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Abstract: Chinese jujube (Ziziphus jujuba Mill.) is an economically important fruit crop in China
and mainly cultivated on land with high salinity and drought conditions in northern China. WRKY
transcription factors (TFs) are involved in plant development and in responses to multiple abiotic
stresses. In this study, we identified 61 and 52 putative ZjWRKY TFs in ‘Junzao’ and ‘Dongzao’ at the
genome-wide level. Tissue expression profiling showed that 7 genes were constitutively expressed
at high level in all tissues of ‘Junzao’. Transcriptome analysis revealed that 39 ZjWRKY genes were
expressed during ‘Junzao’ jujube fruit ripening. Among these genes, the transcript abundance of
19 genes were differentially expressed between ‘Junzao’ and ‘Qingjiansuanzao’ fruit. In addition,
RT-qPCR analyses revealed that 30, 14, and 18 ZjWRKY genes responded to drought, NaCl, and ABA
treatments, respectively. Taken together, ZjWRKY genes expression dynamics during jujube fruit
development, ripening, and their differences between jujube and wild jujube would provide insights
into their possible roles regulating fruit ripening. In addition, those ZjWRKY genes responded strongly
to drought and salt stress, which provide candidate ZjWRKY genes for facilitating tolerance breeding.
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1. Introduction

Chinese jujube (Ziziphus jujuba Mill.) is a dominant fruit crops in China that is mainly cultivated
in the middle and lower reaches of the Yellow River, a semi-arid region. Since the beginning of the
21st century, the center of jujube cultivation has shifted to arid regions in Northwest China, especially
the Xinjiang Autonomous Region [1]. In this region, the jujube cultivation area covered 473,000 ha,
accounting for 30% of the total jujube cultivation area in China in 2013, and the corresponding yield was
2.22 million tons, accounting for 51% of the total production of dried jujube in China [2]. In the Xinjiang
jujube cultivation area, there is a long sunshine duration (>1200 h), a large temperature difference
between day and night (>12 ◦C), and low rainfall (0.2–9.38 mm) during jujube fruit ripening, all of
which might contribute to the jujube fruit quality [3]. For example, the sugar content (73.2%) of ‘Huizao’
jujube produced from Ruoqiang county (N 39.02◦, E 88.16◦) in the Xinjiang region is significantly
higher than the levels seen (59.5%) at their original sites (N 34.54◦, E 113.86◦) [4]. However, jujube
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trees are also constantly exposed to extremely adverse conditions in this region, such as soil salinity,
drought, and very high or low temperatures. Thus, the jujube tree is likely to have evolved a series of
adaptation strategies to cope with such unfavorable conditions [5].

Most abiotic stress, such as high salinity and drought, disrupt the osmotic pressure in plants [6].
In addition, high salt concentrations can lead to ionic toxicity and secondary stress. The Ca2+

secondary signal caused by stress could activate related transcription factors (TFs) through the abscisic
acid-dependent (ABA-dependent) or mitogen-activated protein kinase pathways [7]. Thereafter,
TFs can activate the transcription of specific genes to regulate the physiological and biochemical
responses to stress. Thus, TFs play an essential role in the complex regulatory networks of plants.
As one of the largest families of TFs in plants, WRKY TFs are involved in regulating plant tolerance
to biotic and abiotic stresses, and in plant development [8]. Almost all WRKY proteins contain one
or two conserved domains of approximately 60 amino acids containing a conserved heptapeptide
WRKYGQK followed by a C2H2 or C2HC zinc finger structure [9]. The WRKY proteins activate or
inhibit the expression of target genes by recognizing and binding to a W-box (C/TTGACT/C) in the
promoter region of target genes. WRKY TFs are usually divided into three groups, depending on the
number of WRKY domains and the type of zinc finger structure. In some studies, WRKY TFs with
incomplete zinc finger structures have been assigned to group IV [10].

Several studies have confirmed the function of WRKY TFs regulating plant responses to abiotic
stresses. Several WRKY genes, such as AtWRKY33, 46, 57 enhance Arabidopsis thaliana tolerance
to drought/salinity by mediating ABA signal transduction [11–13]. In recent years, WRKY TFs
identification at the genome-wide level have been facilitated by the greater availability of the genome
sequences of fruit crops, such as Malus domestica [14], Citrus sinensis [15], and Vitis vinifera [10].
The functions of some WRKY genes have also been further verified in some species. In Fortunella
crassifolia, FcWRKY40 enhances salt tolerance by regulating ion homeostasis and proline synthesis
dependent on the ABA signal transduction pathway [16]. VvWRKY30 positively regulates drought
response by modulating proline and soluble sugar metabolism, as well as activating reactive oxygen
scavenging systems [17]. Considering the vital role of WRKY TFs response to multiple stresses, it would
be valuable to characterize the WRKY TFs in the jujube genome.

In addition to responding to abiotic stresses, WRKY TFs are also involved in a variety of biological
processes such as leaf senescence [18], trichome, seed and pollen development [19,20], and secondary
metabolite biosynthesis [21]. Recently, some studies have revealed that WRKY TFs may be involved in
fruit development and ripening [22,23]. Jujube was domesticated from its wild ancestor (Z. jujuba Mill.
var. spinosa Hu.), which resulted in enlarged fruit sizes and changes in fruit taste such as increased
sweetness/acidity. In our previous report, we have elucidated the difference in fruit taste between the
wild jujube and jujube fruit through transcriptomic analysis and genomic selection [24]. However,
there were still lack of detail information about TFs involved in jujube fruit development and ripening.
Therefore, it is valuable to study the expression pattern of WRKY genes, one of the largest plant
TF families, and their differential expression between jujube and wild jujube during fruit ripening,
and hope to reveal the potential role of WRKY genes involved in fruit ripening.

In this study, we identified and compared WRKY TFs in two genome-sequenced jujube cultivars,
i.e., ‘Junzao’ and ‘Dongzao’, at the genome-wide level, and characterized their chromosomal location
and phylogenetic relationships. ‘Junzao’ is a dominant dry-eating jujube cultivar with large size
and high sugar content, while ‘Dongzao’ is the most dominant fresh-eating cultivar with crisp flesh
and good tastes in China. We analyzed the expression profiles of WRKY TFs in different tissues of
‘Junzao’. To elucidate their potential role in regulating fruit development and ripening, we compared
the transcription patterns of cultivated and wild jujube during fruit ripening. Finally, we performed
pot and hydronic experiments and studied the responses of different ZjWRKY genes to drought stress,
salt stress, and ABA treatment using RT-qPCR. The results would help us understand the molecular
mechanisms of jujube adaptation to harsh conditions and provide gene resources for jujube molecular
breeding to improve stress tolerance and fruit quality.



Genes 2019, 10, 360 3 of 23

2. Materials and Methods

2.1. Identification of the WRKY Family Members in Chinese Jujube and Their Chromosomal Locations

The protein-coding sequences and their corresponding chromosomal locations in the jujube
genome were downloaded from our previously released data of ‘Junzao’ jujube genome (https:
//datadryad.org/resource/doi:10.5061/dryad.83fr7). The Hidden Markov Model profiles for the WRKY
DNA-binding domain (PF03106) were retrieved from the Pfam data base (http://pfam.xfam.org/) [25] and
used to identify jujube WRKY genes (E-Value < 0.01) with HMMER 3.0 (http://hmmer.janelia.org/) [26].
Pfam domains and NCBI CDD (http://www.ncbi.nlm.nih.gov/cdd/) were used to validate all the
candidate WRKY TFs. We also identified WRKY gene family in ‘Dongzao’ jujube genome (https:
//www.ncbi.nlm.nih.gov/genome/?term=jujube). We compared amino acids composition of WRKY TFs
between ‘Junzao’ and ‘Dongzao’ using BlastP.

2.2. Sequence Alignment of WRKY Family Members and Construction of the Phylogenetic Tree

Conserved domain amino acid (aa) sequences of all predicted ZjWRKY were multi-aligned
using ClustalX 2.0.12 [27]. Another multi-alignment, including aa sequences of jujube and those
from A. thaliana and Solanum lycopersicum, was performed using ClustalW and MEGA 7.0 with the
neighbor-joining and maximum likelihood method (bootstrap = 1000) [28]. Based on the results of
multiple sequence alignment and the classification of A. thaliana WRKY TFs, all predicted ZjWRKY
genes were assigned to groups and subgroups.

2.3. Structural and Analysis of WRKY Genes

The online ExPASy proteomics server (https://web.expasy.org/protparam/) was used to predict
protein molecular weights (MWs) and isoelectric points (pIs) of the putative WRKY proteins. Motifs in
all the predicted ZjWRKY protein sequences were identified using the Multiple Em for Motif Elicitation
(MEME) 5.0.1 online program (http://meme-suite.org/tools/meme) [29]. The parameters for MEME
were as follows: number of repetitions, any; maximum number of motifs, 10; and the optimum width
of each motif, between 20 and 50 residues. To evaluate the level of conservation of the WRKY structural
domains and zinc finger motifs of each group, sequence logos were produced using Jalview 2.10.4b1.

Both gene sequence and coding sequence (CDS) of each predicted ZjWRKY gene from the Z. jujuba
genome were downloaded, and the intron distribution pattern and splicing phase were analyzed using
the gene structure display server (GSDS) (http://gsds.cbi.pku.edu.cn/) [30].

2.4. Analysis of Cis-Acting Regulatory Elements in the Promoter Regions of ZjWRKY Genes

We extracted the region of 2000 bp upstream of the transcriptional start point of ZjWRKY genes
from ‘Junzao’ and ‘Dongzao’ jujube genome [22], and identified cis-acting regulatory elements in these
regions using PlantCARE [31].

2.5. Tissue-Specific Expression Analysis of ZjWRKY Genes by Reverse Transcription Polymerase Chain
Reaction (RT-PCR)

We performed RT-PCR analysis to study the ZjWRKY genes expression in different tissues,
including roots, stems, flowers, and leaves of ‘Junzao’. We collected at least 30 g leaves, stems and fine
roots, 30 young fruits, 10 ripe fruits, and 3 g flower samples from one tree per replicate, respectively.
Three biological replicates for each type of tissues were collected totally. These samples were harvested
on June 16, 2017, from three 10-year-old ‘Junzao’ jujube trees growing in the Jujube Experimental
Station of Northwest A&F University (Qingjian, Shaanxi, China; N 37.13◦, E 110.09◦). Over 50% flowers
were fully blooming on June 16, 2017 in the experimental station and this time was defined as 0 days
after flowering (DAF), young fruits were collected at 15 DAF (1 July 2017) and ripe fruits were collected
at 110 DAF (4 October 2017). In addition, we dissected flowers into 4 parts, included sepals, disks,
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pistils, and stamen. All prepared samples were frozen in liquid nitrogen and then transferred to a
−80 ◦C freezer for storage.

Total RNA was extracted using a Plant RNA Extraction Kit (Takara, Dalian, China) and DNA was
removed using DNase I. The RNA was quantified using a NanoDrop 2000 UV-vis spectrophotometer
(Thermo Fisher Scientific, USA), and its integrity was confirmed using 1% agarose gel electrophoresis.
cDNA was synthesized by the PrimeScript™ RT reagent Kit (Takara, Dalian, China). Primer sets for 61
ZjWRKY genes identified from ‘Junzao’ jujube were designed by NCBI Primer-BLAST (https://www.
ncbi.nlm.nih.gov/tools/primer-blast/). The parameters for Primer-BLAST were as follows: PCR product
size, 80~180bp; melting temperatures (Tm), 57~60; the forward/reverse primer range was specified
to span one intron; forward/reverse primer length: 19~22 bp, GC%: 50~55, self complementarity:
0~6, self 3′ complementarity: 0~3. ZjUBQ (GenBank Accession: EU916200.1; Forward primer:
5′-TGGATGATTCTGGCAAAG-3′; Reverse primer: 5′-GTAATGGCGGTCAAAGTG-3′) was selected
as reference for RT-PCR analysis [32]. RT-PCR was performed using 2×GoldStar BesterMix (CWBIO,
Beijing, China) on an ABI 2720 Thermal Cycler (ABI, Marsiling, Singapore). PCR products were
detected by 1.2% agarose electrophoresis. Three technical replicates were performed for each sample.
The band intensity was detected using Image J [33].

2.6. Transcriptome Analysis of ZjWRKY Genes During Jujube and Wild Jujube Fruit Development and
Ripening

Wild jujube is the wild ancestors of jujube, which have small fruit size and acidity taste in
contrast cultivated jujubes with large fruit size and sweet taste [24]. To identify the WRKY TFs that
may be associated with jujube fruit size enlargement or sugar accumulation, we compared their
expression level of WRKY TFs between wild and cultivated jujube fruits based on transcriptomic
analysis. We harvested cultivated jujube (‘Junzao’) and wild jujube (‘Qingjiansuanzao’) fruits at five
stages of fruit ripening: young (15 DAF), enlarging (40 DAF), white mature (65 DAF), beginning red
(90 DAF), and fully red (110 DAF) from 10-year-old trees, respectively, which were grown in Jujube
Experimental Station of Northwest A&F University under the same environment and management.
Three biological replicates were harvested, with at least 10 fruits (30 fruits at the first stage) collected
from one tree per replicate. RNA-seq were performed by sequencing 250~300 bp paired-end libraries
on Illumina Novaseq platforms. Sequencing were performed at the Institute of Novogene (Beijing,
China). Gene expression was analyzed refer to the released ‘Junzao’ genome. We defined genes with
reads per kilobase per million mapped reads (RPKM) ≥ 1 as being expressed.

2.7. Salt Stress, Drought Stress, and ABA Treatment Experiments

2.7.1. Seedling Preparation

Wild jujubes are genetically close to cultivated jujube and usually used as the rootstock of jujube
cultivars [24]. In this study, we evaluated the expression of ZjWRKY genes of wild jujube responding
to drought/salt resistance. Wild jujube seeds were collected from the State Forestry Administration
Forest Tree Germplasm (Xingtai, China). Seeds were rinsed with tap water for 24 h and sowed in
sterilized soil (peat soil: sand = 3:1). All seedlings were grown under natural light in the greenhouse of
Northwest A&F University and the temperature was 25 ± 3 ◦C. Seven-week-old seedlings with similar
height and biomass were selected for subsequent experiments.

2.7.2. Drought Stress Treatment

In first, 45 selected seedlings were transplanted from the substrates to pots. At first, the soil
moisture in the pots was kept at 60% for 7 days, then stop watering and soil moisture naturally
decreased. When the soil moisture reached 60%, 40%, 20%, and 10%, and kept for 3 days at each level,
9 seedlings were harvested, respectively. The remained 9 seedlings were re-watered. When the soil
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moisture was raised to 60% and kept for 3 days (REW60%), the seedlings were harvested. In this
experiment, the soil water content of each pot was monitored and adjusted by a weighing method [34].

2.7.3. NaCl Treatment

In total, 45 selected seedlings were transplanted from the substrates to PVC boxes containing 6 L
1
2 Hoagland solution. Prior to NaCl treatment, seedlings were grown in 1

2 Hoagland solution 5 days for
adaptation to the hydroponic conditions. Then, the solution was replaced with 1

2 Hoagland nutrient
solution containing 200 mM NaCl [35]. When the treatment time reached 0, 3, 12, 24 h, 9 seedlings were
harvested, respectively. The remaining 9 seedlings were transplanted to 1

2 Hoagland nutrient solution
without additional NaCl, and harvested after 12 h (RS12h). Ventilation was maintained throughout
hydroponic growth.

2.7.4. ABA Treatment

The ABA treatment was similar to the NaCl treatment except that 200 mM NaCl was replaced by
100 µM ABA (Yuanye, Shanghai, China).

2.8. RT-qPCR Analyses of ZjWRKY Genes in Response to Abiotic Stresses

Gene transcription levels were quantified by RT-qPCR using TaKaRa TB Green™ Premix Ex Taq
™ II (Dalian, China) on a Bio-Rad CFX Connect system (CA, USA). We made the standard curves
using a 10-fold dilution series of the cDNA templates from 7-week old seedling without any treatment.
The PCR amplification efficiency of each primer pair was evaluated based on the slope of a standard
curve for each gene. In addition, we performed the melting curve analysis to confirm the specificity of
the primer pairs. Those primers designed for tissue-expression were firstly subjected to evaluation,
and we only accepted the primer sets with the amplification efficiencies ranging between 90% and
110% and melting curve showing single peak. Each 10 µL reaction mixture was composed of: 5 µL TB
Green Premix Ex Taq II, 0.8 µL 10 µM primer set, 1 µL cDNA solution, and 3.2 µL ddH2O. Cycling
conditions were set as 95 ◦C for 30 s followed by 40 cycles at 95 ◦C for 5 s and 60 ◦C for 30 s. Melting
curve analysis was carried out under the following cycling conditions: 95 ◦C for 5 s followed a gradient
of 65 ◦C to 95 ◦C where each increase of 0.5 ◦C lasted 5 s. The expression of ZjWRKY genes was defined
based on the cycle threshold (Ct), and their relative expression levels were calculated as 2−∆∆Ct after
normalization to the expression of ZjUBQ as the reference gene [36]. The Venn diagram was drawn
using TBtools [37].

3. Results

3.1. Identification and Chromosomal Locations of ZjWRKY Family in Jujube

In this study, a total of 61 potential ZjWRKY genes were identified through genome-wide analysis
and designated according to their chromosomal location of ‘Junzao’ jujube genome (Table 2). All 61
predicted genes containing WRKY domains were confirmed. The length of these 61 proteins varied
from 158 (ZjWRKY60) to 758 (ZjWRKY4) amino acids. The predicted MWs ranged from 18 kDa to
82 kDa, and the pIs varied from 5.16 (ZjWRKY52) to 9.53 (ZjWRKY59). Among these 61 ZjWRKY
genes, 59 were located on the 11 jujube chromosomes, and chromosome 4 did not contain any ZjWRKY
gene. 10 ZjWRKY genes were mapped on chromosome 1, which contained the most ZjWRKY genes.
Chromosomes 2 and 5 each contained only 3 ZjWRKY genes (Figure 1).

On the other hand, a total of 52 WRKY TFs were identified from the ‘Dongzao’ jujube genome,
which distributed on 11 putative chromosomes. There was no ZjWRKY gene on chromosome 7 (Figure
S1a). We found 13 members showing the same sequencing composition between the two cultivars, and
33 WRKY TFs member in ‘Dongzao’ have their corresponding members in ‘Junzao’ with high identity
(>90%). However, there were still 6 members showing low identity (53–86%) (Table S1).
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Table 1. Identified WRKY genes in the genome of Ziziphus jujuba ‘Junzao’.

Name
Symbol Chromosome Peptide

Length pI MW CDS
Number Group Conserved

Heptapeptide
Zinc-Finger

Type

ZjWRKY1 Chr1 329 9.57 35 3 II d WRKYGQK CX5CX23HXH
ZjWRKY2 Chr1 286 5.62 31 3 II e WRKYGQK CX5CX23HXH
ZjWRKY3 Chr1 337 6.37 37 3 II c WRKYGQK CX4CX23HXH

ZjWRKY4 Chr1 759 5.57 82 5 I WRKYGQK
WRKYGQK

CX4CX22HXH
CX4CX23HXH

ZjWRKY5 Chr1 490 5.70 52 3 II e WRKYGQK CX5CX23HXH
ZjWRKY6 Chr1 634 6.12 68 6 II b WRKYGQK CX5CX23HXH

ZjWRKY7 Chr1 522 5.12 57 2 I WRKYGQK
WRKYGQK

CX4CX22HXH
CX4CX23HXH

ZjWRKY8 Chr1 591 6.12 65 7 I WRKYGQK
WRKYGQK

CX4CX22HXH
CX4CX23HXH

ZjWRKY9 Chr1 536 6.26 58 6 II b WRKYGQK CX5CX19HXH
ZjWRKY10 Chr1 317 8.68 35 5 II a WRKYGQK CX5CX23HXH
ZjWRKY11 Chr2 648 6.74 70 6 II b WRKYGQK CX5CX23HXH
ZjWRKY12 Chr2 200 9.21 23 2 II c WRKYGQK CX4CX23HXH
ZjWRKY13 Chr2 648 6.74 70 6 II b WRKYGQK CX5CX23HXH
ZjWRKY14 Chr3 346 6.76 39 3 II c WRKYGQK CX4CX23HXH

ZjWRKY15 Chr3 393 8.60 43 3 I WRKYGQK
WRKYGQK

CX4CX22HXH
CX4CX23HXH

ZjWRKY16 Chr3 619 6.21 67 5 II b WRKYGQK CX5CX23HXH
ZjWRKY17 Chr3 283 5.46 31 3 II e WRKYGQK CX5CX23HXH
ZjWRKY18 Chr3 161 8.79 18 2 III WRKYGQK N
ZjWRKY19 Chr3 514 7.63 56 4 II b WRKYGQK CX5CX23HXH

ZjWRKY20 Chr3 502 6.52 55 4 I WRKYGQK
WRKYGQK

CX4CX22HXH
CX4CX23HXH

ZjWRKY21 Chr5 398 7.08 44 4 II c WRKYGQK CX4CX23HXH

ZjWRKY22 Chr5 560 5.81 61 5 I WRKYGQK
WRKYGQK

CX4CX22HXH
CX4CX23HXH

ZjWRKY23 Chr5 593 7.21 65 5 I WRKYGQK
WRKYGQK

CX4CX22HXH
CX4CX23HXH

ZjWRKY24 Chr6 362 9.65 41 3 II d WRKYGQK CX5CX23HXH
ZjWRKY25 Chr6 336 6.43 37 3 II c WRKYGQK CX4CX23HXH
ZjWRKY26 Chr6 558 7.22 61 6 II b WRKYGQK CX5CX23HXH
ZjWRKY27 Chr6 290 5.27 32 3 II e WRKYGQK CX5CX23HXH
ZjWRKY28 Chr6 196 9.34 22 2 II c WRKYGQK CX4CX23HXH
ZjWRKY29 Chr6 504 5.50 56 5 II b WRKYGQK CX5CX23HXH

ZjWRKY30 Chr7 415 6.99 46 4 I WRKYGQK
WRKYGQK

CX4CX22HXH
CX4CX23HXH

ZjWRKY31 Chr7 311 5.65 34 3 II c WRKYGQK CX4CX23HXH
ZjWRKY32 Chr7 636 6.62 69 5 II b WRKYGQK CX5CX23HXH
ZjWRKY33 Chr7 632 6.45 68 5 II b WRKYGQK CX5CX23HXH
ZjWRKY34 Chr8 474 5.19 52 3 II e WRKYGQK CX5CX23HXH
ZjWRKY35 Chr8 392 5.90 44 3 III WRKYGQK CX7CX23HXC
ZjWRKY36 Chr8 345 5.39 39 3 III WRKYGQK CX7CX23HXC
ZjWRKY37 Chr8 405 6.64 45 3 III WRKYGQK CX7CX23HXC
ZjWRKY38 Chr9 393 4.93 45 2 II e WRKYGQK CX5CX23HXH

ZjWRKY39 Chr9 543 7.09 60 5 I WRKYGQK
WRKYGQK

CX4CX22HXH
CX4CX23HXH

ZjWRKY40 Chr9 371 5.26 42 3 III WRKYGQK CX7CX23HXC
ZjWRKY41 Chr9 300 5.35 33 3 II c WRKYGQK CX4CX23HXH
ZjWRKY42 Chr9 320 5.25 36 3 III WRKYGQK CX7CX23HXC
ZjWRKY43 Chr9 318 8.08 36 3 III WRKYGQK CX7CX23HXC
ZjWRKY44 Chr9 308 5.84 35 3 III WRKYGQK CX7CX23HXC
ZjWRKY45 Chr9 304 5.25 34 3 III WRQYGQK CX7CX23HXC
ZjWRKY46 Chr9 316 6.46 36 3 III WRKYGQK CX7CX23HXC
ZjWRKY47 Chr10 367 9.64 39 3 II d WRKYGQK CX5CX23HXH
ZjWRKY48 Chr10 214 9.32 23 3 II a WRKYGQK CX5CX23HXH
ZjWRKY49 Chr10 372 9.57 40 3 II d WRKYGQK CX5CX23HXH
ZjWRKY50 Chr10 320 8.65 35 4 II a WRKYGQK CX5CX23HXH
ZjWRKY51 Chr11 227 9.11 25 3 II c WRKYGQK CX4CX23HXH
ZjWRKY52 Chr11 374 5.16 41 3 II c WRKYGQK CX4CX23HXH
ZjWRKY53 Chr11 224 5.37 25 3 II e WRKYGQK CX5CX23NXH
ZjWRKY54 Chr11 356 5.92 39 3 II e WRKYGQK CX5CX23HXH



Genes 2019, 10, 360 7 of 23

Table 2. Identified WRKY genes in the genome of Ziziphus jujuba ‘Junzao’.

Name
Symbol Chromosome Peptide

Length pI MW CDS
Number Group Conserved

Heptapeptide
Zinc-Finger

Type

ZjWRKY55 Chr11 478 9.09 52 5 I WRKYGQK
WRKYGQK

CX4CX22HXH
CX4CX23HXH

ZjWRKY56 Chr12 243 8.66 28 3 II c WRKYGQK CX4CX23HXH
ZjWRKY57 Chr12 196 6.73 22 3 II c WRKYGKK CX4CX23HXH
ZjWRKY58 Chr12 355 5.23 41 3 III WRKYGQK CX7CX23HXC
ZjWRKY59 Chr12 329 9.53 36 3 II d WRKYGQK CX5CX23HXH
ZjWRKY60 Conting12.1 159 5.46 18 3 II c WRKYGKK CX4CX23HXH
ZjWRKY61 Conting111 237 7.65 26 4 II c WRKYGQK CX4CX23HXH

CDS number: the number of coding sequences.

Figure 1. Distribution of ZjWRKY genes on pseudo chromosomes of ‘Junzao’. The scale on the right is
in million bases (Mb).

3.2. Phylogenetic Classification of ZjWRKY Genes

ZjWRKY TFs of ‘Junzao’ jujube were classified into three groups based on the number of WRKY
domains and the type of zinc finger motif. Group I contained two WRKY motifs (one in the N-terminal
region of the sequence, the other in the C-terminal region) and two C2H2 zinc finger motifs; 10
ZjWRKYs were assigned to this group. Group II contained a WRKY motif and a C2H2 zinc finger
motif, except for ZjWRKY53. This group contained 40 members. Group III included 11 members, and
each of them contained a WRKY motif followed with a C2HC zinc finger motif, except ZjWRKY18
(Figure 2 and Table 2). On the other hand, 52 WRKY TFs of ‘Dongzao’ jujube were also divided into 3
groups which were group I with 10 members, group II with 30 members, group III with 12 members.
In contrast to ‘Junzao’, WRKY TFs in group II of ‘Dongzao’ was obviously reduced (Table S2 and
Figure S1b).

For further classification, WRKY proteins from three different plant species, including 71 from
A. thaliana, 77 from S. lycopersicum, and 61 from Z. jujuba ‘Junzao’, were subjected to phylogenetic
analysis. Group II was divided into five subgroups (IIa to IIe) according to the zinc finger structure
(Figure 2 and Figure S2). Subgroups IIa, IIb, IIc, IId, and IIe contained 3, 10, 14, 5, and 8 members,
respectively. In ‘Dongzao’ jujube, subgroups IIa, IIb, IIc, IId, and IIe contained 2, 8, 12, 3, and 5 members,
respectively (Table S2). The zinc finger structure from the group IN was C-X4-C-X22-H-X1-H, and IC was
C-X4-C-X23-H-X1-H. The members of subgroups IIa, IIb, IId, and IIe had C-X5-C-X23-H-X1-H zinc-finger
motifs, except for the ZjWRKY53. Group IIc had C-X4-C-X23-H-X1-H zinc finger structure. Group III
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had a C-X7-C-X23-H-X1-C zinc finger motif, except for ZjWRKY18, which had no complete zinc-finger
structure (Figure S3). We found 4 members (XP_015874714.1, XP_024928884.1, XP_024933427.1,
and XP_015902857.1) in group III did not have a complete zinc finger structure in ‘Dongzao’ jujube
(Figure S1g).

Figure 2. Phylogenetic analysis of the WRKY proteins from Ziziphus jujuba ‘Junzao’ jujube, Arabidopsis
thaliana and Solanum lycopersicum. Multiple sequence alignments of WRKY amino acid sequences
were performed using ClustalW. The phylogenetic tree was constructed using MEGA7.0 with the
neighbor-joining method and 1000 bootstrap replicates (substitution model: Jones–Taylor–Thornton
model). Group (I, II, III) and subgroup (IIa~IIe) names were marked outside the circle.

Although the WRKY domain was highly conserved, there were some mutations in Chinese jujube.
The WRKY motifs (WRKYGQK) had one amino acid modification (WRKYGKK) in ZjWRKY57 and
ZjWRKY60 that belonging to group IIc, whereas in ZjWRKY45 (group III), the WRKY domain was
replaced by WRQY (Figure S3). In ‘Dongzao’ jujube, group IIc (XP_015884439.1 and XP_015870123.1)
also contained the aa sequence WRKYGKK. The mutations in the conserved domain of these WRKY
genes have been confirmed by sanger sequencing in ‘Junzao’ jujube. In addition, we identified the
orthologous genes (AtWRKY51 and AtWRKY50) of A. thaliana regarding to ZjWRKY57 and ZjWRKY60
by phylogenetic analyses and also found the mutation (WRKYGKK) in these proteins. However, we
did not find an orthologous gene of ZjWRKY45 in A. thaliana and S. lycopersicum.
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3.3. Conserved Motifs of the ZjWRKY and Structure of Their Genes

MEME motif analysis identified 10 motifs in all WRKY members of two Chinese jujube cultivars.
Each ZjWRKY had different motif combinations. Motif 1 was annotated as WRKY DNA-binding motif,
which is the fundamental characteristic of WRKY TFs (Figure S4) and presented in all ZjWRKY at least
one time (Figure 3 and Figure S1c). Motif 2 was zinc finger motif and almost presented in all ZjWRKYs
except two members (ZjWRKY18 and XP 015902857.1) belonging to group III. Group I proteins had two
WRKY domains, each consisting of the conserved aa sequence WRKYGQK (motif 1) and a zinc finger
(motif 2), except XP 015892560.1 of ‘Dongzao’. Motif 5 was unique to group IIb. Motif 6 only presented
in group IIb of ‘Dongzao’ jujube while it presented in both group IIb and group IIc (ZjWRKY61) of
‘Junzao’ jujube.

Figure 3. Phylogenetic tree and motif composition of ‘Junzao’ WRKY proteins. The phylogenetic
tree was constructed using MEGA7.0 with the neighbor-joining method and 1000 bootstrap replicates
(substitution model: Jones–Taylor–Thornton model). Multiple Em for Motif Elicitation (MEME) was
used to predict motifs. Ten motifs were identified and were represented by different colors. The
position of the motif on the chromosome was labeled.



Genes 2019, 10, 360 10 of 23

Gene structure predictions revealed that all ZjWRKY genes contained CDS and introns. The number
of CDS varied from 2 to 7. ZjWRKY genes containing 3 CDS were the most frequent type and accounted
for 55.74% (Figure 4). In similar, ZjWRKY containing 3 CDS was the most dominant type in ‘Dongzao’
jujube (Figure S1d).

Figure 4. Intron-exon structure of ZjWRKY genes of Ziziphus jujuba ‘Junzao’. The phylogenetic tree
was constructed using MEGA7.0 with the neighbor-joining method and 1000 bootstrap replicates
(substitution model: Jones–Taylor–Thornton model). Analysis of ZjWRKY genes structure using gene
structure display server (GSDS). Yellow blocks indicate the coding sequences (CDS), blue blocks indicate
upstream or downstream sequences, and black lines indicate introns.

3.4. Cis-Acting Regulatory Elements of the ZjWRKY Promoters

These cis-acting regulatory elements in the ‘Junzao’ ZjWRKY genes promoter regions
were mainly classified into four categories: light-responsive elements, hormone-responsive
elements, stress-responsive elements, and growth and metabolic-responsive elements (Figure 5a,b).
The light-responsive elements were present in the promoter regions of all ZjWRKY, and included
Box 4, G-box, and GT1-motif. Hormone-responsive elements included response elements to ABA
(ABRE), auxin (AuxRR-core, and TGA-box), gibberellin (GARE-motif, P-box, and TATC-box), methyl
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jasmonate (CGTCA-motif, and TGACG-motif), and salicylic acid (TCA-element), among which the
methyl jasmonate (MeJA)-responsive elements were the most dominant, accounting for 37.36% of
the hormone-responsive elements. The stress-responsive elements included response elements to
anaerobic induction (ARE), defense and stress (TC-rich repeats), drought (MBS), low temperature
(LTR) and wound (WUN-motif). Among these, response elements to anaerobic induction were the
most abundant, accounting for 55.00% of stress-responsive elements. We found hormone-responsive
and stress-responsive elements present in the promoter region of some ZjWRKY genes in each of the
three groups. Growth and metabolic-responsive elements mainly include: elements associated with
Zein-metabolism regulation (O2-site), meristem expression (CAT-box), and endosperm expression
(GCN4_motif). In addition, we found the W-box element in the promoter regions of the 43 ZjWRKY
genes (Table S3). Similar to the ‘Junzao’ jujube, the light-responsive elements were observed in the
promoter region of all ‘Dongzao’ jujube WRKY genes. Unlike the ‘Junzao’ jujube, the ABA-responsive
elements were the most dominant among the hormone-responsive elements, and cis-acting regulatory
element involved in zein metabolism regulation was the most dominant among the growth and
metabolic-responsive elements (Figure S1e,f).

3.5. Tissue-Specific Expression Profile of ZjWRKY Genes

To investigate whether the predicted ‘Junzao’ WRKY genes were actually transcribed, we examined
their transcription levels in different tissues using RT-PCR. We designed primer sets for each candidate
ZjWRKY genes (Table S4). RT-PCR analyses showed that 41 genes were transcribed in roots, stems,
flowers, leaves, young fruit and ripe fruit, but their expression levels varied among these tissues
(Figure 6). As shown in Figure 6, seven genes (ZjWRKY19, 20, 23, 24, 39, 47, and 52) highly expressed in
all six tissues. Further analysis of the promoter regions of these 7 genes revealed that ABA-responsive
element was the dominant type followed by anaerobic induction and SA-responsive element (Table S3).
No bands were detected in all tissues for two genes (ZjWRKY18, and 46). ZjWRKY46 was activated
by the following drought, NaCl and ABA treatments while ZjWRKY18 was still not detected under
such treatments (Figure S5). We identified 1 ABA-responsive element, 1 SA-responsive element and 1
defense and stress-responsive element in the promoter region of ZjWRKY46 and 2 MeJA-responsive
elements, 1 ABA-responsive element and 1 defense and stress-responsive element in the promoter
region of ZjWRKY18 (Table S3). ZjWRKY32, and 33 in group IIe were specifically expressed in
roots. There were 4 MeJA-responsive elements, 4 anaerobic induction-responsive elements and 2 low
temperature-responsive elements in the promoter regions of these 2 genes. ZjWRKY41, in group IIc,
was specifically expressed in young fruit (15 DAF), and ZjWRKY43, and 45, in group III, were only
detected in flowers. We found 1 GA-responsive element was common in the promoter regions of
ZjWRKY41, 43 and 45 (Table S3).

We further examined the expression patterns of ZjWRKY43 and 45 in floral organs, including sepals,
disks, pistils, and stamen, by RT-PCR. ZjWRKY43 was expressed in pistils and disks, and ZjWRKY45
was expressed in pistils, sepals and disks. Neither were expressed in the stamen (Figure S6). In addition,
the transcription levels of 15 ZjWRKY genes (ZjWRKY9, 12, 14, 25, 28, 29, 34, 38, 41, 44, 51, 55, 57, 60,
and 61) changed between young and ripe fruits (Table S5).
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Figure 5. Type and number of cis-acting regulatory elements in the promoter region of WRKY genes of
Ziziphus jujuba ‘Junzao’. (A) Position of the cis-acting elements in the ZjWRKY genes promoter region.
(B) Number of cis-acting elements.
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Figure 6. RT-PCR analysis of ZjWRKY genes in six types of tissues/organs of ‘Junzao’ jujube. R: root; S:
stem; F: flower; L: leaf; YF: young fruit; and RF: ripe fruit.

3.6. Transcriptional Dynamics of ZjWRKY Genes During Fruit Development and Ripening

Wild jujube is the wild type of jujube and genetically close to jujube, so their WRKY TFs might
be similar with high possibility. On the other hand, wild jujube fruit is smaller and more acidic than
jujube [24]. In order to identify ZjWRKY genes that might involve in fruit enlargement and sugar
accumulation, we detected the expression level of ZjWRKY genes during the fruits development
of wild and cultivated jujube. Based on the transcriptomic analysis, in total, there were 39 and 44
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ZjWRKY genes with RPKM value ≥ 1 during fruit development and ripening of ‘Junzao’ jujube and
‘Qingjiansuanzao’ wild jujube, respectively. These 39 genes expressed in ‘Junzao’ fruit were divided into
5 clusters based on their expression level (Figure 7). In cluster 1 (9 genes), the expression level increased
gradually. In cluster 2 (7 genes), the expression level decreased gradually. In cluster 3 (5 genes), the
expression level increased first and then decreased, whereas in cluster 4 (8 genes), the expression level
decreased first and then increased. In cluster 5 (10 genes), expression level was variable.

Figure 7. Transcriptional abundance of ZjWRKY genes during fruit ripening of cultivated jujube
(‘Junzao’) and wild jujube (‘Qingjiansuanzao’). RPKM was used to measure the expression levels of
the ZjWRKY genes. Red denotes high expression levels, and green denotes low expression levels.
Clustering was done according to the expression level of ZjWRKY genes in jujube fruit.

We further compared the transcript abundance of ZjWRKY genes between ‘Junzao’ and
‘Qingjiansuanzao’ during fruit ripening. We found that 20 of these 39 ZjWRKY genes showed similar
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expression patterns between the two accessions during the progress of fruit ripening. Additionally,
the transcript abundance of 7 genes (ZjWRKY5, 24, 25, 30, 41, 57, and 60) in ‘Junzao’ fruit was always
higher than that in ‘Qingjiansuanzao’ fruit, whereas the transcript abundance of 12 genes (ZjWRKY1, 2,
3, 6, 14, 15, 16, 26, 49, 52, 54, and 55) in ‘Junzao’ fruit was always lower than those of ‘Qingjiansuanzao’.
In addition, we found that ZjWRKY genes belonging to group I and group IId had a higher transcript
abundance (RPKM ≥ 10) than those genes in the other groups.

3.7. Transcriptional Responses of ZjWRKY Genes to Salt, and Drought Stresses and ABA Treatment

To accurately evaluate the relative expression level of ZjWRKY genes by qRT-PCR analyses, we
first established a standard curve for each gene to confirm the amplification efficiency of the primer
sets. Among the 61 ZjWRKY genes, the transcription levels of 6 genes (ZjWRKY9, 18, 22, 43, 45, and 46)
were too low in all organs/tissues to establish standard curves.

Under drought stress condition (10% water content), 21 ZjWRKY genes in the wild jujube
seedlings were upregulated by over 2-fold, and two of them (ZjWRKY37, and 48) increased >10-fold
(Figure 8a). In particular, ZjWRKY37 (group III) exhibited the highest expression level, with >30-fold
upregulation. Analysis of cis-acting elements displayed that there were 2 ABA-responsive elements
and 1 SA-responsive element in the promoter region of ZjWRKY37 and there were 5 ABA-responsive
elements and 2 MeJA-responsive elements in the promoter region of ZjWRKY48. In contrast, the
expression levels of 9 ZjWRKY genes exhibited >2-fold decreases in these seedlings (Figure 8a).

Under salt stress condition (200 mM NaCl for 24 h), expression levels of 8 ZjWRKY genes showed
>2-fold increases in the wild jujube seedlings. Among these genes, ZjWRKY27 exhibited the highest
expression level, with >5-fold increases. There were 3 MeJA-responsive elements, 1 SA-responsive
element and 1 drought-responsive element in the promoter region of ZjWRKY27. On the other hand, 5
ZjWRKY genes exhibited >2-fold downregulation in these seedlings (Figure 8b).

For seedlings treated with 100 µM ABA for 24 h, the expression of 10 ZjWRKY genes were >2-fold
upregulated and ZjWRKY23 was mostly upregulated (group I), with >18-fold increases in the seedlings.
In the ZjWRKY23 promoter region, we identified 3 ABA-responsive elements, 1 SA-responsive element
and 1 drought-responsive element. On the other hand, 8 ZjWRKY genes were downregulated by
>2-fold in these seedlings (Figure 8c).

We selected some genes which were regulated by >2-fold at transcript level after drought, salt and
ABA treatment for further analysis. Under drought stress, as shown in Figure S7a, the maximum value
of expression of different ZjWRKY genes appeared in different degrees of drought stress (Figure S8). It
is worth noting that the expression levels of 5 genes (ZjWRKY27, 28, 30, 37, 48, and 56) were negatively
correlated with soil water content, that is, the expression level of these genes increased when the soil
moisture reduced, but the expression level fell after rehydration (Figure 9a).
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Figure 8. ZjWRKY genes expression in wild jujube seedlings under three different treatments. (a)
Expression level of ZjWRKY genes under drought stress; (b) Expression level of ZjWRKY genes under
NaCl stress; (c) Expression level of ZjWRKY genes under ABA treatment. The histograms represent the
fold changes of expression level compared to the reference. The error bars represent standard deviation.
ZjWRKY genes expression level were determined by real-time quantitative polymerase chain reaction
(RT-qPCR) using ZjUBQ as a positive reference.

Among the selected 14 ZjWRKY genes (Figure S7b), there were 2, 1, 0, and 8 genes reaching their
highest transcript level when treated with NaCl for 0, 3, 12, and 24 h, respectively. The transcription
level of ZjWRKY27 increased with the time of NaCl treatment and fell back after removal of NaCl. This
pattern was similar with that under drought treatment (Figure 9b). ZjWRKY4, and 29 firstly decreased
to their lowest level after 1 to 3 h NaCl, and then increased with the time of NaCl treatment, and fell
back after removal of NaCl.

Under ABA treatment, the expression level of ZjWRKY23 was positively correlated with the
duration of ABA treatment. There were 6 ZjWRKY genes (ZjWRKY17, 26, 29, 36, 39, and 52) that
showed similar trends, except their transcription levels decreased during the first 3 h of ABA treatment.
Interestingly, ZjWRKY29 showed a similar trend under NaCl and ABA treatments (Figure 9c).
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Figure 9. Expression profile of the ZjWRKY genes under three treatments. (a) Expression level of 6
ZjWRKY genes in soil moisture content 60%, 40%, 20%, 10%, and 60% after re-watering (REW60%); (b)
Expression level of 3 ZjWRKY genes under 0 h, 3 h, 12 h, and 24 h NaCl treatment, and 12 h removal of
NaCl (RS 12 h); (c) Expression level of 7 ZjWRKY genes after 0 h, 3 h, 12 h, and 24 h of ABA treatment,
and 12 h after removal of ABA (RA 12 h). The histograms represent the relative expression level of
ZjWRKY genes compared to the reference. Error bars represent standard deviations. The data were
calculated using the method of 2-∆∆Ct. LSD detection was used to label different letters when there was
a significant difference in expression (p < 0.05; n = 3).

Taken together, we constructed a Venn diagram of ZjWRKY genes involved in fruit development
and response to drought, NaCl and ABA treatment. As showed in Figure 10, there were 39 ZjWRKY
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genes expressed during ‘Junzao’ jujube fruit development, and 30, 12, 18 ZjWRKY genes responded
to drought, NaCl, and ABA treatments, respectively. Some ZjWRKY genes were involved in several
processes. For example, 29 ZjWRKY genes expressed during the fruit development were also responded
to abiotic stress. Among which, expression levels of ZjWRKY32 and 33 in wild jujube seedlings changed
when exposed to drought, NaCl and ABA treatments (Table S6). However, no genes were expressed in
all events.

Figure 10. The Venn diagram of ZjWRKY genes related to fruit development, drought, NaCl, and
ABA treatment.

4. Discussion

4.1. Identification of the WRKY Family Members in Chinese Jujube

Accompanying the increasing number of plant genomes which were resolved, WRKY gene family,
an important transcription factors family, has been identified in more and more plant species. In this
study, we identified a total of 61 and 52 WRKY TFs from the ‘Junzao’ and ‘Dongzao’ jujube genome,
respectively. Although most WRKY genes from ‘Dongzao’ have their corresponding members in
‘Junzao’ genome, there were some members that did not share between two accessions (Table S1).
This difference also indicated more alleles existed among different cultivars. Of course, the difference
in the number of WRKY TFs between ‘Junzao’ and ‘Dongzao’ might be also attributed to the difference
in cultivar or sequencing strategy.

In contrast, there were 127 WRKY TFs in M. domestica belonging to Rosaceae that is neighbor
with Rhamnaceae, about twice as large as in Z. jujuba [14]. This difference was contributed by the
recent whole genome duplication event in the apple genome while no such event occurred in jujube
genome [24].

4.2. ZjWRKY Expression Profile in Different Tissues

We analyzed the expression pattern of the ZjWRKY genes of ‘Junzao’ jujube in six different tissues.
The results demonstrated variation in the expression patterns of ZjWRKY genes. In total, 7 genes were
highly expressed in all jujube tissues. Highly expressed WRKY genes usually play important roles in
plant development [23]. Therefore, we concluded that these 7 highly expressed ZjWRKY genes might be
important regulatory factors in jujube development, although further studies are required to verify the
function of these genes. In contrast, 2 ZjWRKY genes were expressed at low levels in all jujube tissues
and 6 ZjWRKY genes were specifically expressed in only one tissue. Some low expression genes were
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induced by the specific environment. For example, ZjWRKY46 was not detected in normal growing
plants, but it was detected in seedlings treated with drought, NaCl, and ABA. However, ZjWRKY18
cannot be detected in all samples. It might be activated by other conditions. Genes expressed at high
levels in special organs usually play key roles in plant development [38]. In A. thaliana, AtWRKY34
and AtWRKY2 have higher expression levels in pollen and pollen tubes compared to other tissues.
They were required for the development of male gametophytes [19]. In jujube, ZjWRKY32, and 33
were specifically expressed in roots. Their homologous gene, AtWRKY72, has a higher expression level
in the lateral root cap and epidermis compared to other tissues [39]. AtWRKY72 contributes to basal
immunity in A. thaliana [40]. ZjWRKY43 and ZjWRKY45 were expressed only in flowers, ZjWRKY48
was specifically expressed in stems, and ZjWRKY41 was specifically expressed in young fruit. They
might have specific functions in those corresponding tissues.

4.3. ZjWRKY Genes Associated with Jujube Fruit Development and Ripening

Fruit development and ripening is a complex process that includes cell division and expansion,
the accumulation of sugar, fruit coloration, and other physiological processes. Studies have shown
that a variety of TFs were involved in fruit development and ripening [41,42]. In pepper, CaWRKY1
expression was strongly up-regulated in red fruit and may play an important role in fruit maturation [43].
In banana, the protein MaHIS1 and MaWRKY1 could interact with and regulate physiological processes
like fruit ripening and stress responses [44]. In this study, we found 39 ZjWRKY genes expressed
during jujube fruit development and ripening. The genes of groups I and IId had higher expression
levels than those of other groups, which indicated ZjWRKY genes belonging to group I and IId play
more important roles than other groups in jujube fruit development. Similar results as described
above were also observed during the development of pepper fruit [23]. In this study, expression levels
of 7 ZjWRKY genes were gradually decreased during the process of fruit ripening. We found the
cis-acting regulatory element that responds to gibberellin signal from the promoter region of these
genes. Moreover, the gibberellin content gradually decreased during the ripening of the ‘Dongzao’
jujube fruit [45]. Therefore, we speculate that these genes may be related to gibberellin.

Considering the huge change in fruit size and fruit taste between jujube and wild jujube, WRKY
TFs might play a role in the difference of fruit ripening. By comparing ZjWRKY member expression
patterns between jujube and wild jujube, we found that 7 ZjWRKY genes display higher transcript
levels in jujube fruit than in wild jujube fruit while 12 ZjWRKY genes showed higher transcript levels
in wild jujube fruit. Therefore, these ZjWRKY might control genes involved in fruit enlargement and
quality development.

4.4. ZjWRKY Genes Involved in Response to Abiotic Stresses

WRKY TFs are widely involved in the regulation of plant responses to stress. In A. thaliana,
M. domestica and Sesamum indicum, 18, 34, and 26 WRKY genes were associated with salt, waterlogging
and drought stresses, respectively [14,34,46]. In this study, we found that 30, 14, and 18 ZjWRKY
genes responded to drought stress, salt stress and ABA treatment, respectively. WRKY TFs could
regulate plant responses to abiotic stress through ABA-dependent pathways. In A. thaliana, AtWRKY46
modulates the development of A. thaliana lateral roots in osmotic/salt stress conditions via regulation
of ABA signaling [47]. In this study, ZjWRKY29 had a similar expression pattern with salt and ABA
treatment, so this gene may respond to salt stress through ABA-dependent pathway. In addition,
we found that ZjWRKY27 had similar expression patterns under drought stress and salt stress
(Figure 9a,b), indicates that it can function in jujube under different stresses. Previous studies have
demonstrated that single transcription factor may function in several seemingly disparate signaling
pathways. For example, AtWRKY33 reacted to both heat treatment and salt treatment [48].

There were 5 genes (ZjWRKY27, 28, 30, 37, 48, and 56) responding positively to drought
stress. Among these 5 genes, ZjWRKY48 is the orthology gene of AtWRKY40. In A. thaliana,
ABA induction of AtWRKY18 and AtWRKY40 leads to increase in WRKY18 and WRKY40 proteins that
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form heterocomplexes through physical interactions. WRKY18/WRKY40 heterocomplex could activate
AtWRKY60 expression. AtWRKY60 positively regulate plant responses to ABA [49]. Thus, some of
them may play an important role in jujube response to drought stress.

Upon ABA treatment, the expression level of ZjWRKY23 increased with ABA treatment.
AtWRKY33 is an orthologs of ZjWRKY23, which could upregulated in A. thaliana by ABA treatment [50].
Overexpression of AtWRKY33 can increase NaCl tolerance in A. thaliana [51]. In addition, the expression
level of ZjWRKY27 increased with the duration of NaCl treatment. How those ZjWRKY genes regulating
jujube responding to ABA needs be further elucidated by gene functional analyses.

In addition, according to the distribution pattern of cis-regulation elements in the promoter regions
of ZjWRKY TFs, we found the distribution of cis-regulatory elements in the promotor regions of
different ZjWRKY TFs was unnecessarily related with the gene expression pattern. Thus, their potential
roles in gene regulation need to be validated in future research.

5. Conclusions

In this study, we identified and compared 61 and 52 ZjWRKY TFs from two famous jujube cultivars,
i.e., ‘Junzao’ and ‘Dongzao’, respectively. We characterized their distribution on chromosomes,
conserved motifs, gene structure, cis-acting regulatory elements in promoter regions, and evolutionary
relationships. This difference of ‘Junzao’ and ‘Dongzao’ ZjWRKY TFs might be attributed to the
difference in sequencing strategies or genetic background of two cultivars. Furthermore, we found
ZjWRKY genes of ‘Junzao’ showed different expression pattern in the different tissues. Among the
61 genes, 7 ZjWRKY genes highly expressed in various tissues. Transcriptome analysis showed
that 39 ZjWRKY genes expressed during ‘Junzao’ fruit ripening, among which 19 ZjWRKY genes
were differentially expressed between ‘Junzao’ and ‘Qingjiansuanzao’, indicating their possible roles
regulating sugar accumulation and acid metabolism. On the other hand, expression levels of 30,
14, and 18 ZjWRKY genes changed when wild jujube seedlings were exposed to drought, NaCl and
ABA treatments, respectively. Among these genes, 5 and 1 ZjWRKY genes were strongly correlated
with the degree of drought and salt stress, respectively. Taken together, our study revealed the
functional diversity of WRKY TFs and provided candidate WRKY genes for future breeding of
drought/salt-tolerance jujube trees.
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treatments. Figure S6: Expression level of ZjWRKY43, and 45 in sepals, disks, pistils, and stamen. Figure S7:
Expression profile of the ZjWRKY genes under three treatments. a: Expression level of 30 ZjWRKY genes in soil
moisture content 60%, 40%, 20%, 10%, and 60% after re-watering (REW60%); b: Expression level of 14 ZjWRKY
genes under 0 h, 3 h, 12 h, and 24 h NaCl treatment, and 12 h removal of NaCl (RS 12 h); c: Expression level
of 18 ZjWRKY genes after 0 h, 3 h, 12 h, and 24 h of ABA treatment, and 12 h after removal of ABA (RA 12 h).
The histograms represent the relative expression level of ZjWRKY genes compared to the reference. Error bars
represent standard deviations. The data were calculated using the method of 2-∆∆Ct. LSD detection was used to
label different letters when there was a significant difference in expression (p < 0.05; n = 3). Figure S8: Growth
status of wild jujube seedlings under drought stress. Table S1: Comparison of ZjWRKY protein sequences of
‘Dongzao’ and ‘Junzao’ using BLAST-2.3.31+. Table S2: Identified WRKY genes in the genome of Ziziphus jujuba
‘Dongzao’. Table S3: Identified cis-acting regulatory elements in the putative promoter regions of ‘Junzao’ WRKY
genes. Table S4: Designed primer sets used in this study. Table S5: Relative expression levels of the ZjWRKY
genes in six tissues/organs of ’Junzao’ jujube using Image J. Table S6: ZjWRKY genes related to fruit development,
drought, NaCl and ABA treatment.
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