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1  | INTRODUC TION

We investigated the establishment of a complete continuous blas-
tocyst culture system without exchange of culture medium by 
using a time-lapse device and a single-step culture medium in 2014. 
Consequently, the chi-square test showed that the rates of blasto-
cyst development and good blastocyst development were both sig-
nificantly higher (P ≤ .05) in the complete continuous culture on day 

5 of culture than in the case of direct microscopic observation and 
the medium replacement on days 3 and 5 of culture using a sequen-
tial culture medium; we confirmed the superiority of this complete 
continuous blastocyst culture system without observation and the 
exchange of culture medium, where no embryo was casually ex-
posed to atmospheric oxygen during the culture period.1

As described above, the greatest advantages of a time-lapse incu-
bator in combination with the time-lapse device and the single-step 
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Abstract
Purpose: To establish an automated pronuclei determination system by analysis using 
deep learning technology which is able to effectively learn with limited amount of 
supervised data.
Methods: An algorithm was developed by explicitly incorporating human observation 
where the outline around pronuclei is being observed in determining the number of 
pronuclei. Supervised data were selected from the time-lapse images of 300 pronu-
clear stage embryos per class (total 900 embryos) clearly classified by embryologists 
as 0PN, 1PN, and 2PN. One-hundred embryos per class (a total of 300 embryos) were 
used for verification data. The verification data were evaluated for the performance 
of detection in the number of pronuclei by regarding the results consistent with the 
judgment of the embryologists as correct answers.
Results: The sensitivity rates of 0PN, 1PN, and 2PN were 99%, 82%, and 99%, re-
spectively, and the overlapping 2PN being difficult to determine by microscopic ob-
servation alone could also be appropriately assessed.
Conclusions: This study enabled the establishment of the automated pronuclei deter-
mination system with the precision almost equivalent to highly skilled embryologists.
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medium are as follows: (a) the embryonic development state can be 
checked non-invasively at any time without taking out the embryo 
outside the incubator, and (b) the improvement in blastocyst devel-
opment rate is expected, since the embryo can be observed without 
opening or closing the incubator and thus the inside of incubator 
can be kept in a specific condition (hypoxic environments are main-
tained); in addition, a good embryo can be selected without missing, 
because the embryo development process may be observed and/or 
recorded over times via the videos and the images recorded at regu-
lar intervals. On the other hand, there are problems: (a) it is difficult 
to apply this system to all patients uniformly due to high costs of 
installation and operation, and (b) since annotation of a large amount 
of the images by physicians or embryologists is beyond their capac-
ity, all image data obtained might not be clinically utilized; as such, 
how to process the huge image data collected has been an emerging 
challenge.

In a “Report of a social gathering on promotion of AI utilization in 
the field of health care” issued by the Japanese Ministry of Health, 
Labour and Welfare on June 27, 2017, the results of discussion on 
the areas where AI should be utilized and on the securing of efficacy 
and safety in the field of health care are shown. This report shows 
that “individualized medicine” by utilizing the AI for genome analy-
sis, etc is expected to be realized, because “machine learning” has 
dramatically evolved by deep learning technology since 2012. At the 
same time, as a specific example of utilization of the AI, the report 
refers to the possibility of reducing the workload of physicians when 
the AI interprets thousands to tens of thousands of images obtained 
by capsule endoscopy.2

After the establishment of the complete continuous blastocyst 
culture system in 2014, we aimed to develop an algorithm to au-
tomatically detect the number of pronuclei by analysis using deep 
learning technology based on images from an embryo from imme-
diately after the insemination to the disappearance of the pronuclei 
and attempted to establish an automated pronuclei determination 
system that can withstand actual clinical use in infertility treatment 
setting.

2  | MATERIAL S AND METHODS

2.1 | System concept

Deep learning is an excellent machine learning technology that leads 
to breakthroughs in various fields, which is also highly expected 
as an approach to solve problems that have ever been difficult to 
achieve in image recognition. As an example showing the strength 
of deep learning, there may be a description that the technology 
can automatically create a solution from the data.3 However, such 
an example implies an investigative meaning to understand human 
intelligence and expand the applicable range in the future; there-
fore, a huge amount of data, large networks, and complex learning 
processes must be used in order to realize learning that creates a 
solution method, which requires considerable costs. We adopted 

a system that explicitly incorporates human observation into deep 
learning as a concept to realize and continuously improve the detec-
tion of the number of pronuclei at a realistic cost while utilizing the 
strong performance of deep learning.

2.2 | Framework

The entire system framework is shown in Figure 1. The processing is 
roughly divided into four steps.

1. Preprocessing: Detection of an area of a fertilized oocyte
2.  Main processing 1: Detection of an outline around pronuclei
3.  Main processing 2: Determination of the number of pronuclei
4. Postprocessing: Integration of time-series information

Each process simulates a procedure which humans seem to al-
most automatically perform in observing the number of pronuclei; 
by dividing the processing steps, the contents of each function will 
be clarified and realized more easily. In addition, classic imaging 
techniques are used, including the circular Hough transform4 for the 
step “1. Detection of an area of a fertilized oocyte” and the hidden 
Markov model5 for the step “4. Integration of time-series informa-
tion.” These classic methods are easy to reflect human observation 
in setting parameters and conditions, which are suitable for use in 
steps that do not require advanced processing. The neural network 
learning through deep learning is used in the steps of “2. Detection 
of an outline around pronuclei” and “3. Determination of the number 
of pronuclei.” There may also be a framework realized as one neural 
network that determines the number of pronuclei from the images 
without dividing steps; however, this framework is divided into two 
neural networks and each network learns independently in order to 
improve the performance by explicitly incorporating human obser-
vation where the outline around pronuclei is being observed in the 
determination of the number of pronuclei.

The  deep  learning  software we  used was Microsoft  Cognitive 
Toolkit  (CNTK),  an  open-source  deep  learning  toolkit  with  brain 
script.  We  built  the  framework  on  the  personal  workstation  (i7-
3.4GHz,  RAM64GB,  GeForce  GTX1080)  by  using  development 
software including deep learning library (Matlab2016, CNTK version 
2.3.). The neural networks are described by brain script of CNTK.

2.2.1 | Preprocessing: detection of an area of a 
fertilized oocyte

Humans focus only on the inside of a fertilized oocyte when observ-
ing the number of pronuclei. This is because there is no necessary 
information to determine the number of pronuclei on the outside of 
the fertilized oocyte. Similarly, it is easier to improve the final per-
formance in deep learning if the unnecessary information is not in-
cluded. In this system, the minimum range of information necessary 
for determining the number of pronuclei is defined as the inside of 
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the zona pellucida of the fertilized oocyte, and the range is detected 
in the first processing. The fertilized oocyte is detected using the 
circular Hough transform, a technique to detect a circle because the 
shape of the oocyte in the images can be approximated to a true 
circle in many cases.

2.2.2 | Main processing

There are precedent cases in the study of counting objects using 
deep learning,6,7 where it is common to perform the procedure of 
counting objects after their individual recognition. The pronuclei 
counted in this system have characteristics that several adjacent 
and overlapping pronuclei can be very often observed, as well as 
the pronuclei are transparent so that the other pronucleus can also 
be seen even if overlapping. “Individual identification of transpar-
ent and overlapping objects” is more challenging than general object 
recognition and may require a huge cost to determine the number of 
pronuclei with high precision in the traditional counting framework. 

However, humans are possible to intuitively grasp the number with-
out the procedure of clearly counting as many as five objects when 
counting them. As with the intuitive grasp of the number by humans, 
this system will determine the number of pronuclei without count-
ing. Thus, the difficult challenge of the procedure of “individual 
identification of transparent and overlapping objects” is no longer 
needed to be performed, which allows us to grasp the number of 
pronuclei at a lower cost. Additionally, humans may intuitively de-
termine the number of pronuclei based on the appearance such as 
the connection and shapes of the outline. This system also initially 
detects an outline around pronuclei in the same way and the number 
of pronuclei is determined from the outline.

Detection of an outline around pronuclei
The neural network learning through deep learning is used in the 
detection of the outline. The model of the neural network consists 
of two convolution layers and two full-connection layers (Figure 2.) 
Classic imaging techniques that address similar tasks include edge 
detection  filter  and  template  matching.  However,  the  granular 

F I G U R E  1   System framework
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brightness changes are very intense within a fertilized oocyte, and 
the “edgy” structures are included such as polar bodies and vesi-
cles  (circles)  in addition to  the pronuclei;  therefore,  it  is extremely 
difficult to detect the outline around pronuclei with high precision 
by combining simple processing such as the edge detection filter 
and the template matching. On the other hand, deep learning ena-
bles processing including cognitive functions, and thus, even in the 
“edgy” structures, a function to distinctively detect whether they 
are pronuclei or polar bodies can be realized. Furthermore, the con-
nection of outline may be important information for the recognition 
of an overlapping outline. We can explicitly handle the information 
on how to connect the outline in the subsequent processing, “the 
determination of the number of pronuclei,” by obtaining the infor-
mation on which part of the outline around pronuclei is detected as 
well. In the initial analysis, the outline was divided into four parts in 
our system. However, as the greater the number of parts, the more 
precise the detection, the system was changed to detect the out-
line divided into 8 parts, considering that too many divisions require 
huge number of supervised data for neural network learning.

Determination of the number of pronuclei
While it is easy for humans to intuitively determine the number of 
pronuclei from the outline, it is difficult to clearly regularize the 

specific determination methods. However, the task of classification 
of images intuitively performed by humans has been actively stud-
ied as application of deep learning in image recognition, and many 
results have shown that the task is very compatible with deep learn-
ing.8-11 In this system, the outline images are handled as a task clas-
sifying them into three classes of 0PN, 1PN, and 2PN, from which 
the number of pronuclei is determined. The actual outputs are the 
probability that the input outline images belong to each class, with 
three values corresponding to each class such as 0PN, 1%; 1PN, 4%; 
and 2PN, 95%. We built the model of the neural network with two 
convolution layers and two full-connection layers (Figure 3.)

2.2.3 | Postprocessing: integration of time-series 
information

In the visual observation by embryologists, the number of pronuclei 
may not be accurately determined only by the image at a certain time 
due to the development or disappearance of pronuclei over time and 
the overlapping of pronuclei. In this case, the decision is suspended at 
that time and made with the image suitable for the judgment at an-
other time. However, the task of how much the image at a given time is 
suitable for determining the number of pronuclei for the image analysis 

F I G U R E  2   Neural network for 
detecting outline of pronuclei. This 
software has two convolution layers and 
two full-connection layers with ReLU 
function as activation function

F I G U R E  3   Neural network for 
determining number of pronuclei. This 
software has two convolution layers and 
two full-connection layers with ReLU 
function as activation function
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is much more challenging than that of determining the number of pro-
nuclei, even if it is easy for humans. Thus, in this system, “the determi-
nation of the number of pronuclei” was carried out for all images of the 
time lapse, and the change over time in the number of pronuclei was to 
be determined from the probabilities of each class at all times.

We used 20 hours of culture as an endpoint for analysis, and the 
conditions for the change over time in the number of pronuclei were 
defined as follows: 

1.  0PN  (prior  to  pronuclear  development)  immediately  after  the 
start of culture.

2. The number of pronuclei observed up to 20 hours after the start 
of image acquisition with the time-lapse device was classified by 
each pronuclear class (0PN, 1PN, and 2PN). The number of pronu-
clei may increase during the culture, but will not decrease.

3. If the pronuclei disappear before 20 hours of culture, the disap-
pearance period is very short.

In this system, the change over time in the optimal number of 
pronuclei meeting the above conditions is determined by the hidden 
Markov model, based on the analysis of  the number of pronuclei at 
each time. Learning by incorporating the above explicit conditions is 
difficult for deep learning; however, since the hidden Markov model 
can be set to an arbitrary probability of the state change, the condi-
tions may be expressed in the form of 0PN of 100% immediately after 
the start of culture and the change from 2PN to 1PN of 0% during 
the culture. The probability is defined as shown in Table 1. The transi-
tion probabilities to the next pronuclei stage were set to 0.01 (1/100) 
during the time-lapse observation. Since the number of pronuclei will 
not decrease over time, we set such fields to 0, and the remaining fields 
are set to make the sum of the numerical values of each row 1. These 
values showed the best accordance in the number of pronuclei eval-
uated by the embryologist with the one calculated by the computer.

The number of pronuclei at the final time obtained by the hidden 
Markov model is considered as the final number of pronuclei in the 
entire time lapse by finding arbitrary transition sequence by using 
the Viterbi algorithm.

2.3 | Supervised data set

For supervised data, an image processing engineer selected clearly 
classified images from the time-lapse images of 300 embryos per 

class (a total of 900 embryos) judged by embryologists as 0PN, 1PN, 
and 2PN from the pronuclear stage embryos generated by infertility 
treatment at the Asada Ladies Clinic.

In the neural net outputting the outline around pronuclei, the re-
sults manually annotated by the engineer to the outline features for the 
images with the clear outline around pronuclei were prepared as super-
vised data by reference to the number of pronuclei in the time lapse de-
termined by the embryologists for the abovementioned 900 pronuclear 
stage embryos.

2.4 | Verification data set

From the pronuclear stage embryos produced by infertility treat-
ment at the Asada Ladies Clinic, 100 embryos per class (a total of 
300 embryos)  judged as 0PN, 1PN, and 2PN by the embryologists 
were selected, and time-lapse images (approximately 70 images per 
embryo) taken from each embryo from immediately after the insemi-
nation to the disappearance of the pronuclei were used.

2.5 | Applying the neural net to time-lapse 
images and evaluating the system

Approximately 70 time-lapse images of each embryo were input into 
the neural net after learning to determine the number of pronuclei 
at each time point and the maximum number of pronuclei detected 
from immediately after the insemination to the disappearance of the 
pronuclei, as well as to evaluate the performance of detection for 
the number of pronuclei by regarding the results consistent with the 
judgment of the embryologists as correct answers.

3  | RESULTS

A case of the automated pronuclei determination and the visual judg-
ment by the embryologists over time is shown in Figure 4. The de-
tected outline of pronuclei is visualized by colors (Figure 5.)

By combining the neural net detecting the outline around pro-
nuclei with that detecting the number of pronuclei, the sensitivity 
rates of 0PN, 1PN, and 2PN in this system were 78%, 68%, and 97%, 
respectively (Table 2A).

The system incorporating the pronuclei outlining step ob-
tained a high 2PN detection power of 97%, but with  the aim of 
further improving performance, we changed the selection strat-
egy for supervised data and re-performed deep learning using 
division numbers of the outline changed from 4 to 8 (improved 
system). As a  result,  the sensitivity  rates of 0PN, 1PN, and 2PN 
increased  to  99%,  82%,  and  99%,  respectively  (Table  2B).  The 
overlapping 2PN being difficult to determine by microscopic ob-
servation alone could also be appropriately assessed using this 
improved  determination  system  (Figure  6).  There  is  no  relation-
ship between the overlapping rate of pronuclei and determination 

TA B L E  1   Transition probabilities

Next

0PN 1PN 2PN

Current

0PN 0.98 0.01 0.01

1PN 0.00 0.99 0.01

2PN 0.00 0.00 1.00
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of number of pronuclei on our system (Figure 7.) The overlapping 
rate is defined as Equation 1, which SA and SB are areas of one of 
pronuclei.

The false-negative results are caused by the conditions of ac-
quiring images in which the pronuclei are not observed clearly, such 
as fragment, out focusing, and embryo touching the wall.

4  | DISCUSSION

4.1 | Preprocessing

As a nature of  the circular Hough transform used for detection of 
an area of a fertilized oocyte, it is possible to detect the oocyte 
with some deformation or defect from a true circle, and it may exert 
high performance if the size and number of circles are known. Since 
the time-lapse imaging device can take images of one fertilized 

(1)overlapping rate=
SA∩SB

SA∪SB

F I G U R E  4   A case of the automated determination and the visual judgment by the embryologists over time. The probability of 0PN had 
been almost 100% (up to 7 h of incubation) before the pronuclear formation occurred, the probability of 1PN increased immediately after 
the start of the pronuclear formation (from 7 to 9 h of incubation), and the probability of 2PN increased to almost 100% after the pronuclei 
were clearly confirmed (after 9 h of incubation), indicating that the system could correctly detect the pronuclear formation at almost the 
same timing as the embryologists

F I G U R E  5   Colors for outline parts. Each color indicates which 
part of the outline around pronuclei. Outline of pronuclei is divided 
into 4 or 8 parts and shown by specific colors

TA B L E  2   Detection results of pronuclei

A. Evaluating the contour as 4 
divisions

B. Evaluating the contour as 8 
divisions

Ground truth Ground truth

0PN 1PN 2PN 0PN 1PN 2PN

Results from image analysis Results from image analysis

0PN 78 12 0 0PN 99 15 0

1PN 18 68 3 1PN 0 82 1

2PN 4 20 97 2PN 1 3  99
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oocyte at a given magnification, any images can be detected as 
fertilized oocyte and detection with sufficient performance can be 
realized.

It seems also possible to detect the pronuclei by the circular 
Hough transform because they can be approximated to a true cir-
cle; however, this technique is not suitable for the detection of 

F I G U R E  6   A case of automated determination of overlapping 2PN with improved system and the visual judgment by the embryologists 
over time. Although most part of the pronuclei overlapped each other at 19 h of incubation, the probability of 2PN was almost 100%, 
indicating that the system could correctly determine them as 2PN

F I G U R E  7  Overlapping rate for 2PN case. Relationship between overlapping rate and accuracy (false negative or true positive) of 100 of 
2PN embryos. This is four classification model of 0, 1, 2, and ≥3, which differs from the one we used in this paper
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the pronuclei since it is difficult to detect the correct position and 
number in case of several circles in proximity.

4.2 | Main processing

Deep learning focuses on learning to retrieve useful information 
to distinguish classes because of its nature. Without learning to 
explicitly extract the outline around pronuclei, the equivalent 
learning is expected to be automatically performed since the in-
formation of the pronuclei is surely valuable for determining their 
number. However, learning should find statistically valuable infor-
mation for classification in deep learning. Consequently, a statisti-
cally sufficient amount of data is required for adequate learning. 
Furthermore, the smaller the constraints in a task, the larger the 
amount of data needed. The CIFAR-10,12 which is currently used as 
a standard benchmark for classification tasks, is intended to learn 
from 5000  images  per  class.  If  the  similar  number  of  data were 
needed for learning in the determination of the number of pro-
nuclei without any constraints, the data for 5000 embryos would 
have to be collected even for 1PN with low clinical incidence rates. 
This learning approach might be impossible to implement at a real-
istic cost because of enormous effort and time. However, learning 
with fewer data is possible for tasks to detect the outline and to 
determine the number of pronuclei from the outline, because con-
ditions are added to each task and thus the constraints become 
greater. In this paper, although deep learning data of 300 embryos 
per class is small as supervised data, they indicate that appropriate 
learning is possible both in the detection of the outline and the 
determination of pronuclei from the outline.

4.3 | Postprocessing

Images of 2PN with overlapping pronuclei appear close to 1PN and 
may be output with a higher probability of 1PN than 2PN on the “the 
determination of the number of pronuclei.” However, some images 
have high probability of 2PN because of changes in the position re-
lationship between the pronuclei over the time-series observation. 
Due to the integration of multiple times in this system, the correct 
results can be determined even if the determination is temporarily 
inaccurate. In addition, it is possible to make an appropriate determi-
nation even if the overlapping of pronuclei occurs during the second 
half of culture since the condition that the number of pronuclei will 
not decrease is added to the constraints at the integration of time-
series information.

4.4 | Evaluation of the system

While the embryo evaluation by embryologists is essentially a tech-
nique acquired by accumulated experience, the precision of machine 

learning by deep learning is close to that of the embryologists in a 
short period of time.

In this system, the combination of the neural net detecting the 
outline around pronuclei from the time-lapse images of an embryo 
with that detecting the number of pronuclei from the outline en-
abled the establishment of the automated pronuclei determination 
system with the precision almost equivalent to highly skilled embry-
ologists. Reducing the oversight of the expression of pronuclei as 
low as possible would allow for the better evaluation of quality of 
the embryo itself beyond the conventional framework of morpho-
logic evaluation based on images of an embryo. We will continue 
investigation to improve the precision of detection of pronuclei.
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