation in the Kintampo group (Fig. 3). Since malaria 
parasite antigens induce the production of pro-inflam-
matory cytokines [14, 16, 41, 42], these results are further 
evidence of increased parasite tolerance in the higher 
transmission areas, where further increases in para-
site levels above a certain threshold no longer augment 
cytokine production.

Limited correlations between parasitemia 
and anti‑inflammatory cytokine levels
Subsequently, the correlations between anti-inflamma-
tory cytokines and parasite burden were examined in 
children with malaria across the different transmission 
areas. Unlike the patterns observed with the pro-inflam-
matory cytokines, the anti-inflammatory cytokines did 
not generally show significant correlation with parasitae-
mia in any of the endemic areas (Fig. 4). However, IL-10, 
which is considered a critical anti-inflammatory media-
tor in regulating the pro-inflammatory response during 
malaria [29, 43, 44], showed significant correlation with 
parasite density in children residing in Accra and Kin-
tampo (Fig. 4). This correlation was particularly strong in 
the Accra group, which is consistent with the correlation 

(See figure on next page.) 
Fig. 1  Pattern of pro-inflammatory responses to malaria infection across different transmission sites. Plasma levels of pro-inflammatory cytokines 
a tumour necrosis factor (TNF)-α, b  interferon (IFN)-γ, c interleukin (IL)-2, d IL-1β, e IL-12, f IL-6, g IL-8, and h granulocyte macrophage colony 
stimulating factor (GM-CSF), were quantified in children with malaria in three areas of Ghana with varying malaria transmission intensities (Accra < 
Navrongo < Kintampo).  Comparisons across sites were performed using Kruskal-Wallis H test with Dunn’s posthoc test (Accra N = 71; Navrongo N 
= 44; Kintampo N = 58). Data are presented as box plots where boxes represent the inter-quartile ranges, while the whiskers represent the 10th and 
90th percentiles. The lines across the boxes indicate the median values, while closed circles represent outliers
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Fig. 2  Pattern of anti-inflammatory responses to malaria infection across the different transmission areas. Plasma levels of anti-inflammatory 
cytokines a interleukin (IL)-10, b IL-4, c IL-13, and d IL-7, were quantified in children with malaria in three areas of Ghana with varying malaria 
transmission intensities (Accra < Navrongo < Kintampo).  Comparisons across sites were performed using Kruskal-Wallis H test with Dunn’s posthoc 
test (Accra N = 71; Navrongo N = 44; Kintampo N = 58). Samples below the detection limits were assigned a concentration of zero, including 12 
samples for IL4 (Accra = 3, Navrongo = 1, Kintampo = 8), and 33 samples for IL7 (Accra = 6, Navrongo = 7, Kintampo = 20).  Data are presented 
as box plots where boxes represent the inter-quartile ranges, while the whiskers represent the 10th and 90th percentiles. The lines across the boxes 
indicate the median values, while closed circles represent outliers

 (See figure on next page.) 
Fig. 3  Association between pro-inflammatory cytokines and parasite density across the sites. The relationships between parasite density in children 
with malaria and plasma levels of pro-inflammatory cytokines a tumour necrosis factor (TNF)-α b interleukin (IL)-12, c interferon (IFN)-γ, d IL-1β, e 
IL-2, f IL-6 and g IL-8, were examined using Spearman’s rank correlation test.  P values in bold type indicate statistical significance. Samples below the 
detection limits were excluded from the analysis. (ρ = Spearman’s correlation coefficient)
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observed for the key pro-inflammatory cytokines. In 
addition, IL-4 showed a significant association with para-
sitaemia in children from Navrongo, however, this corre-
lation was negative (Fig. 4).

Associations between parasite density and cytokine levels 
are independent of age across sites
Cytokine levels during parasitic infections, including 
malaria, have been shown to vary with age [45]. Since age 
significantly differed between sites (Table  1), the study 
subsequently determined whether the age difference 
affected cytokine responses during acute malaria infec-
tion. The results showed limited associations between 
age and cytokine levels in this cohort, with IFN-γ cor-
relating negatively with age in Navrongo and Kintampo 
(Additional file  3), while IL-8 and IL-4 showed positive 

correlations with age in Navrongo and Accra, respec-
tively (Additional file  3). Thus, contrary to previous 
reports where age was found to significantly affect levels 
of cytokines during malaria infection [6, 13, 45, 46], age 
did not seem to be a major determinant of plasma levels 
of cytokines across the sites.

Transmission intensity is the major predictor of cytokine 
responses
Using multiple linear regression analyses, the relative 
contributions of age, gender, parasite density, and trans-
mission intensity as predictors of cytokine levels was 
examined. These analyses revealed that study site (coded 
in order of increasing transmission intensity) was the 
strongest predictor of all cytokine levels, except GM-
CSF, for which sex was the best predictor (see F values 

Fig. 4  Association between anti-inflammatory cytokines and parasite density across the sites. The relationships between parasite density in chil-
dren with malaria and plasma levels of anti-inflammatory cytokines a interleukin (IL)-10, b IL-4, c IL-13, and d IL-7, were examined using Spearman’s 
rank correlation test.  P values in bold type indicate statistical significance. Samples below the detection limits were excluded from the analysis. (ρ = 
Spearman’s correlation coefficient)
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in Table  2). Transmission intensity had negative regres-
sion coefficients in all the regression models (nega-
tive β-weights, Additional file  4); indicating an inverse 
relationship with cytokine levels. In addition, the inter-
relationships among the cytokines across the sites were 
investigated, and this showed that cytokines generally 
correlated positively with each other (Fig.  5). Most sig-
nificantly, the key pro-inflammatory cytokines, including 
IFN-γ, IL-12 and IL-2 strongly correlated with each other, 
and a strong association was also found between TNF-α 
and IL-6 (Fig. 5). 

Discussion
Previous studies have established that individuals 
exposed to endemic malaria transmission can harbour 
high parasitaemia without clinical symptoms [6, 31, 47], 
suggesting that the threshold parasitaemia for sympto-
matic malaria in high transmission areas is higher than 
that in low-to-medium transmission areas [1, 2, 10, 39]. 
Data presented here support this phenomenon, whereby 
increasing transmission intensity was associated with 
increasing parasite densities in children presenting to 
hospital with symptomatic malaria. Therefore, it was 

hypothesized that the regulation of pro-inflammatory 
responses is a mechanism that accounts for the differ-
ences in parasite tolerance in individuals exposed to 
different transmission intensities. This hypothesis is 
based on established knowledge that pro-inflammatory 
responses during infection are characterized by the 
release of a cascade of soluble immune mediators includ-
ing cytokines and chemokines that cause fever, and other 
signs of malaria [48]. The results show that pro-inflam-
matory responses decreased with increasing transmission 
intensity (Accra  >  Navrongo  >  Kintampo). Consistent 
with the decreasing levels of pyrogenic cytokines, axillary 
temperature in the children with malaria decreased with 
increasing transmission intensity, indicating a decreasing 
intensity of fever.

Interestingly, significant correlations between para-
site density and cytokine levels were observed among 
children with malaria in Accra only, suggesting that this 
relationship seems to disappear in higher transmission 
areas. This assertion was supported by the multiple lin-
ear regression analyses, which revealed that transmis-
sion intensity was the strongest predictor of cytokine 
responses during acute malaria infection. These findings 

Fig. 5  Correlation matrix showing the relationships between cytokines across the sites. The interrelationships between the levels of inflammatory 
cytokines in children with malaria were examined by Spearman’s correlation test, and the results are summarized in a colour matrix.  The strength of 
correlation between pairs of cytokines are illustrated on a colour scale, where the least statistically significant relationships are coloured green while 
the most significant are in red.  (ρ = Spearman’s correlation coefficient)
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suggest that higher parasitaemia thresholds for symp-
tomatic malaria in areas of intense malaria transmis-
sion may be explained by controlled pro-inflammatory 
responses, and milder fevers, which consequently delay 
clinical symptoms until higher parasite densities are 
attained. On the contrary, lower thresholds of parasi-
taemia in low transmission areas could be due to a more 
aggressive pro-inflammatory response against low parasi-
taemia, leading to more severe fevers and faster onset of 
clinical manifestation.

High parasitaemia would mean high levels of parasite 
associated antigens such as glycophosphatidylinositol 
(GPI) anchors [42, 49, 50], and high levels of damage 
associated molecular patterns (DAMPs) such as haem 
from red blood cells [51], which consequently, should 
induce corresponding high levels of pro-inflammatory 
response, but such corresponding stimulation was not 
observed in the high transmission sites. Therefore, tol-
erance of comparatively higher parasitaemia in areas 
of intense malaria transmission may be as a result of 
refractoriness to stimulation from prolonged continuous 
exposure to parasites and parasite antigens [5, 52]. Pre-
vious studies have demonstrated that prolonged stimula-
tion of CD4+ T-cells with high level of antigens mediate 
adaptive peripheral tolerance, which is characterized by 
unresponsiveness to further stimulation, with an evident 
decrease in the secretion of TNF-α, IFN-γ, IL-2, and IL-6 
[5, 52–54]. A parallel observation has been described in 
sepsis, where it was demonstrated that at certain level of 
stimulation in  vitro, cells become refractory to stimula-
tion with bacterial endotoxin, showing no further secre-
tion of pro-inflammatory cytokines [55–57].

In high transmission areas, more frequent infec-
tions would mean an almost ‘chronic’ state of infection 
[2]. Under this condition, peripheral CD4+ T-cells are 
exhausted [58] from persistent stimulation with high lev-
els of parasite associated antigens. In addition, the loss 
of a Vγ9+δ2+ T cell subset, which rapidly expands and 
become activated during P. falciparum infection, was 
recently shown to be associated with repeated infections 
[59]. This sub-set of T-cells has been shown to secrete 
high levels of TNF-α and IFN-γ upon stimulation with 
iRBCs [60]. Perhaps, low levels of TNF-α and IFN-γ 
observed in the high transmission sites is due to the 
reduction of this T-cell subset. On the other hand, lower 
exposure in low transmission areas means that each 
infection is a separate acute event, which culminates in 
responses similar to those observed in naïve individuals 
(i.e., heightened pro-inflammatory response). This result 
is further buttressed by a recent report which indepen-
dently demonstrated that pro-inflammatory responses 
during acute malaria infection increases with decreas-
ing exposure; being highest in naïve adults, followed by 

immigrants with extended loss of P. falciparum exposure, 
and being lowest in semi-immune individuals residing in 
an endemic area [61].

Alternatively, there appears to be a mechanism that 
dampens pro-inflammatory responses [62] in children 
that have been repeatedly exposed to the parasite [63] 
through suppression of IL-12 production. Low levels of 
IL-12 in the high transmission areas could be a result 
from suppression by ingested haemozoin [64], due to the 
reported high levels of haemozoin-containing monocytes 
[65] in children residing in holo-endemic areas. In addi-
tion, evidence of suppression of T-cell cytokine responses 
was recently demonstrated in murine models of 
malaria [63], where a distinct sub-set of IL-27-secreting 
Foxp3−CD11a+CD49d+ malaria antigen-specific CD4+ 
T-cells inhibit the production of IL-2, which conse-
quently may dampen IL-12 secretion, resulting in clonal 
depletion of Th1 cells [63]. Similarly, the development of 
humoral immune responses appear to be associated with 
better control of pro-inflammatory responses in children 
with malaria from Malawi [42].

Conclusion
Altogether, findings from this study represent signifi-
cant new knowledge about the mechanisms of malaria 
pathogenesis and parasite tolerance. The data also pro-
vide evidence and understanding of malaria parasite tol-
erance, an issue of utmost importance in the context of 
malaria control and eradication since the adverse effects 
of malaria resurgences are not known. While these find-
ings need to be confirmed by additional investigations of 
the cellular responses underlying the patterns of cytokine 
production, data presented here have implications for 
characterizing the pathophysiology of P. falciparum 
amidst decreasing transmission intensity.
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