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Electroencephalography (EEG) has long been studied as a potential diagnostic method for
Alzheimer's disease (AD). The pathological progression of AD leads to cortical
disconnection. These disconnections may manifest as functional connectivity
alterations, measured by the degree of synchronization between different brain regions,
and alterations in complex behaviors produced by the interaction among wide-spread
brain regions. Recently, machine learning methods, such as clustering algorithms and
classification methods, have been adopted to detect disease-related changes in
functional connectivity and classify the features of these changes. Although complexity
of EEG signals can also reflect AD-related changes, few machine learning studies have
focused on the changes in complexity. Therefore, in this study, we compared the ability of
EEG signals to detect characteristics of AD using different machine learning approaches
one focused on functional connectivity and the other focused on signal complexity. We
examined functional connectivity, estimated by phase lag index (PLI) in EEG signals in
healthy older participants [healthy control (HC)] and patients with AD. We estimated signal
complexity using multi-scale entropy. Utilizing a support vector machine, we compared
the identification accuracy of AD based on functional connectivity at each frequency band
and complexity component. Additionally, we evaluated the relationship between
synchronization and complexity. The identification accuracy of functional connectivity of
the alpha, beta, and gamma bands was significantly high (AUC 1.0), and the identification
accuracy of complexity was sufficiently high (AUC 0.81). Moreover, the relationship
between functional connectivity and complexity exhibited various temporal-scale-and-
regional-specific dependency in both HC participants and patients with AD. In conclusion,
the combination of functional connectivity and complexity might reflect complex
pathological process of AD. Applying a combination of both machine learning methods
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to neurophysiological data may provide a novel understanding of the neural network
processes in both healthy brains and pathological conditions.
Keywords: Alzheimer’s disease, electroencephalography, complexity, functional connectivity, machine learning
INTRODUCTION

With a growing aging population, we are awaiting an effective
treatment strategy and an early diagnosis test for Alzheimer's
disease (AD) (1–4). In AD, three main anatomical changes are
observed: progressive neuronal death, neurofibrillary tangles,
and senile plaques in widespread brain regions; moreover,
recent progress of genome wide association studies have
revealed the genes associated with AD (5, 6). For diagnosis,
positron emission tomography (PET) imaging and magnetic
resonance imaging (MRI) are widely used to detect
neurotransmitter activity deficits and deposition of amy loid
beta plaques, and brain atrophy, respectively (2–4). As other
plausible diagnosis methods, tests based on temporal behaviors
of neural activity, which are captured by electroencephalography
(EEG), magnetoencephalography (MEG), and functional
magnetic resonance imaging (fMRI), have been studied (7–13).
Among these methods, those based on EEG are highly effective in
clinical application, because they are cost-effective, widely
available, and non-invasive (14, 15). The pathological
progression of AD leads to cortical disconnection;
consequently, in EEG signals, it alters functional connectivity
measured by the degree of synchronization between different
brain regions and complex behavior produced by the
interactions among wide spread brain regions (9, 11, 12, 16–23).

To evaluate the complexity in the EEG signals in patients with
AD, some studies have investigated an approach focusing on
deterministic chaos and fractal dimension such as correlation
dimension and Lyapunov exponent (24). These studies reported
reduced complexity in the neural activity of patients with AD (8,
25–30). While, EEG dynamics plays a different role at each
temporal-scale, such as memory function, cognitive function,
and perceptual function in the theta, beta, and gamma bands,
respectively (31). Therefore, an evaluation of the complexity of
temporal-scale dependency in the EEG signals of patients with
AD is an effective method. For this temporal-scale-specific
complexity, several types of evaluation methods have been
proposed, e.g., multiscale entropy based on sample entropy for
course-grained time-series (32, 33), temporal-scale-specific
fractal dimension expanded from Higuchi's fractal dimension
(34), and maximum Lyapunov exponent and correlation
dimension in band-specific EEG signals processed by wavelet
transformation (35, 36). Particularly, our previous study using
multi-scale entropy demonstrated that the complexity of EEG
signals in patients with AD decreases at smaller (faster) temporal
scales, but increases at larger (slower) temporal scales (37). In our
study with the temporal-scale-specific fractal dimension, the
reduced complexity is restricted to temporal scale regions
faster and slower than the alpha band scale; moreover, the
complexity around the alpha band scale exhibits high
g 2
correlation with cognitive decline (34). Further, Adeli and
colleagues revealed that alternation of complexity appears at
the delta and theta bands in the eyes-open condition and at the
delta, theta, and alpha bands by maximum Lyapunov exponent
and correlation dimension analysis for band-specific EEG signals
(35, 36).

Measuring coherence has long been used to evaluate
functional connectivity in patients with AD, and it has
revealed band-specific alterations of functional connectivity
(38, 39). Wada et al. reported that resting-state functional
connectivity reduces in the alpha and beta bands in AD (38).
Sankari et al. showed that both enhancement and reduction are
observed with frequency-band and spatial dependence (39).
However, the studies with traditional synchronization indexes,
typified as coherence measurements, correlation and mutual
information, are influenced by volume conduction and can
detect spurious synchronization (40, 41). To solve this
problem, indexes for phase synchronization have been
proposed, such as the synchronization likelihood (42),
imaginary part of coherency (43) and phase lag index (PLI)
(44). These indexes achieve fine temporal and spatial resolution
for functional connectivity (42–44). By using this advantage and
combining it with neuroimaging modalities that have high
spatio-temporal resolution, such as magnetoencephalography
(MEG), the alternations in functional connectivity for the
whole brain network have been revealed (45–47). Stam et al.
reported that functional connectivity in patients with AD
estimated by PLI of MEG signals in the alpha and beta bands
decreases; moreover, the clustering coefficient and path length of
functional connectivity are reduced in the alpha band, i.e., the
AD network approaches toward a random network (45). Engels
et al. showed through PLI analysis of EEG signals that as AD
progresses, the functional connectivity in the alpha band
decreases and the hub structure shifts from the posterior to
other regions in higher frequency bands (46).

Furthermore, recently, machine learning methods such as
clustering algorithms and classification methods such as support
vector machines (SVM), have been adopted to detect changes in
functional connectivity in diseases (47–54). Yu et al. applied a
method used for hierarchical clustering organization in
minimum spanning trees on the functional connectivity of
EEG signals in AD and frontotemporal dementia; they revealed
disease-specific changes in brain network efficiency [Yu etal.
(47)]. Khazaee et al. applied several graph measures such as
degree, betweenness centrality, and local efficiency of the
functional connectivity estimated by resting-state functional
magnetic resonance imaging (fMRI) and showed that it
accurately identified AD (54). Thus, machine learning
approaches to study functional connectivity have been
successfully applied to assess AD.
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In contrast to these approaches, studies using a machine
learning approach based on the complexity of brain activity have
rarely been reported (55), despite EEG/MEG signals having
features that can be used to identify AD. Within this context,
it is important to compare the accuracy of identifying AD in
machine learning approaches based on functional connectivity
and those based on complexity. Therefore, in this study, we
examined the functional connectivity estimated by PLI in EEG
signals and the complexity estimated by MSE in healthy older
people [healthy control (HC)] and patients with AD. We
evaluated the identification accuracy of AD by using an SVM
based on functional connectivity at each frequency-band and
based on the complexity component. These identified
characteristics were also evaluated.
MATERIALS AND METHODS

Participants
The study consisted of 16 participants diagnosed with AD and 18
age- and sex-matched healthy control (HC) participants (34, 37).
HC participants were functionally normal, independent in their
daily lives, and did not take central-nervous-system-active
medications. Patients with AD fulfilled the NINCDS-ADRDA
work group criteria for probable AD (56), and the DSM-IV
criteria for primary degenerative dementia and presenile onset.
Moreover, to remove the other medical factors that induce
dementia, the patients with AD were excluded based on
neurological, serological, and neuroimaging [MRI and/or
Computed Tomography (CT)] tests. The severity of AD in
each patient was assessed by the functional assessment stages
(FAST) (57) and a Japanese version of MMSE (58). The detailed
information of the participants is presented in Table 1. Here, the
sample size of the patients with AD is larger than that in our
previous works (34, 37), because increasing the dataset as much
as possible is required for SVM learning. All participants were
medication-free, non-habitual drinkers, non-smokers, and right-
handed. All participants provided informed consent before the
initiation of the study. The study protocol was approved by the
Ethics Committee of the Kanazawa University. All procedures of
Frontiers in Psychiatry | www.frontiersin.org
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this study were performed in accordance with the Declaration
of Helsinki.

EEG Recordings
The method for recording and pre-processing EEG data was
established as reported in our previous study (37). During EEG
recording, participants were seated in an electrically shielded,
sound proofed recording room, and light was controlled.
Standard scalp EEG electrodes were located in accordance with
the International 10–20 System. In EEG recording, we used an
18-channel electroencephalogram (EEG-4518, Nihon-Koden,
Tokyo, Japan) at 16 electrodes sites: Fp1, Fp2, F3, Fz, F4, F7,
F8, C3, C4, P3, Pz, P4, T5, T6, O1, and O2, referenced to
physically linked ear lobe electrodes. Eye movements were
tracked using bipolar electro-oculography (EOG). The EEG
signals were recorded with a 200 Hz sampling frequency, a
time constant of 0.3, and a 1.5 to 60 Hz bandpass filter. The
line noise at 60 Hz was removed by a notch filter. The impedance
of electrode/skin conductance for each electrode was carefully
controlled at less than 5 kΩ. EEG signals for each participant
were measured for 10–15 min under the eyes closed resting
condition. Using a video monitoring system, the vigilance state of
the participant was visually inspected to ensure only epochs at
eyes-closed wakefulness state (and not light sleep) were
measured. EEG time-series segments recorded in the eyes-
closed wakefulness state were identified by visual inspection of
the EEG and EOG recordings. We considered that the
participant was fully awake when predominant alpha activity
appeared over the posterior regions, corresponding to fast eye
movements in the EOG channel (59).

The data were stored on a magnetic optical disk for off-line
analysis. Other pre-processing steps (i.e., filtering, artifacts
removal, or data reconstruction) were avoided, because they
may destroy the intrinsic dynamics of the data; epochs without
artifacts were selected after a rigorous visual inspection. To
evaluate long temporal dynamics, we initially prepared a single
artifact-free, 60-s (12,000 data points) continuous epoch during
the eyes-closed resting condition. Additionally, against the above
dataset, 1,000 data points at the beginning and end of this epoch
were removed to avoid the transition effect of the 1.5 to 60 Hz
bandpass filter. MSE analysis was conducted against the
continuous 50-s (10,000 data points) epoch. For PLI analysis, a
long epoch length prevents identification of disease-specific
changes, because the value becomes small with increasing epoch
length (60) and vice versa. Furthermore, using a short epoch
length cannot capture behaviors with slow frequency components.
To balance them, for PLI analysis the continuous 50 s (10,000 data
points) was divided into 10 epochs of 5 s (61, 62).

Phase Lag Index
To measure phase synchronization, the characteristics of
synchronous signals can be quantitatively estimated at different
detection points by calculating the PLI. Firstly, the EEG signals
were divided into 5 frequency bands: delta (2–4 Hz), theta (4–8
Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–60 Hz).
Each band-divided signal at time t and point a is represented by
the phase fa (t) and the amplitude Aa (t) via the Hilbert
TABLE 1 | Physical characteristics in healthy older participants [healthy control
(HC)] and Alzheimer's disease (AD) participants.

HC participants AD participants p values

Male/female 7/11 5/11 0.72
Age (year) 59.3 (5.3, 55–66) 57.5 (4.7, 43–64) 0.31
MMSE
score

NA 15.5 (4.7, 10–26) NA

Assessment
of AD

NA NINCDS-ADRDA work group
criteria for probable AD

NA

DSM-IV criteria for primary
degenerative dementia and

presenile onset
FAST
assessment

NA three (FAST3), seven (FAST4), and
six (FAST5) patients.

NA
[Values represent mean (SD, range)]. FAST, functional assessment stages.
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transform. Subsequently, the difference in the phases Δfab (ti)
observed between signals with two different detecting points a
and b at time ti was written as Stam et al. (44)

Dfab  tið Þ = fa  tið Þ − fb  tið Þ , (1)

and

Dfmod  tið Þ = Dfab tið Þ  mod  2p   : (2)

From Eq.(2), we obtained |Δfmod(ti)|≤p. The PLI of signals
between two observed points a–b for a number of signals T is
defined as

PLIab =
1
To

T

i=0
sign Dfmod   (ti)ð Þ

����
����  , (3)

where the PLI in Eq.(3) is moderately synchronous near 1.0,
but is random near 0. From Eq.(1) and Eq.(2), the value of PLI in
a case when signals with a common source are observed at
different points becomes 0 because Δfab (ti) is 0, and Δfmod (ti) =
0. In addition, the observation at a point located on the opposite
side of the electric dipole has Δfab (ti) = p in Eq.(1), where a
signal source is assumed to follow the dipole model. Because this
results in PLIab = 0, the PLI also omits this signal.

We considered the averaged PLI of any electrode a through
other electrodes b = 1, 2, ⋯, K(b ≠ a), which is called the node
degree (ND), from Eq.(3) as

NDa =
1

K − 1 o
K

b=1,b≠a

    PLIab  , (4)

where, K in Eq.(4) represents the total number of electrode,
and has K = 16.

Multi-Scale Entropy
In MSE analysis, the sample entropy (SampEn) is calculated by
temporal-course grained time-series to evaluate the temporal
scale dependency of complexity (32, 33). We define a coarse-
grained time series from observed signals xi (i = 1, 2,⋯,T) over
non-overlapping time segments as follows:

yj,(t) =
1
t o

jt

i=(j−1)t+1
xi  ,         1 ≤ j ≤

T
t
 , (5)

where is t a scale factor. Subsequently, the MSE can be
evaluated by calculating SampEn in terms of scale factor,
which is described as

SampEn  r,mð Þ = − ln
Cm+1 rð Þ
Cm rð Þ

� �
 , (6)

where r and m are the tolerance level and the length of the
sequences, respectively. Cm (r) in Eq.(6) is given as

Cm = o
i,j∈r,i≠j

jjYm
i − Ym

j jj
(T −m + 1)(T −m)

 , (7)

where jjYm
i − Ym

j jj indicates that it is counted when the
distance between any two vectors Ym

i and Ym
j as the norm is
Frontiers in Psychiatry | www.frontiersin.org 4
less than r, jjYm
i − Ym

j jj = jy(i + l − 1) − y(j + l − 1)jl=1,⋯,m ≤ r
From Eq.(7), SampEn becomes 0 when the patterns remain the
same and have no complexity, while SampEn becomes large
when the patterns have high complexity.
Statistical Analysis
For electrode-pair-wise group comparison of PLI between HC
and AD groups, an independent two-tailed t-test was used. Here,
t-statistical analysis was controlled by multiple comparison.
Particularly, t-values corrected to q < 0.05, 0.01 were applied to
PLI (600 p values: 120 electrode pairs × 5 bands) according to
Benjamini–Hochberg false discovery rate (FDR) correction.

For the ND of PLI, repeated measures analysis of variance
(ANOVA), with group (HC vs. AD) as the between-subject
factor and electrode (16 electrodes from Fp1 to O2) as the
within-subject factor, was performed to test for group
differences at each band (delta to gamma bands). The
Greenhouse-Geisser adjustment was applied to the degrees of
freedom, and a two-tailed level of 0.05 was considered as
statistically significant criteria in order to avoid type I error.
To assess the significant main effect of group and the electrode-
wise interactions, post-hoc t-tests were utilized. To control the
multiple comparison, FDR correction was applied to the t-
scores of ND (q < 0.05, 0.01) (80 p values: 16 electrodes ×
5 bands).

For SampEn, repeated measures ANOVA with group (HC vs.
AD) as the between-subject factor and electrode (16 electrodes
form Fp1 to O2) and temporal scale (20 temporal scales) as
within-subject factors, was performed to test for group
differences. The Greenhouse-Geisser adjustment and a two-
tailed a level of 0.05 were used as well as ND of PLI case. To
assess the significant main effect of group and the interactions for
electrode-wise and temporal-scale-wise, post-hoc t-tests were
utilized. For multiple comparison, FDR correction was applied
for the t-scores of SampEn (q < 0.05, 0.01) (320 p values: 16
electrode × 20 scales).

For identification of AD, a linear SVM based on the ND of
PLI and SampEn was used. As pre-process for classification, by
the principal component analysis, the principal components that
are required to explain at least 90% variability of all components
were chosen in order of the first principal component. SVM
learning was conducted using these principal components. To
examine the ability to classify HC and AD groups by SVM, we
used receiver operating characteristic (ROC) curves that quantify
the balance between sensitivity and specificity (63). Performance
was evaluated by measuring the area under the ROC curve
(AUC), which is an index for the overall identification
accuracy. An AUC of 1.0 corresponds to perfect discriminating
ability, while an AUC of 0.5 leads to random prediction. Here, 5-
fold cross-validation was used.

To evaluate the relationship between synchronization and
complexity, we used Pearson's correlation coefficient R between
SampEn and ND of PLI. To control the multiple comparison,
FDR correction was applied these R-scores (q < 0.05, 0.01) (1,600
p values: 16 electrodes × 5 bands × 20 scales).
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RESULTS

Phase Lag Index Analysis
Figures 1A, B show the mean PLI values for the HC and AD
groups and their difference at each frequency band. t-tests with
FDR correction in the bottom two rows of Figure 1B show
significantly decreased PLI values in the AD group at the alpha,
beta, and gamma bands. Table 2 summarizes the repeated
measures ANOVA test results for group differences in the ND
of PLI. The significant group × electrode interactions and the
main effect of group at alpha, beta, and gamma bands. Figure 1C
shows a post-hoc t-test for the ND of PLI controlled by FDR
correction and represents edges (electrode pairs) with significant
group differences corresponding to Figure 1B. In post-hoc t-tests
Frontiers in Psychiatry | www.frontiersin.org 5
for ND, the ND of F8, Fz, P3, Pz, T5, O1, and O2 at the alpha
band; the ND of electrodes except for C4, T5, P3, P4, and T6 at
the beta band; and the ND of all electrodes at the gamma band
passed through the criteria of q < 0.05 (corresponding to p <
A

B

C

FIGURE 1 | (A) Mean values of phase lag index (PLI) in the healthy control (HC) group and the Alzheimer's disease (AD) group. (B) t-scores for differences between
the HC and AD groups (top parts) and t-scores passing through the criteria adjusted for false discovery rate (FDR) q < 0.05, q < 0.01 (corresponding to) p < 5.90 ×
10–3), p < 6.73 × 10–4, respectively) (middle and bottom parts). (C) t-scores of PLI passing through the criteria adjusted for FDR: q < 0.05, 0.01 across the
topography. t-scores for node degree (ND), where colored electrode labels correspond ones for passing through the criteria after adjustment FDR q < 0.05, q < 0.01
(corresponding to p < 0.0232 p < 2.51 × 10–3, respectively). Bluer (redder) colors represent the reduction (enhancement) of ND/PLI values in AD group.
TABLE 2 | Repeated measures ANOVA results for the ND of PLI comparing HC
and AD groups for each band.

Frequency band Group effect Group × node

delta F = 2.18, p = 0.14 F = 0.83, p = 56
theta F = 2.77, p = 0.10 F = 1.57, p = 0.13
alpha F = 5.80, p = 0.02 F = 3.86, p = 2.5 × 10–3

beta F = 12.49, p = 1.2 × 10–3 F = 10.01, p = 0.00
gamma F = 27.78, p = 9.0 × 10–6 F = 8.47, p = 0.00
April 2020 |
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0.0232). The ND of Fp1, Fp2, F3, F8, Fz, and Pz at the beta band
and the ND of all electrodes except for O1 at the gamma band
passed through the criteria of q < 0.01 (corresponding to p < 2.51
× 10–3). A significant reduction of pair-wised PLI in the AD
group was mainly observed at the alpha, beta, and gamma bands
among widespread regions.

Multi-Scale Entropy Analysis
Table 3 represents the results of repeated measures ANOVA
results for the HC and AD groups. Significant group × scale
interactions without the main effect of the group were observed.
Figure 2 shows the mean values of SampEn in the HC and AD
groups and the results of the post-hoc t-tests. The results indicate
a significant reduction of SampEn in AD (q < 0.05 corresponding
to p < 0.0029) in the 1-5 scale ranges at F3 [scale 2: t = –3.85 (p <
5.2 × 10–4), scale 3: t = –3.99 (p = 8.35 × 10–4), scale 4: t = –3.54 p
= 0.0025], F4 [scale 2: t = –3.82 p = 0.0029, scale 3: t = –3.79 (p =
0.0011), scale 4: t = –3.82 (p = 0.0011)], Fz [scale 2: t = –4.33 (p =
1.36 × 10–4), scale 3: t = –4.77 (p = 9.89 × 10–5), scale 4: t = –4.67
(p = 1.91 × 10–4)], C3 [scale 2: t = –3.75 (p = 6.94 × 10–4), scale 3:
t = –4.48 (p = 2.13 × 10–4), scale 4: t = –4.24 (p = 5.07 × 10–4)], C4
[scale 3: t = –3.90 (p = 7.53 × 10–4), scale 4: t = –3.66 (p =
0.0015)], P3 [scale 3: t = –3.59 (p = 0.0011)], P4 [scale 4: t = –3.33
(p = 0.0022)], and T6 [scale 3: t = –3.36 (p = 0.0020), scale 4: t = –
3.41 (p = 0.0018)].

Classification by the ND of PLI and MSE
AD was identified by linear SVM using significant reduction of
the ND of PLI at the alpha, beta, and gamma bands. Table 4
summarizes the accuracy of the classification between HC and
AD by linear SVM based on the ND of PLI. Here, the ND values
of all nodes were used at each band. The high ability to identify
AD was confirmed (AUC = 10).

In MSE analysis, in the scale ranges 1–5, a significant
reduction of SampEn in the AD group was confirmed (see
Figure 2). Against the mean value of SampEn in scales 1.5 at
all electrodes, the linear SVM was adopted. Table 5 shows the
relatively high accuracy of identification (AUC = 81).

Correlation Between Synchronization and
Complexity
To evaluate the relationship between the ND of PLI and SampEn,
the correlation coefficients between SampEn and the ND of PLI
in the HC and AD groups were evaluated in Figure 3. The results
show significantly high correlation passing through the criteria of
FDR (q < 0.05, 0.01) in the alpha, beta, gamma bands.
Particularly, a high positive correlation was observed at the
frontal, central, parietal regions in the scale-range ≈ 5 in alpha
Frontiers in Psychiatry | www.frontiersin.org 6
and beta bands in the HC case. In the AD case, this correlation
was observed at F7 and F8 in the alpha band. Moreover, a
significant high negative correlation was observed at F4 at scales
5 and 6 in the gamma band in the HC case. In the AD case, this
negative correlation was observed in a widespread region in the
scale-range ≳ 10 in alpha and beta bands. Figure 4 shows the
scatter plots between SampEn at scale 5 and the ND of PLI at
alpha, beta, and gamma bands at the F3 and F4 electrode in HC
and AD cases. The slopes of correlation are different in HC and
AD groups (The values of slope and R are represented in
Figure 4).
DISCUSSION AND CONCLUSION

In this study, we evaluated functional connectivity using PLI and
complexity by measuring MSE in HC and AD groups. Significant
reductions of PLI in the alpha, beta, and gamma bands and of
SampEn at small (fast) temporal-scales were confirmed in AD
group. Next, we classified the HC and AD groups by the linear
SVM using the ND of PLI and SampEn averaged in the small
temporal-scale range. We confirmed a significantly higher
identification accuracy of the functional connectivity of the
alpha, beta, and gamma bands (AUC: 10), and a sufficiently
high identification accuracy of complexity (AUC: 81).
Furthermore, we evaluated the relationship between functional
connectivity and complexity, and found various temporal-scale-
and-regional-specific dependencies in both HC participants and
patients with AD.

Regarding functional connectivity in the EEG/MEG signals in
patients with AD, many previous studies have reported a
reduction in functional connectivity at the alpha, beta, and
gamma bands (38, 45, 46, 64). Further, recent studies of AD
pathology have revealed that the reduction in functional
connectivity is caused by neuroinflammation and deposition of
amyloid-b and tau proteins (65–67). Similar reductions in
functional connectivity were also observed in this study.
Regarding the complexity of the EEG/MEG signals in patients
with AD, many studies have reported alternations of temporal
behaviors (23); particularly, the reduction in the complexity of
the EEG/MEG signals in patients with AD (8, 22, 25–30).
Analysis of the indexes for temporal-scale-dependent
complexity has shown that this reduction of complexity
especially concentrates in fast wave components (34, 36).
Studies of neurotransmitter changes in AD have reported that
dysfunction of the gamma-aminobutyric acid (GABA) signaling
system, which is caused by the deposition of amyloid- b and tau
proteins, leads to reduced oscillatory gamma band activity (68–
70). The impairment of gamma oscillatory activity might lead the
complexity at faster temporal scales more than slower temporal
scales (34, 36). The results obtained with MSE analysis are
congruent with these findings.

We must consider the reason the changes in functional
connectivity exhibited significant regional specificity, while the
complexity did not. As a plausible explanation, it is assumed that
synchronization is determined by the interaction between brain
TABLE 3 | Repeated measures ANOVA results for Sample Entropy (SampEn)
comparing HC and AD groups.

Group effect Group ×
electrode

Group × scale Group ×
electrode × scale

F = 0.17,
p = 0.68

F = 1.12,
p = 0.34

F = 6.67,
p = 2.05 × 10–3

F = 1.43,
p = 0.163
For clarity, comparisons with p < 0.05 are shown in bold.
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FIGURE 2 | (A) Dependence of sample entropy (SampEn) on temporal scale. The blue + indicates the significant group difference satisfying the criteria after
adjustment for FDR: q < 0.05 (corresponding to to p < 0.0029). Here, no significant group differences satisfying q < 0.01 were identified. (B) Dependence of t-values
between SampEns for AD and ones for AD on temporal scale. Positive (negative) values indicate larger (smaller) SampEns for AD in comparison with HC. The t-
values for criteria after adjustment FDR: q < 0.05 are represented by blue dashed lines (|t| > 3.23).
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regional pairs, while the characteristics of complexity are
produced by interactions among wide-spread brain regions (9).
Therefore, it might be difficult when complexity exhibits regional
specificity. Model-based studies regarding the relationship
between complex neural behavior and topological features of
the whole network support these findings (71–75). In the
classification of HC and AD by SVM, the ND or the mean
SampEn averaged in fast temporal-scale region at 16 electrodes
were used. Higher disease-specific regional dependency might
enhance the accuracy of identification of AD, because
classification can be conducted in a feature space with larger
dimensions. Therefore, it can be assumed that SVM based on the
ND of PLI with higher regional dependency exhibited higher
identification accuracy in comparison with one based
on SampEn.

Furthermore, we must discuss the necessity of focusing on the
complexity of EEG/MEG signals to identify AD. Cortical
disconnection, which is induced by the pathological
progression of AD, leads to impairment in the interaction
TABLE 4 | Accuracy of classification between HC and AD by ND.

Accuracy (%) AUC Size of principal
components

Alpha band 100 1.0 4
Beta band 100 1.0 7
Gamma band 100 1.0 6
Here, the linear support vector machine (SVM) was used as the classificationmethod and 5-fold
cross-validation. Size of principal componentsmeans the size of components required to explain
at least 90% variability of all components. AUC, area under the ROC curve.
TABLE 5 | Accuracy of classification between HC and AD by SampEn. AUC,
area under the ROC curve.

Accuracy (%) AUC Size of principal
components

Mean SampEn in scale 1–5 73.5 0.81 3
A

B

C

FIGURE 3 | Correlation coefficient R between SampEn and the ND of PLI in HC and AD cases. There are significantly high positive and negative correlations
passing through criteria of FDR (q < 0.05, 0.01) in alpha, beta, and gamma bands in HC and AD cases. (A) Correlation coefficient R. (B) R satisfying q<0.05. (C) R
satisfying q<0.01.
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between different brain regions; consequently reducing
functional connectivity and complexity (9, 11, 12, 16, 17, 19–
21). The positive correlation between them (see Figure 3) can be
supported by these findings. Moreover, the slopes in these
correlations were different between the HC and AD groups
(see Figure 4). Therefore, this relationship between complexity
and functional connectivity could be used for diagnosis of AD.
Not only positive correlation but also negative correlation was
confirmed in Figure 3. According to nonlinear dynamical
theory, it is known that non-linear coupled oscillations exhibit
enhancement of complexity by emergence of a chaotic state
during the process of reducing the efficiently strong coupled
strength for the state of complete synchronization [reviewed in
(76). This induced enhancement is attributed to perturbations to
the stable orbit from each oscillation's behavior (77, 78).
Synchronization decreases during the process of decreasing
coupled strength, and complexity enhances. The negative
correlation observed in this study could be interpreted by this
mechanism. These findings suggest that a combination of
functional connectivity and complexity might reflect the
complex pathological process of AD.

To investigate if the high heterogeneity of age and severity
in the patients with AD affected classification, we performed
repeated measures ANOVA in the AD group. For MSE
analysis, the repeated measures ANOVA was performed with
age [high age vs. low age (these groups were divided by median
of AD age distribution = 59.5 years)] and severity (FAST scale
score: 3, 4, and 5) as between-subject factors, and electrode and
scale factor as within-subject factors. The results showed no
significant high main effect and interactions. For the ND of PLI
at each frequency band, the repeated measures ANOVA was
Frontiers in Psychiatry | www.frontiersin.org 9
performed with age (high age vs. low age) and severity (FAST
scale score: 3, 4, and 5) as between-subject factors, and
electrode as a within-subjects factor. The results showed that
severity did not demonstrate any significant main effects or
interaction. In contrast to the MSE case, age showed a
significant high main effect in the theta [F = 5.86 (p =
0.0029)], beta [F = 6.16 (p = 0.026)], and gamma [F = 8.9 (p =
9.84 × 10–3)] bands, and a significant high interaction between age
vs. electrodes at the beta [F = 4.73 (p = 1.59 × 10–3)] and gamma
[F = 5.10 (p = 2.41 × 10–4)] bands. Further, in larger AD groups,
the severity-dependent effect may appear in both PLI and MSE
cases. Therefore, to consider these effects in classification by SVM,
a larger sample size is necessary.

This study has limitations that must be considered. The data
set of the HC and AD groups used in this study can completely
identify AD using SVM and the ND of PLI. Therefore, the effect
of enhancing identification accuracy by combining with
components of SampEn cannot be evaluated. To evaluate this
effect, the classification of the severity of AD (FAST 3, 4, and 5)
may be appropriate. However, for this evaluation, the size of data
set used in this study was too small for SVM learning. Moreover,
the AD group had high heterogeneity of age and severity, which
could have influenced the accuracy of the classification by SVM.
However, the sample size of the AD group was too small to
quantify this influence. In future studies, we will evaluate these
issues using a larger data set of AD EEG signals. Another
limitation of this study is that the EEG signals do not
necessarily reflect neural activity directly under the electrodes;
the spacial resolution of the 16 electrodes used in this study was
too low to identify the complex functional connectivity
structures relating to AD pathology. Therefore, the use of
FIGURE 4 | Scatter plots between SampEn at scale 5 and ND of PLI at alpha, beta, and gamma bands at F3 and F4 electrode in HC and AD cases. Here, the solid
lines indicated the linear regression lines (blue: linear regression line for HC, red: linear regression line for AD). The correlation coefficient R [R value satisfying q < 0.05
is represented by (*)] and slope in the linear regression were described by text in figures. The slopes of correlation are different in HC and AD groups.
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neuroimaging modalities with more precise and higher spatial
resolution, such as MEG and cortical source localization, may
provide the necessary spatial information. Finally, data sets of
other pathological conditions, such as schizophrenia and autism
spectrum disorder, and healthy aging must be evaluated by the
machine learning method used in this study.

In conclusion, we confirmed that the identification accuracy
of SVM based on functional connectivity was significantly high,
and the identification accuracy of SVM based on complexity was
sufficiently high. Moreover, the combination of functional
connectivity and complexity might reflect the complex
pathological process of AD. Although some limitations must
be considered, applying a combination of machine learning
methods to neurophysiological data may provide a novel
understanding of the neural network processes in both healthy
brains and pathological conditions.

DATA AVAILABILITY STATEMENT

The datasets generated for this study will not be made publicly
available because the informed consent did not include the
declaration regarding publicity of clinical data. Requests to access
the datasets should be directed to the corresponding author.
Frontiers in Psychiatry | www.frontiersin.org 10
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of the Kanazawa University.
The patients/participants provided their written informed
consent to participate in this study.
AUTHOR CONTRIBUTIONS

SN, TY, TT, MK, and HN conceived the methods. SN, TY, SK,
and TT analyzed the results, wrote the main manuscript text, and
prepared all the figures. MK conducted the experiments. All
authors reviewed the manuscript.
FUNDING

This work was supported by JSPS KAKENHI for Early-Career
Scientists (grant number 18K18124) (SN) and for Scientific
Research (C) (grant number 18K11450) (TY).
REFERENCES

1. Spalletta G, Musicco M, Padovani A, Perri R, Fadda L, Canonico V, et al.
Neuropsychiatric symptoms and syndromes in a large cohort of newly
diagnosed, untreated patients with Alzheimer disease. Am J Geriatr
Psychiatry (2010) 18:1026–35. doi: 10.1097/JGP.0b013e3181d6b68d

2. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CRJr., Kawas CH,
et al. The diagnosis of dementia due to Alzheimer's disease: Recommendations
from the national institute on Aging-Alzheimer's Association workgroups on
diagnostic guidelines for Alzheimer's disease. Alzheimers Demen (2011) 7:263–9.
doi: 10.1016/j.jalz.2011.03.005

3. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward
defining the preclinical stages of Alzheimer's disease: Recommendations from the
national institute on Aging-Alzheimer's association workgroups on diagnostic
guidelines for Alzheimer's disease. Alzheimers Demen (2011) 7:280–92. doi:
10.1016/j.jalz.2011.03.003

4. Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H. Neuroimaging
markers for the prediction and early diagnosis of Alzheimer's disease
dementia. Trends Neurosci (2011) 34:430–42. doi: 10.1016/j.tins.2011.05.005

5. Sims R, Van Der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J,
et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-
mediated innate immunity in Alzheimer's disease. Nat Genet (2017) 49:1373–84.
doi: 10.1038/ng.3916

6. Yamaguchi-Kabata Y, Morihara T, Ohara T, Ninomiya T, Takahashi A,
Akatsu H, et al. Integrated analysis of human genetic association study and
mouse transcriptome suggests LBH and SHF genes as novel susceptible genes
for amyloid-b accumulation in Alzheimer's disease. Hum Genet (2018)
137:521–33. doi: 10.1007/s00439-018-1906-z

7. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity
distinguishes Alzheimer's disease from healthy aging: evidence from functional
MRI. Proc Natl Acad Sci (2004) 101:4637–42. doi: 10.1073/pnas.0308627101

8. Jeong J. Eeg dynamics in patients with alzheimer's disease. Clin Neurophysiol
(2004) 115:1490–505. doi: 10.1016/j.clinph.2004.01.001

9. Stam CJ. Nonlinear dynamical analysis of EEG and MEG: review of an emerging
field. Clin Neurophysiol (2005) 116:2266–301. doi: 10.1016/j.clinph.2005.06.011
10. Dickerson BC, Sperling RA. Functional abnormalities of the medial temporal
lobe memory system in mild cognitive impairment and Alzheimer's disease:
insights from functional MRI studies. Neuropsychologia (2008) 46:1624–35.
doi: 10.1016/j.neuropsychologia.2007.11.030

11. Yang AC, Tsai S-J. Is mental illness complex? from behavior to brain. Prog
Neuropsychopharmacol Biol Psychiatry (2013) 45:253–7. doi: 10.1016/
j.pnpbp.2012.09.015

12. Takahashi T. Complexity of spontaneous brain activity in mental disorders.
Prog Neuropsychopharmacol Biol Psychiatry (2013) 45:258–66. doi: 10.1016/
j.pnpbp.2012.05.001

13. Wang B, Niu Y, Miao L, Cao R, Yan P, Guo H, et al. Decreased complexity in
Alzheimer's disease: resting-state fMRI evidence of brain entropy mapping.
Front Aging Neurosci (2017) 9:378. doi: 10.3389/fnagi.2017.00378

14. Vecchio F, Babiloni C, Lizio R, Fallaní FDV, Blinowska K, Verrienti G, et al.
Resting state cortical EEG rhythms in Alzheimer's disease: toward EEG
markers for clinical applications: a review. Suppl Clin Neurophysiol (2013)
62:223–36. doi: 10.1016/B978-0-7020-5307-8.00015-6

15. Kulkarni N, Bairagi V. EEG-based diagnosis of Alzheimer disease: a review and
novel approaches for feature extraction and classification techniques. (2018).

16. Delbeuck X, Van der Linden M, Collette F. Alzheimer'disease as a disconnection
syndrome? Neuropsychol Rev (2003) 13:79–92. doi: 10.1023/a:1023832305702

17. Adeli H, Ghosh-Dastidar S, Dadmehr N. Alzheimer's disease: models of
computation and analysis of EEG. Clin EEG Neurosci (2005) 36:131–40.
doi: 10.1177/155005940503600303

18. Sperling R. Functional MRI studies of associative encoding in normal aging,
mild cognitive impairment, and Alzheimer's disease. Ann N Y Acad Sci (2007)
1097:146–55. doi: 10.1196/annals.1379.009

19. Dauwels J, Vialatte F, Musha T, Cichocki A. A comparative study of
synchrony measures for the early diagnosis of Alzheimer's disease based on
EEG. NeuroImage (2010) 49:668–93. doi: 10.1016/j.neuroimage.2009.06.056

20. Bhat S, Acharya UR, Dadmehr N, Adeli H. Clinical neurophysiological and
automated EEG-based diagnosis of the Alzheimer's disease. Eur Neurol (2015)
74:202–10. doi: 10.1159/000441447

21. Mammone N, Bonanno L, Salvo SD, Marino S, Bramanti P, Bramanti A, et al.
Permutation disalignment index as an indirect, EEG -based, measure of brain
April 2020 | Volume 11 | Article 255

https://doi.org/10.1097/JGP.0b013e3181d6b68d
https://doi.org/10.1016/j.jalz.2011.03.005
https://doi.org/10.1016/j.jalz.2011.03.003
https://doi.org/10.1016/j.tins.2011.05.005
https://doi.org/10.1038/ng.3916
https://doi.org/10.1007/s00439-018-1906-z
https://doi.org/10.1073/pnas.0308627101
https://doi.org/10.1016/j.clinph.2004.01.001
https://doi.org/10.1016/j.clinph.2005.06.011
https://doi.org/10.1016/j.neuropsychologia.2007.11.030
https://doi.org/10.1016/j.pnpbp.2012.09.015
https://doi.org/10.1016/j.pnpbp.2012.09.015
https://doi.org/10.1016/j.pnpbp.2012.05.001
https://doi.org/10.1016/j.pnpbp.2012.05.001
https://doi.org/10.3389/fnagi.2017.00378
https://doi.org/10.1016/B978-0-7020-5307-8.00015-6
https://doi.org/10.1023/a:1023832305702
https://doi.org/10.1177/155005940503600303
https://doi.org/10.1196/annals.1379.009
https://doi.org/10.1016/j.neuroimage.2009.06.056
https://doi.org/10.1159/000441447
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Nobukawa et al. Complexity and Synchronization of EEG Signals
connectivity in MCI and AD patients. Int J Neural Syst (2017) 27:1750020. doi:
10.1142/S0129065717500204

22. Kulkarni N. Use of complexity based features in diagnosis of mild Alzheimer
disease using EEG signals. Int J Inf Technol (2018) 10:59–64. doi: 10.1007/
s41870-017-0057-0

23. Smailovic U, Koenig T, Laukka EJ, Kalpouzos G, Andersson T, Winblad B, et al.
EEG time signature in Alzheimer´ s disease: Functional brain networks falling
apart. NeuroImage: Clin (2019) 24:102046. doi: 10.1016/j.nicl.2019.102046

24. Kantz H, Schreiber T. Nonlinear time series analysis Vol. 7. (Cambridge, UK:
Cambridge University Press). (2003).

25. Woyshville MJ, Calabrese JR. Quantification of occipital EEG changes in
Alzheimer's disease utilizing a new metric: the fractal dimension. Biol
Psychiatry (1994) 35:381–7. doi: 10.1016/0006-3223(94)90004-3

26. Besthorn C, Sattel H, Geiger-Kabisch C, Zerfass R, Förstl H. Parameters of
EEG dimensional complexity in Alzheimer's disease. Electroencephalography
Clin Neurophysiol (1995) 95:84–9. doi: 10.1016/0013-4694(95)00050-9

27. Jelles B, Van Birgelen J, Slaets J, Hekster R, Jonkman E, Stam C. Decrease of non-
linear structure in the EEG of Alzheimer patients compared to healthy controls.
Clin Neurophysiol (1999) 110:1159–67. doi: 10.1016/S1388-2457(99)00013-9

28. Abásolo D, Escudero J, Hornero R, Espino P, Gómez C. Fractal dimension of
the EEG in´ alzheimer's disease. In: Encyclopedia of Healthcare Information
Systems. (Pennsylvania, US: IGI Glonal). (2008). p. 603–9.

29. Smits FM, Porcaro C, Cottone C, Cancelli A, Rossini PM, Tecchio F.
Electroencephalographic fractal dimension in healthy ageing and Alzheimer's
disease. PloS One (2016) 11:e0149587. doi: 10.1371/journal.pone.0149587

30. Al-nuaimi AH, Jammeh E, Sun L, Ifeachor E. Higuchi fractal dimension of the
electroencephalogram as a biomarker for early detection of alzheimer's disease. In:
Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual
International Conference of the IEEE. (Seogwipo, South Korea) (2017), p. 2320–4.

31. Klimesch W, Sauseng P, Hanslmayr S, Gruber W, Freunberger R. Event-
related phase reorganization may explain evoked neural dynamics. Neurosci
Biobehav Rev (2007) 31:1003–16. doi: 10.1016/j.neubiorev.2007.03.005

32. Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of complex
physiologic time series. Phys Rev Lett (2002) 89:068102. doi: 10.1103/
PhysRevLett.89.068102

33. Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of biological
signals. Phys Rev E (2005) 71:021906. doi: 10.1103/PhysRevE.71.021906

34. Nobukawa S, Yamanishi T, Nishimura H, Wada Y, Kikuchi M, Takahashi T.
Atypical temporal-scale-specific fractal changes in Alzheimer's disease eeg and
their relevance to cognitive decline. Cogn Neurodyn (2019b) 13:1–11. doi:
10.1007/s11571-018-9509-x

35. Adeli H, Ghosh-Dastidar S, Dadmehr N. A spatio-temporal wavelet-chaos
methodology for EEG -based diagnosis of Alzheimer's disease. Neurosci Lett
(2008) 444:190–4. doi: 10.1016/j.neulet.2008.08.008

36. Ahmadlou M, Adeli H, Adeli A. Fractality and a wavelet-chaos-methodology
for EEG -based diagnosis of alzheimer disease. Alzheimer Dis Assoc Disord
(2011) 25:85–92. doi: 10.1097/WAD.0b013e3181ed1160

37. Mizuno T, Takahashi T, Cho RY, Kikuchi M, Murata T, Takahashi K, et al.
Assessment of EEG dynamical complexity in Alzheimer's disease using
multiscale entropy. Clin Neurophysiol (2010) 121:1438–46. doi: 10.1016/
j.clinph.2010.03.025

38. Wada Y, Nanbu Y, Kikuchi M, Koshino Y, Hashimoto T, Yamaguchi N.
Abnormal functional connectivity in Alzheimer's disease: intrahemispheric
EEG coherence during rest and photic stimulation. Eur Arch Psychiatry Clin
Neurosci (1998) 248:203–8. doi: 10.1007/s004060050038

39. Sankari Z, Adeli H, Adeli A. Intrahemispheric, interhemispheric, and distal
EEG coherence in Alzheimer's disease. Clin Neurophysiol (2011) 122:897–906.
doi: 10.1016/j.clinph.2010.09.008

40. Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM,
Silberstein RB, et al. EEG coherency: I: statistics, reference electrode,
volume conduction, laplacians, cortical imaging, and interpretation at
multiple scales. Electroencephalogr Clin Neurophysiol (1997) 103:499–515.
doi: 10.1016/S0013-4694(97)00066-7
Frontiers in Psychiatry | www.frontiersin.org 11
41. Nolte G, Holroyd T, Carver F, Coppola R, Hallett M. Localizing brain interactions
from rhythmic EEG/MEG data. In: The 26th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, vol. 1. (San Francisco, CA,
USA) (2004b). p. 998–1001.

42. Stam C, Van Dijk B. Synchronization likelihood: an unbiased measure of
generalized synchronization in multivariate data sets. Physica D: Nonlin
Phenom (2002) 163:236–51. doi: 10.1016/S0167-2789(01)00386-4

43. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true
brain interaction from EEG data using the imaginary part of coherency. Clin
Neurophysiol (2004a) 115:2292–307. doi: 10.1016/j.clinph.2004.04.029

44. Stam CJ, Nolte G, Daffertshofer A. Phase lag index: assessment of functional
connectivity from multi channel EEG and MEG with diminished bias from
common sources. Hum Brain Mapp (2007) 28:1178–93. doi: 10.1002/
hbm.20346

45. Stam C, De Haan W, Daffertshofer A, Jones B, Manshanden I, van Cappellen van
Walsum AM, et al. Graph theoretical analysis of magnetoencephalographic
functional connectivity in Alzheimer's diseasein alpha band. Brain (2008)
132:213–24. doi: 10.1093/brain/awn262

46. Engels MM, Stam CJ, van der FlierWM, Scheltens P, deWaal H, van Straaten EC.
Declining functional connectivity and changing hub locations in Alzheimer's
disease: an EEG study. BMC Neurol (2015) 15:145. doi: 10.1186/s12883-015-
0400-7

47. Yu M, Gouw AA, Hillebrand A, Tijms BM, Stam CJ, van Straaten EC, et al.
Different functional connectivity and network topology in behavioral variant
of frontotemporal dementia and Alzheimer's disease: an EEG study. Neurobiol
Aging (2016) 42:150–62. doi: 10.1016/j.neurobiolaging.2016.03.018

48. Shen H, Wang L, Liu Y, Hu D. Discriminative analysis of resting-state functional
connectivity patterns of schizophrenia using low dimensional embedding of fMRI.
Neuroimage (2010) 49:3110–21. doi: 10.1016/j.neuroimage.2009.11.011

49. Lemm S, Blankertz B, Dickhaus T, Muller K-R. Introduction to machine
learning for¨ brain imaging. Neuroimage (2011) 56:387–99. doi: 10.1016/
j.neuroimage.2010.11.004

50. Hulbert S, Adeli H. EEG/MEG-and imaging-based diagnosis of Alzheimer's
disease. Rev Neurosci (2013) 24:563–76. doi: 10.1515/revneuro-2013-0042

51. Richiardi J, Achard S, Bunke H, Van De Ville D. Machine learning with brain
graphs: Predictive modeling approaches for functional imaging in systems
neuroscience. IEEE Signal Process Mag (2013) 30:58–70. doi: 10.1109/
MSP.2012.2233865

52. Jamal W, Das S, Oprescu I-A, Maharatna K, Apicella F, Sicca F. Classification
of autism spectrum disorder using supervised learning of brain connectivity
measures extracted from synchrostates. J Neural Eng (2014) 11:046019. doi:
10.1088/1741-2560/11/4/046019

53. Zeng L-L, Shen H, Liu L, Hu D. Unsupervised classification of major
depression using functional connectivity MRI. Hum Brain Mapp (2014)
35:1630–41. doi: 10.1002/hbm.22278

54. Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Identifying patients with
Alzheimer's disease using resting-state fMRI and graph theory. Clin
Neurophysiol (2015) 126:2132–41. doi: 10.1016/j.clinph.2015.02.060

55. Kulkarni N, Bairagi V. Extracting salient features for EEG -based diagnosis of
Alzheimer's disease using support vector machine classifier. IETE J Res (2017)
63:11–22. doi: 10.1080/03772063.2016.1241164

56. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical
diagnosis of Azheimer's disease: Report of the NICNDS-ADRDA work group*
under the auspices of Department of Health and Human Services Task Force on
Alzheimer's Disease. Neurology (1984) 34:939–9. doi: 10.1212/WNL.34.7.939

57. Reisberg B. Functional assessment staging (FAST). Psychopharmacol Bull
(1988) 24:653–9. doi: 10.1037/t08620-000

58. Folstein MF, Folstein SE, McHugh PR. “mini-mental state”: a practical
method for grading the cognitive state of patients for the clinician. J
Psychiatr Res (1975) 12:189–98. doi: 10.1016/0022-3956(75)90026-6

59. Wada Y, Nanbu Y, Koshino Y, Shimada Y, Hashimoto T. Inter-and
intrahemispheric EEG coherence during light drowsiness. Clin EEG Neurosci
(1996) 27:84–8. doi: 10.1177/155005949602700207
April 2020 | Volume 11 | Article 255

https://doi.org/10.1142/S0129065717500204
https://doi.org/10.1007/s41870-017-0057-0
https://doi.org/10.1007/s41870-017-0057-0
https://doi.org/10.1016/j.nicl.2019.102046
https://doi.org/10.1016/0006-3223(94)90004-3
https://doi.org/10.1016/0013-4694(95)00050-9
https://doi.org/10.1016/S1388-2457(99)00013-9
https://doi.org/10.1371/journal.pone.0149587
https://doi.org/10.1016/j.neubiorev.2007.03.005
https://doi.org/10.1103/PhysRevLett.89.068102
https://doi.org/10.1103/PhysRevLett.89.068102
https://doi.org/10.1103/PhysRevE.71.021906
https://doi.org/10.1007/s11571-018-9509-x
https://doi.org/10.1016/j.neulet.2008.08.008
https://doi.org/10.1097/WAD.0b013e3181ed1160
https://doi.org/10.1016/j.clinph.2010.03.025
https://doi.org/10.1016/j.clinph.2010.03.025
https://doi.org/10.1007/s004060050038
https://doi.org/10.1016/j.clinph.2010.09.008
https://doi.org/10.1016/S0013-4694(97)00066-7
https://doi.org/10.1016/S0167-2789(01)00386-4
https://doi.org/10.1016/j.clinph.2004.04.029
https://doi.org/10.1002/hbm.20346
https://doi.org/10.1002/hbm.20346
https://doi.org/10.1093/brain/awn262
https://doi.org/10.1186/s12883-015-0400-7
https://doi.org/10.1186/s12883-015-0400-7
https://doi.org/10.1016/j.neurobiolaging.2016.03.018
https://doi.org/10.1016/j.neuroimage.2009.11.011
https://doi.org/10.1016/j.neuroimage.2010.11.004
https://doi.org/10.1016/j.neuroimage.2010.11.004
https://doi.org/10.1515/revneuro-2013-0042
https://doi.org/10.1109/MSP.2012.2233865
https://doi.org/10.1109/MSP.2012.2233865
https://doi.org/10.1088/1741-2560/11/4/046019
https://doi.org/10.1002/hbm.22278
https://doi.org/10.1016/j.clinph.2015.02.060
https://doi.org/10.1080/03772063.2016.1241164
https://doi.org/10.1212/WNL.34.7.939
https://doi.org/10.1037/t08620-000
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1177/155005949602700207
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Nobukawa et al. Complexity and Synchronization of EEG Signals
60. FraschiniM, DemuruM, Crobe A,Marrosu F, StamCJ, Hillebrand A. The effect of
epoch length on estimated EEG functional connectivity and brain network
organisation. J Neural Eng (2016) 13:036015. doi: 10.1088/1741-2560/13/3/036015

61. Takahashi T, Yamanishi T, Nobukawa S, Kasakawa S, Yoshimura Y, Hiraishi H, et al.
Band-specific atypical functional connectivity pattern in childhood autism spectrum
disorder. Clin Neurophysiol (2017) 128:1457–65. doi: 10.1016/j.clinph.2017.05.010

62. Takahashi T, Goto T, Nobukawa S, Tanaka Y, Kikuchi M, Higashima M, et al.
Abnormal functional connectivity of high-frequency rhythms in drug-naïve
schizophrenia. Clin Neurophysiol (2018) 129:222–31. doi: 10.1016/j.clinph.2017.11.004

63. Zweig MH, Campbell G. Receiver-operating characteristic (roc) plots: a
fundamental evaluation tool in clinical medicine. Clin Chem (1993) 39:561–
77. doi: 10.1093/clinchem/39.4.561

64. Lee S-H, Park Y-M, Kim D-W, Im C-H. Global synchronization index as a
biological correlate of cognitive decline in Alzheimer's disease. Neurosci Res
(2010) 66:333–9. doi: 10.1016/j.neures.2009.12.004

65. Jagust W. Imaging the evolution and pathophysiology of alzheimer disease.
Nat Rev Neurosci (2018) 19:687–700. doi: 10.1038/s41583-018-0067-3

66. Passamonti L, Tsvetanov K, Jones P, Bevan-Jones WR, Arnold R, Borchert RJ,
et al. Neuroinflammation and functional connectivity in Alzheimer's disease:
interactive influences on cognitive performance. J Neurosci (2019) 39:7218–
26. doi: 10.1523/JNEUROSCI.2574-18.2019

67. Contreras JA, Aslanyan V, Sweeney MD, Sanders LM, Sagare AP, Zlokovic BV,
et al. Functional connectivity among brain regions affected in alzheimer's disease is
associated with CSF TNF-a in apoe4 carriers. Neurobiol Aging (2020) 86:112–22.
doi: 10.1016/j.neurobiolaging.2019.10.013

68. Nava-Mesa MO, Jiménez-Díaz L, Yajeya J, Navarro-Lopez JD. Gabaergic
neurotransmission and new strategies of neuromodulation to compensate
synaptic dysfunction in early stages of Alzheimer's disease. Front Cell Neurosci
(2014) 8:167. doi: 10.3389/fncel.2014.00167

69. Govindpani K, Calvo-Flores Guzmán B, Vinnakota C, Waldvogel HJ, Faull RL,
Kwakowsky A. Towards a better understanding of gabaergic remodeling in
Alzheimer's disease. Int J Mol Sci (2017) 18:1813. doi: 10.3390/ijms18081813

70. Calvo-Flores Guzmán B, Vinnakota C, Govindpani K, Waldvogel H, Faull R,
Kwakowsky A. The GABAergic system as a therapeutic target for Alzheimer's
disease. J Neurochem (2018) 146.6(2018):649–669. doi: 10.1111/jnc.14345
Frontiers in Psychiatry | www.frontiersin.org 12
71. Ostojic S. Two types of asynchronous activity in networks of excitatory and
inhibitory spiking neurons. Nat Neurosci (2014) 17:594. doi: 10.1038/
nn.3658

72. Mastrogiuseppe F, Ostojic S. Intrinsically-generated fluctuating activity in
excitatory-inhibitory networks. PloS Comput Biol (2017) 13:e1005498. doi:
10.1371/journal.pcbi.1005498

73. Martí D, Brunel N, Ostojic S. Correlations between synapses in pairs of
neurons slow down dynamics in randomly connected neural networks. Phys
Rev E (2018) 97:062314. doi: 10.1103/PhysRevE.97.062314

74. Park J, Ichinose K, Kawai Y, Suzuki J, Asada M, Mori H. Macroscopic cluster
organizations change the complexity of neural activity. Entropy (2019) 21:214.
doi: 10.3390/e21020214

75. Nobukawa S, Nishimura H, Yamanishi T. Temporal-specific complexity of
spiking patterns in spontaneous activity induced by a dual complex network
structure. Sci Rep (2019a) 9:1–12. doi: 10.1038/s41598-019-49286-8

76. Pikovsky A, Rosenblum M, Kurths J. Synchronization: a universal concept in
nonlinear sciences Vol. 12. (UK: Cambridge University Press). (2003).

77. Schweighofer N, Doya K, Fukai H, Chiron JV, Furukawa T, Kawato M. Chaos
may enhance information transmission in the inferior olive. Proc Natl Acad
Sci (2004) 101:4655–60. doi: 10.1073/pnas.0305966101

78. Nobukawa S, Nishimura H. Chaotic resonance in coupled inferior olive
neurons with the Llinás approach neuron model.´. Neural Comput (2016)
28:2505–32. doi: 10.1162/NECO_a_00894

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Nobukawa, Yamanishi, Kasakawa, Nishimura, Kikuchi and
Takahashi. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
April 2020 | Volume 11 | Article 255

https://doi.org/10.1088/1741-2560/13/3/036015
https://doi.org/10.1016/j.clinph.2017.05.010
https://doi.org/10.1016/j.clinph.2017.11.004
https://doi.org/10.1093/clinchem/39.4.561
https://doi.org/10.1016/j.neures.2009.12.004
https://doi.org/10.1038/s41583-018-0067-3
https://doi.org/10.1523/JNEUROSCI.2574-18.2019
https://doi.org/10.1016/j.neurobiolaging.2019.10.013
https://doi.org/10.3389/fncel.2014.00167
https://doi.org/10.3390/ijms18081813
https://doi.org/10.1111/jnc.14345
https://doi.org/10.1038/nn.3658
https://doi.org/10.1038/nn.3658
https://doi.org/10.1371/journal.pcbi.1005498
https://doi.org/10.1103/PhysRevE.97.062314
https://doi.org/10.3390/e21020214
https://doi.org/10.1038/s41598-019-49286-8
https://doi.org/10.1073/pnas.0305966101
https://doi.org/10.1162/NECO_a_00894
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles

	Classification Methods Based on Complexity and Synchronization of Electroencephalography Signals in Alzheimer’s Disease
	Introduction
	Materials and Methods
	Participants
	EEG Recordings
	Phase Lag Index
	Multi-Scale Entropy
	Statistical Analysis

	Results
	Phase Lag Index Analysis
	Multi-Scale Entropy Analysis
	Classification by the ND of PLI and MSE
	Correlation Between Synchronization and Complexity

	Discussion and Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


