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Abstract: Background: Glioblastoma is the most frequent malignant primitive brain tumor in adults.
The treatment includes surgery, radiotherapy, and chemotherapy. During follow-up, combined
chemoradiotherapy can induce treatment-related changes mimicking tumor progression on medical
imaging, such as pseudoprogression (PsP). Differentiating PsP from true progression (TP) remains a
challenge for radiologists and oncologists, who need to promptly start a second-line treatment in
the case of TP. Advanced magnetic resonance imaging (MRI) techniques such as diffusion-weighted
imaging, perfusion MRI, and proton magnetic resonance spectroscopic imaging are more efficient
than conventional MRI in differentiating PsP from TP. None of these techniques are fully effective,
but current advances in computer science and the advent of artificial intelligence are opening up new
possibilities in the imaging field with radiomics (i.e., extraction of a large number of quantitative
MRI features describing tumor density, texture, and geometry). These features are used to build
predictive models for diagnosis, prognosis, and therapeutic response. Method: Out of 7350 records
for MR spectroscopy, GBM, glioma, recurrence, diffusion, perfusion, pseudoprogression, radiomics,
and advanced imaging, we screened 574 papers. A total of 228 were eligible, and we analyzed 72 of
them, in order to establish the role of each imaging modality and the usefulness and limitations of
radiomics analysis.

Keywords: glioblastoma; pseudoprogression; true progression; MRI; radiomics; MR spectroscopy;
artificial intelligence

1. Introduction

Glioblastoma (GBM) is the most aggressive and frequent type of primary brain tumor
in adults [1], with an incidence of about 4–5/100,000 [2]. Median age at diagnosis is 64
years, and the 5-year relative survival rate is about 5% [3,4]. Standard treatment includes
surgery or biopsy followed by radiotherapy (RT) combined with chemotherapy using
temozolomide [5]. Heterogeneity, infiltration pattern, angiogenesis, and hypoxia, together
with their impact on tumor metabolism and radioresistance, are responsible for the two
main issues with these tumors. First, the short-lived effect of classic therapeutic approaches,
and secondly the need for multimodal imaging to characterize the tumor initially and,
in the event of post-treatment changes, to decipher its behavior and propose second line
treatments if progression is confirmed [6,7].
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Magnetic resonance imaging (MRI) is the best imaging modality for the diagnosis and
follow-up of GBM, in a meta-analysis of more than 2000 patients after first-line treatment,
36% of patients (range 3–50% depending on the study) were found to have increased
contrast enhancement on their first post-radiation MRI that was not true progression
(TP) [8–11]. Combined radiotherapy and chemotherapy can induce an increase in contrast-
enhanced lesions that mimics tumor progression but subsequently stabilizes or decreases
without any additional treatment. This pseudoprogression (PsP) is a potential surrogate
marker of treatment efficiency. In a prospective study of 463 patients, Wick et al. [12]
demonstrated that the incidence of PsP is about 9.3%. They used clinical symptoms to
diagnose progressive disease and a new MRI 8 weeks after treatment to diagnose PsP. In
a review, differences in the rate of incidence of PsP after RT/temozolomide were mainly
explained by the criteria (stringent or liberal) used to diagnose PsP (12% when using
stringent criteria, and 23% when using liberal criteria) [13]. Response Assessment in Neuro-
Oncology (RANO) criteria are widely used to classify patients according to progressive
or nonprogressive disease [14]. However, these criteria, have limitations. As they are
based solely on morphological MRI assessment, less than 12 weeks after completion of
chemoradiotherapy, tumor progression can only be diagnosed if enhancing lesions appear
outside the radiation field. Recent guidelines on the role of imaging in the management
of progressive GBM in adults recommend the use of advanced MRI techniques such as
diffusion weighted imaging (DWI), proton magnetic resonance spectroscopic imaging,
and perfusion weighted imaging to differentiate between PSP and TP [15]. In the present
review, we focused on the added value of different types of advanced medical imaging
when it comes to differentiating PsP from TP, as well as the role of radiomics in meeting
this clinical challenge.

2. Materials and Methods

We conducted a comprehensive search of the PubMed and Google Scholar databases
to find relevant articles (published up to September 2021). The search terms were as follows:
magnetic resonance spectroscopy or MR spectroscopy or MRS, GBM, glioma, recurrence,
diffusion, perfusion, pseudoprogression, radiomics, and advanced imaging. Articles
concerning PsP in adult patients with glioma, high-grade glioma, or GBM were examined.
References provided by relevant articles were also examined to identify additional studies
for inclusion. Articles describing positron emission tomography imaging or animal studies
or PsP treatment or machine learning on glioma without PsP as subject were excluded. A
total of 228 articles and after applying exclusion criteria 72 were included. Figure 1 shows
our study flow chart.

Two persons checked the data: one extracted data and an other person checked the
extracted data.
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Figure 1. Study flow chart from PRISMA flow diagram 2020 statement. PsP = pseudoprogression, 
PET = positron emission tomography, PRISMA = preferred reporting items for systematic reviews 
and meta-analyses. 
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3.1. Definition of Pseudoprogression 

PsP can be defined as radiographic changes (enlarged or new contrast enhancement) 
within the radiation field mimicking TP that spontaneously resolve without any modify-
ing therapy [16]. Clinical definitions of PsP are quite variable, which may explain some of 
the differences in its reported incidence [16]. PsP mainly occurs during the first 6 months 
post-RT [8,17], but most studies describe it as occurring within the first 3 months [16]. By 
contrast, radionecrosis (RN) is observed more than 6 months post-RT (18–24 months to 
several years post-treatment on average). RN is a late disease corresponding to white-
matter necrosis. PsP and RN do not have the same histopathological and biological mech-
anisms. RN can occur as a result of chronic inflammation and wall thickening, as well as 
vessel hyalinization and even collapse of the microvessels surrounding the tumor, owing 

Figure 1. Study flow chart from PRISMA flow diagram 2020 statement. PsP = pseudoprogression,
PET = positron emission tomography, PRISMA = preferred reporting items for systematic reviews
and meta-analyses.

3. Results
3.1. Definition of Pseudoprogression

PsP can be defined as radiographic changes (enlarged or new contrast enhancement)
within the radiation field mimicking TP that spontaneously resolve without any modifying
therapy [16]. Clinical definitions of PsP are quite variable, which may explain some of
the differences in its reported incidence [16]. PsP mainly occurs during the first 6 months
post-RT [8,17], but most studies describe it as occurring within the first 3 months [16]. By
contrast, radionecrosis (RN) is observed more than 6 months post-RT (18–24 months to
several years post-treatment on average). RN is a late disease corresponding to white-matter
necrosis. PsP and RN do not have the same histopathological and biological mechanisms.
RN can occur as a result of chronic inflammation and wall thickening, as well as vessel
hyalinization and even collapse of the microvessels surrounding the tumor, owing to
reactive telangiectasia [18]. In contrast, the mechanisms of PsP are not well-documented.
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RT probably induces damage to epithelial cells and local tissue inflammation, resulting
in edema and abnormal vessel permeability in which vascular endothelial growth factor
signaling is upregulated. This, in turn, may cause an increase in edema seen on T2-weighted
images and/or new or increased contrast agent enhancement [8]. Brandes et al. [9] showed
that PsP is more frequent among patients with O6-methylguanine-DNA methyl transferase
(MGMT) methylation (MGMT is a DNA repair enzyme that plays an important role in
chemoresistance to alkylating agents). The latter have a better median overall survival
rate than those without MGMT methylation 18.2 months versus 12.2 months [19] and up
to 46 months versus 19 months [9]. It has been reported that there is a 60% probability
of early TP in unmethylated MGMT promoter tumors [19]. PsP may represent an active
inflammatory response to the tumor [20]; in other words, an enhanced response. In a study
of 130 patients, Kucharczyk et al. [21] used RANO criteria to demonstrate that patients
with PSP do not differ significantly from patients with stable disease on overall survival
(13 months vs. 12.5 months), although they do differ significantly from patients with
TP. In the same study, a comparison of response RANO criteria, MacDonald criteria, or
Response Evaluation Criteria in Solid Tumors (RECIST) found that the incidence of PsP
varied from 15% (RANO) to 19% (MacDonald) and 23% (RECIST). Wick et al. [12] did not
find any signs on conventional MRI to distinguish between PsP and TP; the only sign for
TP was subependymal enhancement for with 38.1% sensitivity, 93.3% specificity, and 41.8%
negative predictive value. In a meta-analysis, conventional MRI (166 patients) had a pooled
sensitivity and specificity of 68% (95%CI [51, 81]) and 77% (95%CI ([45, 93]) [22]. Owing to
these limitations, other MRI modalities were studied to evaluate their ability to diagnose
PsP. No significant differences in progression-free survival were found between two groups,
even in patients with MGMT methylation [12], but these authors assessed PsP rates and TP
patterns in a phase III trial of bevacizumab plus radiotherapy/temozolomide for newly
diagnosed glioblastoma. However, bevacizumab is also a treatment, for radionecrosis [23],
so these results are very different from the standard upfront treatment of GBM, which does
not include bevacizumab.

Follow-up MRI assessing GBM response to treatment is useful for depicting PsP, as
the contrast enhancement portion of the lesion either remains stable or diminishes over
time [24]. However, conventional MRI does not allow a reliable distinction to be made
between PsP and TP, as both may be characterized by mass effect, perilesional edema, and
contrast agent enhancement due to blood–brain barrier breakdown [25], (Figure 2). In a
study of 93 patients [25] looking for different signs on conventional MRI to distinguish
between PsP and TP, the only sign for TP was subependymal enhancement, with 38.1%
sensitivity, 93.3% specificity, and 41.8% negative predictive value. In a meta-analysis, con-
ventional MRI (166 patients) had a pooled sensitivity and specificity of 68% (95%CI [51, 81])
and 77% (95%CI [45, 93]) [22]. Owing to these limitations, other MRI modalities have been
studied to evaluate their ability to diagnose PsP.

3.2. Advanced MRI and PsP
3.2.1. Diffusion Imaging Including Diffusion Tensor Imaging (DTI) and Diffusion Weighted
Imaging (DWI)

DTI provides details on tissue microstructure and organization well beyond the usual
image resolution and allowing diffusion anisotropy to be quantified and subtle white-
matter changes to be detected [26]. Restricted diffusion due to tumor presence is seen as
high-signal intensity on DWI and reduced apparent diffusion coefficient (ADC) values in
the solid components of the tumor. Another important element in DWI is the b-value, a
factor reflecting the strength and timing of the gradients used to generate DWI. The b-value
corresponds to diffusion effects. The ADC is calculated on the basis of the difference in
the signal intensity on DW images obtained at two different b values, corresponding to an
exponential decrease in signal intensities [27,28].
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month later (4 months post-RT) showed that one patient had TP, with an increase in contrast (A), 
while the other patient had PsP, as the contrast remained stable (B). 
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Figure 2. This figure shows two patients treated for GBM with concurrent RT and chemotherapy. At
3 months, MRI showed an increase in contrast-enhancing lesion on axial T1 sequence after injection
of a contrast agent, suggestive of progression in both cases. Further MRI scans performed 1 month
later (4 months post-RT) showed that one patient had TP, with an increase in contrast (A), while the
other patient had PsP, as the contrast remained stable (B).

In a study assessing DWI for its ability to differentiate TP from PsP, ADC values
were found to be higher in necrotic tissue than in recurrent tumor tissue [9]. In high-
grade gliomas previously treated with standard chemoradiation, the presence of centrally
restricted diffusion in a new ring-enhancing lesion may indicate radiation necrosis (RN)
rather than tumor recurrence, and this was confirmed by a prospective study of 17 patients
with high-grade gliomas who developed a new ring-enhancing necrotic lesion and who
underwent re-resection [29]. A comparison of histogram parameters for each ADC map
showed that the fifth percentiles of ADC at a b value of 1000 s/mm2 (ADC1000) and at a
b value of 3000 s/mm2 (ADC3000) were significantly lower in the TP group than in the
PsP group (p = 0.049 and p = 0.001). By contrast, the two groups did not differ significantly
on either mean ADC1000 or mean ADC3000. The fifth percentile of the cumulative ADC
histogram obtained at a high b value (1000 or 3000) in new or enlarged enhancing lesions
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appears to be a promising parameter for differentiating TP from PsP after GBM treatment,
with an accuracy of 88% [30]. Kazda et al. [31] found that a mean ADC value above
1313 × 10−6 mm2/s was associated with PsP (sensitivity = 98.3%; specificity = 100.0%). In
a study of 35 patients, ADC maps were registered to contrast-enhanced T1-weighted images
at baseline and follow up. Changes in relative ADC (rADC) values could differentiate PsP
from TP when rADC decreased by 59.2% in patients with TP and by 18.6% in patients
with PsP compared with baseline DWI, with a sensitivity and specificity of 86%, and an
area under the curve (AUC) of 0.844 ± 0.065 (p = 0.014) [32]. The optimum decrease in
the ADC ratio cut-off value for differentiating TP from PsP was 27.05% (sensitivity = 88%,
specificity = 86%; p = 0.014). Prager et al. [33] demonstrated that the ADC decrease is
greater in TP than in PsP. Table 1 sets out the results of these studies.

Table 1. Review of DWI MRI studies. DWI = diffusion-weighted imaging, MRI = magnetic resonance
imaging, N = number of patients, TP = true progression, PsP = pseudoprogression, ADC = apparent
diffusion coefficient, rADC = relative apparent diffusion coefficient.

Study N Parameter TP PsP p

Chu, 2013 30 5th percentile ADC 1000
5th percentile ADC 3000

906 × 10−6 mm2/s
587 × 10−6 mm2/s

1030 × 10−6 mm2/s
719 × 10−6 mm2/s

0.049
<0.001

Prager, 2015 68 ADC mean 1380 × 10−6 mm2/s 1590 × 10−6 mm2/s 0.003
Kazda, 2016 39 ADC mean 1155 × 10−6 mm2/s 1372 × 10−6 mm2/s <0.001
Reimer, 2017 35 rADC decrease 59% 18% 0.005
Zhakari, 2018 17 ADC min in necrosis 1756 × 10−6 mm2/s 992 × 10−6 mm2/s 0.027

In another study, DTI revealed higher fractional anisotropy and reduced ADC values
in the normal-appearing white matter adjacent to the edema in patients with RN, compared
with patients with TP [34]. Nevertheless, neither DWI nor DTI provides sufficient infor-
mation to accurately differentiate PsP from TP. Both yield heterogeneous signal intensities
on DWI and ADC maps, with areas of reduced diffusion that may represent either highly
cellular tumor areas or inflammatory processes [20].

3.2.2. Perfusion-Weighted Imaging (PWI)

PWI is a set of imaging techniques for the study of blood flow and therefore requires
an endogenous or exogenous tracer. Using gadolinium chelate as an exogenous contrast
medium tracer is the most frequent way of performing perfusion measurements. After
an intravenous injection of a gadolinium bolus [35], two basic techniques can be used.
In dynamic contrast-enhanced MRI (DCE), T1-weighted sequences allow clinicians to
assessing the increase in signal intensity due to gadolinium T1 effects. This technique is
particularly suited for assessing contrast medium kinetics within tissue over a long time
period and is hence mainly used in tumor assessment. The Ktrans is the marker obtained.
With dynamic susceptibility contrast (DSC) MRI, dynamic T2*-weighted sequences are
acquired before, during, and after contrast injection and used to evaluate regional brain
perfusion parameters [35]. Owing to its T2* effects, gadolinium induces a signal loss over
time and allows tissue microvascular density to be estimated through the measurement of
cerebral blood volume (CBV) or cerebral blood flow [36]. With these techniques, the fact that
the vessels after radiotherapy are modified with increased vascular permeability. Therefore,
the Ktrans values and CBV values are more difficult to analyze than if the contrast agent
stayed intravascular. Consequently, contradictory results in clinical studies on gliomas
are frequent and depend on the vascular parameters in tumor of each patients. Arterial
spin labeling (ASL) uses blood as an endogenous tracer [37]. The blood is labeled by
an inversion or saturation pulse, leading to a change in signal intensity if it enters the
slice(s) of interest DSC was found to be the most widely used technique for PWI in a
study comparing all three perfusion methods [38,39].It has also been found to have the best
diagnostic performance [40].
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In three DSC studies, the mean relative CBV (rCBV) value was shown to be sig-
nificantly lower in a radiation-induced brain injury group than in a glioma recurrence
group [33,41,42]. However, these results are controversial [42,43]. Table 2 sets out the
results of these studies. In a study of 39 patients, Thomas et al. [44] demonstrated in a
DCE study that a Ktrans mean value of >3.6 had 69% sensitivity and 79% specificity for
differentiating PsP from TP. Dynamic contrast-enhanced MRI yields lower ktrans values in
PsP than in TP [44,45], but these results are again controversial. In a prospective study,
Yoo et al. demonstrated a significant difference in Ktrans values between patients with
TP and PsP, with higher values for the latter [46]. ASL has been found to improve the
diagnostic accuracy of DSC perfusion MRI in differentiating PsP from TP [47]. In a recent
study, both 3D perfusion ASL and DSC perfusion MRI techniques had nearly equivalent
performances for differentiating TP from PsP in patients with GBM. However, ASL seems
to be less sensitive to susceptibility artifacts and may allow for improved classification in
selected cases [48]. Gadolinium injection is required in GBM for a more accurate assessment.
When it comes to comparing DWI and PWI, a meta-analysis included 24 studies on the
differentiation of PsP from TP, a meta-analysis metaanalysis including 24 studies, with a
total of 900 patients, found that DWI was slightly superior to PWI in terms of sensitivity
(88% vs. 85%) and specificity (85% vs. 79%). When the authors compared the overall
diagnostic accuracy of the MRI modalities, using their respective AUC values (0.9156 for
DWI and 0.9072 for PWI), no significant difference emerged between the two [49].

Table 2. Review of studies of DSC MRI. DSC = dynamic susceptibility contrast, MRI = magnetic
resonance imaging, N = number of patients, TP = true progression, PsP = pseudoprogression,
rCBV = relative cerebral blood volume.

Study N Parameter TP PsP p

Young, 2013 20 rCBV mean 2.75 1.50 0.009
Prager, 2015 68 rCBV mean 1.81 1.015 0.003

Boxerman, 2017 19 rCBV mean 2.17 2.35 0.67
Wang, 2018 68 rCBV mean 3.39 1.39 <0.001
Rowe, 2018 67 Increase rCBV 73.7% 93.3% -

3.2.3. Spectroscopy

Since the late 1980s, proton magnetic resonance spectroscopy (MRS) has been used
to provide a noninvasive measure of brain metabolites [50]. Tumors have an abnormal
metabolism compared with normal tissue. In that sense, MRS is valuable for establish-
ing a clinical diagnosis, monitoring the effects of treatment and understanding disease
mechanisms [51]. MRS is able to depict structural damage in brain tissue after RT before
symptoms develop and before evidence of changes that can be observed using conven-
tional MRI [20]. Different acquisition parameters can be modified to optimize MRS data
acquisition. These parameters determine not only the appearance of the spectrum but also
the information that can be extracted from it. One of the most relevant is echo time. At
present, the echo time used in in vivo MRS by most groups ranges between 18 and 288
ms [52,53]. Three classes of spatial localization techniques are used in MRS: the single-voxel
technique, which records spectra from one region of the brain at a time, and the multivoxel
technique, in 2D, 3D, or whole-brain MRS, that records spectra from multiple regions
and thereby maps the spatial distribution of metabolites within both normal tissue and
most heterogeneous lesions dimensions [53]. Multivoxel spectroscopy is a chemical shift
imaging of hydrogen and other atoms, such as phosphorus, sodium, and potassium, in
different molecules, shown as a spectral pattern. MRI and MRS have provided important
information on the pathophysiology of central nervous system radio-induced damage [54].
MRS has been investigated as a means of improving the detection of tumor infiltration [55].
It can detect and quantify different metabolites in vivo, with promising results for progno-
sis and treatment response [56,57] as well as for guiding radiotherapy dose painting [58].
Analysis of choline (Cho) and N-acetyl aspartate (NAA) peaks is of particular interest in
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studies of brain tumors [59]. Cho is a marker of cell membrane proliferation and is elevated
in tumors. NAA is related to mature neuronal density and viability, and is decreased in
tumoral tissue [60]. Lactate (Lac) is an end product of glycolysis and increases rapidly
during hypoxia and ischemia. Creatine (Cr) peak is a marker for intracellular energy states
that rarely varies and is used as an internal reference. A lipid peak appears in the event of
membrane destruction due to necrosis [61]. Spectra from newly diagnosed or relapsing
GBM differ from normal brain spectra, with decreased levels of NAA and often increased
levels of Cho and Lac [53]. A Cho/NAA value >2 indicates a high-grade glioma [56].
Establishing a differential diagnosis between PsP and TP based on MRS findings is highly
challenging, particularly with the use of single-voxel acquisitions. Both types of lesion
can exhibit neuronal loss/dysfunction (low NAA), abnormal cellular membrane attenua-
tion/integrity (high Cho), and anaerobic metabolism (high Lac/lipid ratio), (Figure 3). An
elevated Cho/NAA ratio has been correlated with evidence of tumor recurrence [31,62–64].
To diagnose PsP, Sawlani et al. demonstrated elevated lipid signals on MRS [65]. An
absence of Cho or a low Cho/NAA ratio was also observed. By contrast, patients with TP
had lower lipid signals and a high Cho/NAA ratio. The presence of elevated lipid signals,
along with a low Cho/NAA ratio, can help to differentiate PsP from TP [64]. Anbarloui
et al. found that the mean Cho/NAA ratio for TP was 2.72, compared with just 1.46 for
RN (p < 0.01) [66]. Another promising approach is 3D echoplanar spectroscopic imaging,
which analyzes a large volume with greater resolution, as described by Verma et al., who
distinguished TP from PsP in patients with GBM with a sensitivity of 94% and a specificity
of 87% [67]. Table 3 sets out the results of these studies.
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Figure 3. Spectroscopy of two patients treated for GBM, showing PsP with a normal spectrum (A) and
TP with a high Cho/NAA ratio and Lac peak (B). TP = true progression: PsP = pseudoprogression;
Cho = choline; NAA = N-acetyl aspartate; Lac = lactate.

In a meta-analysis of 35 studies including 1174 patients treated for GBM, advanced
MRI techniques were found to have greater diagnostic accuracy than conventional MRI for
treatment response. PWI and MRS had the greatest sensitivity (91% and 92%) and speci-
ficity (95% and 85%) [22]. In a recent systematic review [68], Le Fèvre et al. proposed that
in the case of suspected PsP after conventional MRI, DWI, and PWI should be performed
first. Mean ADC value, ADC ratio, and mean rCBV would suggest TP if they had values
<1.28–1.33, <1.40–1.55, and >1.82–3.01. If there was any remaining PsP doubt, MRS could
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then be performed to provide supplementary information. The proposed MRS ratios for dif-
ferentiating between PsP and TP were Cho/NAA and Cho/Cr, with Cho/NAA < 1.47–2.11
and Cho/Cr < 0.82–2.25 indicating PsP. As a whole, all advanced MRI modalities seem to
improve differentiation between PsP and TP, compared with conventional MRI. However,
there are many limitations, and modalities need to be combined, with more in-depth use
of the information they yield. Radiomics could be a powerful tool for performing this
complex analysis.

Table 3. Review of studies of magnetic resonance spectroscopic imaging. N = number of patients,
TP = True progression.

Study N Type of MRS Parameter TP PsP p

Smith, 2009 33 2D CSI
Median Cho/NAA 3.2 1.43 <0.001
Median Cho/NAA 2.56 1.57 <0.001
Median NAA/Cr 0.85 1.14 0.018

Elias, 2011 25 2D CSI
Mean Cho/NAA 2.81 1.39 0.0004

Mean Cho/Cr 2.23 1.84 0.24
Mean NAA/Cr 0.85 1.36 0.0033

Ambarloui,
2015

33 SV
Median Cho/NAA 2.72 1.46 0.01
Median NAA/Cr 2.46 0.6 0.01

Bulik, 2015 24 2D CSI
Median CHO/NAA 2 0.77 <0.001

Median Cho/Cr 0.45 0.99 <0.01

Kazda, 2016 39 2D CSI
Median Cho/NAA 2.13 0.74 <0.001

Median Cho/Cr 0.89 0.64 0.013
Median NAA/Cr 0.99 0.41 <0.001

Verma, 2018 27 3D EPSI
Cho/NAA 2.69 1.56 0.003

Cho/Cr 1.74 1.34 0.023
PsP = pseudoprogression, Cho = choline, NAA = N-acetyl aspartate, Cr = creatinine, SV = single voxel, 2D CSI =
two-dimensional chemical shift imaging, 3D EPSI = three-dimensional echo planar spectroscopic imaging.

3.2.4. Radiomics and Pseudoprogression

Medical imaging yields large amounts of information that are currently underused,
and radiomics focuses precisely on ways of improving image analysis. It involves the
high-throughput extraction of large numbers of image features and is one of the most
recent innovations in medical imaging analysis [69]. The hypothesis is that the quantitative
analysis of data for a given imaging modality using automated or semiautomated software
can provide fuller and more complex information than a physician can. Tumors exhibit dif-
ferences in shape and texture that can be measured using different imaging modalities [69].
Artificial intelligence approaches with radiomics cover the areas of diagnosis, prognosis,
and treatment response. Improving disease stratification and advancing the personalized
treatment of patients with glioblastoma appears to involve integrating radiomics into a
multilayered decision framework with key molecular and clinical features [70]. Although
this is an emerging topic, given the recency of the data and the different methodologies used
by authors, radiomics analysis appears to involve the use of multimodal image acquisition
(Figure 4A,B), segmentation or labeling, feature extraction, and finally statistical analysis
(Figure 4C) to differentiate PsP from TP. Therefore, Chaddad et al. suggested that this means
adopting optimized standard image processing, with a common criterion for performing
segmentation, the fully automated extraction of radiomics features without redundancy,
and robust statistical modeling validated in the prospective external setting [71]. Lambin
et al. [72] recently proposed calculating a radiomics quality score to aid the assessment of
both past and future radiomics studies.
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Figure 4. Standard pipeline of radiomics analysis applied to the differentiation of PsP from TP:
(A) planning the radiomics study by asking basic questions. (B) Integrating multimodal images
(left to right and top to bottom: T1 pre- and post-contrast enhancement, T2, FLAIR, ADC and rCBV
map, metabolic MRSI map, and CT scan). (C) Preprocessing and segmentation of volume of interest
in MRI images, with extraction of features from within the defined volume of interest quantifying
tumor intensity, shape, and texture. After features selection, the radiomics features are combined
with clinical and genomics data. A model is established after internal and external validation.

3.2.5. Differentiation between PsP and TP

Few studies have explored the potential of radiomics to differentiate between PsP
and TP. Using T1, T2, and FLAIR, Bani et al. [73] assessed the value of radiomics features
to diagnose PsP or TP in 76 patients (53 with TP and 23 with PsP). Patients were divided
into training and validation groups in a 2:1 ratio, with survival balanced between the two
groups. The authors found 11 features for classifying PsP and TP. Accuracy, sensitivity, and
specificity were 75.0%, 81.6%, and 50.0% in the training set and 76.0%, 94.1%, and 37.5%
in the validation set. When data on MGMT promotor methylation were included in this
model, diagnostic performance improved, with accuracy of 83.0%, sensitivity of 88.9%, and
specificity of 63.6% in the training set. During the validation phase, accuracy, sensitivity,
and specificity were 79.2%, 80.0%, and 75.0% [73]. In another study of conventional MRI,
Sun et al. [74] assessed the value of applying radiomics to T1-weighted contrast-enhanced
imaging to differentiate between TP and PsP. The sample comprised 77 patients with
GBM (51 with TP and 26 with PsP). The diagnostic efficacy of the radiomics classifier
versus the assessments of three radiologists was further examined by considering accuracy,
sensitivity, and specificity. The radiomics classifier was found to have accuracy, sensitivity,
and specificity of 72.78%, 78.36%, and 61.33% versus 66.23% and 61.50% and 68.62%, 55.84%,
69.25%, and 49.13%, and 55.84%, 69.23%, and 47.06% for the radiologists.

In another study of 98 patients (76 with TP and 22 with PsP) using PWI [75], when Ktrans

and rCBV were included in a radiomics model to distinguish between PsP and TP, accuracy
reached 90.82% (AUC = 89.10%, sensitivity = 91.36%, and specificity = 88.24%; p = 0.017).
The diagnostic performances of models built using the radiomics features from either
Ktrans or rCBV were equally high (Ktrans: AUC = 94.69%, p = 0.012; rCBV: AUC = 89.8%,
p = 0.004) [75]. In their conventional MRI study of 105 patients treated for GBM, including
59 in a training set (39 with TP and 21 with PsP) and 46 in a validation set (33 with TP
and 13 with PsP), Ismail et al. [76] found that the two most discriminating features were
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local features, capturing the total curvature of the enhancing lesion with an accuracy of
84.75%, and the curvedness of the T2WI/FLAIR hyperintense perilesional region with
an accuracy of 88.14% in the training set. In the validation set, accuracy was 83% for the
enhancing lesion and 82.6% for the perilesional region. On both the enhancing lesion and
perilesional region, accuracy was 91.5% for the training set and 90.2% for the validation set.
Kim et al. [77] selected 12 significant radiomics features (three from conventional MRI, two
from DWI, and seven from PWI) to construct their radiomics model in their study of 96
patients followed for GBM: a training set (26 with PsP and 35 with TP) and a validation
set (20 with PsP and 14 with TP). In the training set, they demonstrated that the multipara-
metric (anatomical MRI, ADC, and CBV) radiomics model performed significantly better
(AUC = 0.90, sensitivity = 91.4%, and specificity = 76.9%) than any single ADC (min and
mean) or CBV (mean and maximum) parameter (AUC = 0.57–0.79, sensitivity = 0.629–0.771,
specificity = 0.462–0.923; p < 0.05), and better than a monoparametric radiomics model us-
ing either conventional MRI (AUC = 0.76, sensitivity = 0.514, specificity = 0.885; p = 0.012),
DWI (AUC = 0.78, sensitivity = 0.77, specificity = 0.76; p = 0.014), or PWI (AUC = 0.80,
sensitivity = 0.657, specificity = 0.96; p = 0.43). In terms of external validation, the multi-
parametric model had a better diagnostic performance (AUC = 0.85, sensitivity = 0.714,
specificity = 0.90) than any single approach, thus demonstrating its robustness. In a study
of 35 patients, Baine et al. [78] found that a combination of two or three radiomics features
was capable of predicting PsP on pre-RT MRI. Using radiomics in advanced MRI therefore
seems to improve the identification of PsP, but it is too early to reach a formal conclusion, as
more research is needed (Table 4). Multi-parametric MRI analysis using machine learning
was used with success by several teams [79–82]. For example, Akbari et al. [80] described
a signature based on multimodal MRI including DSC and DTI (but no MRS) with a high
accuracy, keeping an accuracy of 75% in the interinstitutional validation cohort. In their
conclusion, the authors outlined the possibility to integrate the proposed method into
clinical studies via a freely available software.

These studies had several limitations. First, they each had a small patient sample,
and all the patients were drawn from retrospective cohorts. With only a small number of
patients, it seems quite difficult to reach any conclusion about radiomics. Second, different
types of imaging protocol parameters (1.5T or 3T) were used for patient follow up [75,77].
Third, preprocessing methods and segmentation could be improved by using automatic
techniques to limit intra- and interobserver variability. Fourth, biological data such as
MGMT promoter and IDH status were not included in all the studies [54,73]. Fifth, no study
evaluated spectroscopic imaging in a radiomics model, even though this has been shown to
be a useful imaging technique for differentiating PsP from TP. Extracting information from
these data is thus very challenging but seems to open up new perspectives for improving
PsP diagnosis. To achieve a robust radiomics model, it would be useful to establish a
rigorous evaluation criterion and follow recently published guidelines [15]. Using data
from a prospective study with a large patient sample, including all advanced MRI imaging
and biological data would improve the generalization of results. Moreover, imaging
techniques are constantly evolving, and the spread of 3T magnets and the advent of ultra-
high field MRI (7T) will improve the analysis of tumor metabolism and neuroinflammation.
We can cite the use of phosphorous-31 spectroscopy, oxygen-17 imaging, carbon-13, and
deuterium spectroscopy or ultrasmall superparamagnetic iron oxide (USPIO) contrast
agents [83–85].
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Table 4. Studies that evaluated the use of radiomics models to differentiate between PsP and TP. Abbreviations: C: curvedness; Gd: gadolinium; KT: measure
of total curvature; PsP: pseudoprogression; RANO: Response Assessment in Neuro-Oncology; S: sharpness; SI: shape index; SVM: support vector machine; TP:
tumor progression; LOOCV: leave-one-out cross-validation; NA: not available; LASSO: least absolute shrinkage and selection operator; SMOTE: synthetic minority
oversampling technique; SPCA: supervised principal component analysis; MMR = maximum relevance minimum redundancy. N = number of patients; Se:
sensitivity; Sp: specificity. TP = true progression, PsP = pseudoprogression, DWI = diffusion-weighted imaging, DSC = dynamic susceptibility contrast, T1CE = T1
contrast-enhanced.

Study Patients (N) Imaging Preprocessing Segmentation Feature Classification Main Features or Parameters
Found Results External

Validation

Ismail, 2018 59:21 PsP and
38 TP

T1CE, T2,
FLAIR

Skull stripping
Intensity normalization Manual SVM

4-fold cross-validation

Mean of KT roundness, eccentricity
Median of C, elongation shape

factor
Accuracy: 91.5% Yes

Accuracy: 90.2%

Kim, 2019 61:26 PsP and
35 TP

T1CE, FLAIR,
DSC DWI

hybrid white-stripe
normalization

excluding outliers inside
the region of interes

Semi-automated LASSO
10-fold cross-validation 14 features

Accuracy: 90%
Se: 91.4%
Sp: 76.9%

Yes
Accuracy: 85%

Se: 71.4%
Sp: 90%

Elshafeey,
2019

98:76 TP and
22 PsP T1CE, DSC NA Semi-automated

MMR
SVM
C5.0

LOOCV
10-fold cross-validation

Ktrans

rCBV

Accuracy: 90.82%
Se: 91.36%
Sp: 88.2%

No

Bani-Sadr,
2019

76:53 TP and
23 PsP FLAIR, T1CE NA Manual SCPA

10-fold cross-validation 11 radiomic features
Accuracy: 75%

Se: 81.6%
Sp: 50%

Yes
Accuracy: 76%

Se: 94%
Sp: 37.5%

Sun, 2021 77:51 TP and
26 PsP T1CE Normalization Semi-automated

Random forest
classification

(SMOTE)
5-fold cross-validation

50 radiomic features
Accuracy: 72.78%

Se: 78.36%
Sp: 61.33%

No

Baine, 2021 35:27 TP and
8 PSP T1CE

N4 Bias field correction
Histogram matching

normalization
Manual

ANOVA analysis
1000-time 3-fold
cross-validations,

Wavelet_HHL_firstorder_Mean
Original_firstorder_Minimum

WaveLet
LHL_glszm_SizeZone

NonUniformityNormalized

Mean AUC = 0.82 for
the radiomic model No

Akbari et al.,
2020

63:35 TP, 10 Psp,
18 mixed
response

T1CE, FLAIR,
DSC DTI

Smoothed
Correction of magnetic

inhomogeneities
Skull stripped

Manual SVM
LOOCV

1040 radiomics features analysed
and 2 classifiers

Accuracy 87% to
predict PSP,

interinstitutional
cohort accuracy 75%

yes
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4. Conclusions

PsP occurs after GBM treatment, and its diagnosis remains a major challenge for
radiologists and clinicians alike. MRI is the imaging modality of choice during follow-up.
Nevertheless, neither conventional MRI nor advanced techniques can formally differentiate
between PsP and TP. In routine clinical practice, follow-up MRI is most often used to
distinguish between PsP and TP as surgery or biopsy for pathological confirmation is
invasive and has its own drawbacks. For now, the RANO and modified RANO criteria
combined with advanced MRI analysis are generally used in routine clinical practice
and appear familiar to the medical community. Guidelines on the role of imaging in
the management of progressive GMB in adults were recently updated by the Congress
of Neurological Surgeon. These now suggest using MRI with and without gadolinium
enhancement including DWI and MRS with a level II of evidence to differentiate TP
from PsP. PWI is recommended with Level III evidence [15]. However, radiomics using
conventional and advanced MRI techniques has demonstrated its ability to improve the
accuracy of PsP diagnosis and could be a valuable tool in clinical practice. More studies are
therefore needed. Large cohorts with multimodal follow up, particularly MRS imaging,
and new emerging MR modalities would help to overcome this crucial diagnostic issue.
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