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Resting-state fMRI has the potential to help doctors detect abnormal behavior in brain
activity and to diagnose patients with depression. However, resting-state fMRI has a bias
depending on the scanner site, which makes it difficult to diagnose depression at a new
site. In this paper, we propose methods to improve the performance of the diagnosis of
major depressive disorder (MDD) at an independent site by reducing the site bias effects
using regression. For this, we used a subgroup of healthy subjects of the independent site
to regress out site bias. We further improved the classification performance of patients
with depression by focusing on melancholic depressive disorder. Our proposed methods
would be useful to apply depression classifiers to subjects at completely new sites.

Keywords: depression, functional connectivity, machine learning, harmonization, multi-center fMRI, resting
state fMRI
INTRODUCTION

Depressive disorder is a mental disorder characterized by long-lasting low mood. The diagnosis of
depressive disorder has traditionally been made through the interaction between patients and
doctors. It is important to develop more objective ways to diagnose depressive disorder in order to
increase the reliability and accuracy of the diagnosis.

The combination of machine learning and functional magnetic resonance imaging (fMRI) has
been used to diagnose or to find the physiological characteristics of psychiatric disorders (1–11).
Recently, functional connectivity (the correlation coefficients of the brain activity between brain
regions) easily calculated from resting-state fMRI data are being used for the diagnosis of psychiatric
disorders, such as autism, obsessive-compulsive disorder, and depression (1–7). For resting-state
fMRI, spontaneous brain activity was measured from subjects lying in an fMRI scanner without any
stimulation. Because of the advantages of resting-state fMRI, functional connectivity has the
potential to become a clinical tool widely used in hospitals.
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However, functional connectivity is affected by site bias (2,
12). To overcome site bias, some studies use independent
component analysis or sparse canonical component analysis to
extract site independent components (7, 13). There are also some
harmonization methods using regression out procedure, such as
combat, traveling subject methods, and generalized linear model
(GLM) methods (1, 2, 14–18). Another approach that can be
effective is using data from as many sites as possible for the
training of classification algorithms. These approaches reduced
the bias of the site where data is already available. Even though
data from many sites were used for machine learning, it is
difficult to apply this to a completely new site data.

In addition to site bias, the heterogeneity of major depressive
disorder would be a problem when the classifier is applied to new
data. The abnormality of functional connectivity of depression
might be different depending on the subtype of the depression. It
would be possible to improve classification performance by
focusing on a typical severe depression, called melancholic
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depressive disorder. In this paper, we propose the methods to
improve the performance of diagnosis of major depressive
disorder (MDD) at an independent site by reducing the site
bias effects. In addition, we investigated the performance
depending on the classification algorithms and the
heterogeneity of the major depressive disorder.
MATERIALS AND METHODS

Subjects
One hundred sixty-three patients with MDD (age 20-75, average
44.1 ± 12.2) were recruited by five sites (the Psychiatry
Department of Hiroshima University and collaborating
medical institutions, Table 1). They were screened using the
Mini International Neuropsychiatric Interview (M.I.N.I), (19,
20), which enables medical doctors to identify psychiatric
disorders according to DSM-IV criteria (21). Patients had an
TABLE 1 | Demographic data of study participants.

Site 1 (HUH: Hiroshima University Hospital)

HC MDD p value
No. of participants (Male/Female) 59 (26/33) 59 (32/27)
No. of melancholia (Male/Female) NA 49 (29/20)
Age (years) 33.7 ± 12.5 42.8 ± 12.0 <0.001
Severity of depression (BDI-II) 6.9 ± 5.9 30.1 ± 8.5 <0.001
IQ (JART) 113.7 ± 8.3 108.7 ± 9.7 0.004

Site 2 (HRC: Hiroshima Rehabilitation Center)

HC MDD p value
No. of participants (Male/Female) 12 (3/9) 12 (6/6)
No. of melancholia (Male/Female) NA 6 (0/6)
Age (years) 42.4 ± 9.4 41.8 ± 10.4 0.667
Severity of depression (BDI-II) 11.0 ± 12.6 35.3 ± 10.0 <0.001
IQ (JART) 111.5 ± 5.8 120.3 ± 5.1 <0.001

Site 3 (HKH: Hiroshima Kajikawa Hospital)

HC MDD p value
No. of participants (Male/Female) 22 (5/17) 22 (12/10)
No. of melancholia (Male/Female) NA 14 (8/6)
Age (years) 46.4 ± 9.4 44.0 ± 11.7 0.497
Severity of depression (BDI-II) 5.5 ± 5.3 29.8 ± 7.1 <0.001
IQ (JART) 115.3 ± 5.7 117.8 ± 5.5 0.178

Site 4 (COI: Center of Innovation in Hiroshima University)

HC MDD p value
No. of participants (Male/Female) 55 (20/35) 55 (24/31)
No. of melancholia (Male/Female) NA 25 (11/14)
Age (years) 53.7 ± 12.2 47.2 ± 13.0 0.011
Severity of depression (BDI-II) 8.5 ± 6.6 25.7 ± 9.6 <0.001
IQ (JART) 107.4 ± 11.5 112.2 ± 10.4 0.020

Site 5 (QST: National Inst. for Quantum and Radiological Sci.and Tech.)

HC MDD p value
No. of participants (Male/Female) 47 (41/6) 15 (9/6)
No. of melancholia (Male/Female) NA 11 (6/5)
Age (years) 24.4 ± 5.8 39.7 ± 10.3 <0.001
Severity of depression (BDI-II) 4.6 ± 4.2 28.8 ± 10.2 <0.001
IQ (JART) – – –
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HC, healthy control group; MDD, major depressive disorder patient group. BDI-II, Beck Depression Inventory-II; JART, Japanese Adult Reading Test.
Values are presented as mean ± s.d.
rticle 400

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Nakano et al. Multi-Center Generalization of Depression Diagnosis From fMRI
initial MRI scan before or within two weeks after starting
medication of selective serotonin reuptake inhibitors (SSRIs).

As a control group, 195 healthy subjects (age 20-75, average
39.1 ± 15.5) with no history of mental or neurological disease
were recruited from the local community. All control subjects
underwent the same self-assessment and examination
administered to the MDD group. Thereafter, for the
melancholic MDD classifier, the dataset was limited to have
the subtype of melancholia (based on M.I.N.I.). The number of
patients and healthy controls were set to be equal for each site,
except for the subjects from the National Institutes for Quantum
and Radiological Science and Technology, in order to develop a
classifier unbiased toward either group (see Table 1). The
subjects from the National Institutes for Quantum and
Radiological Science and Technology were used only for the
test data (replication cohort).

The study protocol in this study was approved by the Ethics
Committee of Hiroshima University and the Radiation Drug
Safety Committee and by the institutional review board of the
National Institutes for Quantum and Radiological Science and
Technology, in accordance with the ethical standards laid down
in the 1964 Declaration of Helsinki and its later amendments.

The detailed properties of the subjects are shown in Table 1.

Acquisition and Preprocessing of
Functional MRI Data
fMRI scanners were used to generate magnetic resonance images.
Functional data were collected using gradient echo planar
imaging (EPI) sequences. High-resolution T1-weighted
magnetization-prepared rapid gradient echo images were also
acquired before scanning the functional data. In the scan room
with dimmed lights, participants were instructed not to think of
anything in particular, not to sleep, and to keep looking at a cross
mark at the center of the monitor screen. The first four to seven
images were discarded to allow magnetization to reach
equilibrium. All participants underwent an approximately 5 to
10 min resting-state scan. The scanners and imaging parameters
are different depending on the site (see Tables 1 and 2).
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All the resting-state fMRI data were preprocessed using the
identical procedures described in (7). T1-weighted structural
image and resting-state functional images were preprocessed
using SPM8 (Wellcome Trust Centre for Neuroimaging,
University College London, UK) on Matlab R2014a
(Mathworks inc., USA). The functional images were
preprocessed with slice-timing correction and realignment to
the mean image. Thereafter, using the normalization parameters
obtained through the segmentation of the structural image
aligned with the mean functional image, the fMRI data was
normalized and resampled in 2 x 2 x 2 mm3 voxels. Finally, the
functional images were smoothed with an isotropic 6mm full-
width half-maximum Gaussian kernel.

Then potential confounding effects (i.e. the temporal
fluctuations of the white matter, the cerebrospinal fluid, and
the entire brain as well as six head motion parameters) were
linearly regressed out from the fMRI time series (22, 23). Here,
the fluctuation in each tissue class was determined from the
average time course of the voxels within a mask created by the
segmentation procedure of the T1 image. The mask for the white
matter was eroded by one voxel to consider a partial volume
effect. After these preprocessing steps, the scrubbing procedure
(24) was performed to exclude any volume (i.e., functional
image) with excessive head motions, based on the frame-to-
frame relative changes in time series data.

Calculation of Functional Connectivity
For each individual, the time course of fMRI data was extracted
for each of the 137 regions of interest (ROIs), anatomically
defined in the Brainvisa Sulci Atlas (BSA; http://brainvisa. Info)
(6, 24) covering the entire cerebral cortex without a cerebellum.
After applying a band-pass filter (0.008–0.1 Hz), the following
nine parameters were linearly regressed out: the six head motion
parameters from realignment, the temporal fluctuation of the
white matter, that of the cerebrospinal fluid, and that of the
entire brain. Pair-wise Pearson correlations between 137 ROIs
were calculated to obtain a matrix of 9,316 functional
connectivities for each participant.
TABLE 2 | Imaging protocols for resting-state fMRI.

Discovery cohort Replication cohort

Site Site 1 (HUH) Site 2 (HRC) Site 3 (HKH) Site 4 (COI) Site 5 (QST)
MRI scanner GE SignaHD x t GE SignaHD x t Siemens Spectra Siemens Verio Siemens Verio
Magnetic field strength (T) 3.0 3.0 3.0 3.0 3.0
Number of channels per coil 8 8 12 12 32
Field of view (mm) 256 x 256 256 x 256 192 x 192 212 x 212 240 x 240
Matri x 64 x 64 64 x 64 64 x 64 64 x 64 64 x 64
Number of slices 32 32 38 40 33
Number of volumes 143 143 107 240 204
In-plane resolution (mm) 4.0 x 4.0 4.0 x 4.0 3.0 x 3.0 3.3125 × 3.3125 3.75 x 3.75
Slice tickness (mm) 4.0 4.0 3.0 3.2 3.8
Slice gap (mm) 0.0 0.0 0.0 0.8 0.5
TR (ms) 2.0 2.0 2.7 2.5 2.0
TE (ms) 27.0 27.0 31.0 30.0 25.0
Total scan time (mm:ss) 5:00 5:00 5:00 10:00 6:52
Flip angle (deg) 90 90 90 80 90
Slice acquision order Ascending (Interleaved) Ascending (Interleaved) Ascending (Interleaved) Ascending Ascending (Interleaved)
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Data Standardization, Removal of
Nuisance Variables, and Feature
Selections
For functional connectivity data, we applied the Fisher z-
transformation to each correlation coefficient. We then linearly
regressed them on training subjects' ages, sex, and dummy
variables for each site. The resulting residuals of the regression
are used for the subsequent procedures as the features
controlling for age, sex, and site effects. We also used the
regression coefficients to remove nuisance variables such as
age, sex, and site from test subjects. Features like functional
connectivities were high-dimensional. We then used a rank-sum
test for dimensional reduction; we used the threshold of 0.05
unless noted. The procedures are summarized in Figure 1.

Classification Algorithms
We then applied machine learning classification using the above
features. We used ensemble learning (Random Forest and
AdaBoost), support vector machine (SVM), or sparse logistic
regression (SLR) (25) to classify depressed patients and healthy
controls, or melancholic patients and healthy controls. Ensemble
learning is a method to make a classifier by combining weak
classifiers. While Random Forest makes the decision based on
voting by parallel weak classifiers, AdaBoost combines weak
classifiers sequentially.

We implemented both ensemble learning methods using
MATLAB fitcensemble function and each decision tree for the
weak classifier was constructed using the standard CART
algorithm (26).

The hyperparameters adjusting tree depth (minimum leaf size
and the maximum number of splits), and the other
Frontiers in Psychiatry | www.frontiersin.org 4
hyperparameters such as the number of ensemble learning
cycles and learning rates were optimized using Bayesian
optimization described in the following section. Ensemble
learning has advantages in dealing with small sample size, and
high-dimensionality (27). SVM is a widely used classifier and
performs classification by finding the hyperplane that
differentiates the two classes. Types of the kernel and penalty
parameter were determined by the optimization in the following
section. SLR is a Bayesian extension of logistic regression in
which a sparseness prior is imposed on the logistic regression.
SLR has the ability to select features objectively that are related to
classifying depressive disorders (2, 7, 25).

Evaluation and Estimation of the
Hyperparameters of Classifiers
The performance of the classification was evaluated using Leave-
One-Subject-Out cross-validation, Leave-One-Site-Out cross-
validation within the discovery cohort or an independent
dataset from a replication cohort.

For Leave-One-Subject-Out cross-validation, one subject was
used for the test and the rest of the subjects were used for the
training and this process was repeated until all subjects were used
as test data. The hyperparameters of the AdaBoost (learn rate,
minimum observations per leaf, maximal number of decision
splits, and number of ensemble learning cycles), Random Forest
(minimum observations per leaf, maximal number of decision
splits, and number of ensemble learning cycles), and SVM (box
constraint (a regularization factor (often denoted as parameter
C), controlling maximum penalty imposed on margin-violating
observations), kernel scale (a parameter to scale the input
features), and kernel functions (gaussian, linear or polynomial)
FIGURE 1 | The procedure of the removal of site bias and feature selection. LOOCV Use one subject as test data and the remaining subjects as training data, and
repeat for all subjects LOSOCV Use subjects from one site as test data and subjects from the remaining three sites as training data, and repeat for all subjects
Independent site test Use subjects from four sites as training data and use subjects from the independent site as test data. In some cases, a part of data was used
for the removal of nuisance variables.
May 2020 | Volume 11 | Article 400
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were optimized with Bayesian optimization using the Gaussian
process with Expected Improvement acquisition function (28).
Random Forest, Adaboost, and SVM were implemented by using
MATLAB's fitcensemble and fitcsvm functions. Bayesian
optimization was implemented by OptimizeHyperparameters
option in these functions with default parameters.

For the optimization, the whole data was divided into 9-folds,
keeping an equal amount of diagnosis, gender, and site
combinations per fold. The optimization was performed using
the 8-folds with 8-folds cross-validation (the inner 7-folds are
used for the training and the remaining inner one-fold was used
for the validation). The test data was selected in the outer 1-fold.
The rest from outer 1-fold and the outer 8-folds were used for the
training of the classifier (7).

For Leave-One-Site-Out cross-validation, subjects from three
out of the four sites were used as the training data and subjects
from the remaining sites were used as test data. In the case that
an independent dataset was used as a test data, all subjects from
the four sites were used for training. For both cases, the
optimization of the hyperparameters was done using 8-folds
cross-validation within the training data.
RESULTS

We trained the classifier of the major depressive disorder using
functional connectivity as the features. Because of the high
dimensionality of functional connectivity, we selected the
features using a rank-sum test with only the training data.
Figure 2A shows the classification performance of AdaBoost,
Random Forest, SLR, and SVM with 0.05 threshold of the rank-
sum test. While SVM shows the best classification accuracy, SLR
did not show good accuracy. Then we focused on the SVM (the
best classifier in Figure 2A) and investigated the effect of the
threshold for the feature selection in terms of three indexes:
accuracy, sensitivity (the number of subjects classified as patients
divided by the number of patients), and specificity (the number
of subjects classified as healthy controls divided by the number of
healthy controls). The best performance was achieved
(accuracy = 73.3%; sensitivity = 74.3%; and specificity =72.3%)
Frontiers in Psychiatry | www.frontiersin.org 5
when the threshold for the feature selection was 0.05 (Figure
2B). More remarkably, the performance was fairly stable even if
we changed the threshold in the range between 0.0005 and 0.2,
and the tradeoff between sensitivity and specificity was always
solved well (Figure 2B).

We then did a permutation test in order to confirm that the
performance was significant. The diagnostic labels were
randomly permuted, and the performance of the classification
was evaluated. The results showed that the classification accuracy
was significantly higher than the change level for each algorithm
(Figure 3).

In order to investigate the effects of site bias on the
classification, the evaluation of classification was performed by
leave-one-site-out cross-validation. The classification accuracies
varied widely depending on the site (Table 3). The sensitivity and
specificity especially were highly dependent on the site, which
indicated that the classification was based on site bias rather than
the feature associated with depression.

Depression is heterogeneous. This could be the reason why
the classification performance was affected by the site rather than
the diagnostic label. We then focused on melancholic depression,
which is a subtype of major depressive disorder with biological
homogeneity (29–31). The classification performance between
melancholic patients and healthy controls was slightly higher
than the one between major depressed patients, including non-
melancholic patients and healthy controls (Figure 4). The
classifier classified the patients with non-melancholic
depression with an accuracy of about 75.3%. The tendency of
the accuracy depending on the algorithms was the same as in the
case of the patients with major depressive disorder vs healthy
controls. That is, SVM and ensemble learning showed good
performance, whereas SLR did not. Moreover, the performance
was evaluated by leave-one-site-out cross-validation. The
classification accuracies varied widely depending on the site
even without non-melancholic patients.

We then used subjects from the independent site (Figure 5).
We trained the classifier using subjects from four sites and tested
the classifier using subjects from the independent site. The
performance shows the classification was based on site bias
rather than the diagnostic label (Figure 5A). The decision
A
B

FIGURE 2 | The performance of the classification of depressed patients. (A) The SVM shows an accuracy of 73.3%, sensitivity of 74.3%, and specificity of 72.3%.
(B) The classification performance with different threshold of feature selection.
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boundary between patients and healthy controls obtained using
training data is different from the boundary between patients and
healthy controls of the test data. In order to overcome this
problem, we used a part of the healthy controls from the
independent site for regressing out the site, ages, and sex
information, and the remaining healthy controls and depressed
patients were used as test data. Note that the number of healthy
controls and depressed patients used for the test data were set to
be equal. Although the accuracy was 54.7%, this ingenuity
reduced site bias (Figure 5B). Furthermore, when we focused
on melancholic patients, the performance had improved
drastically (Figures 5D–F) and the accuracy was 71.9%.
Frontiers in Psychiatry | www.frontiersin.org 6
DISCUSSION

In this study, we proposed a method to reduce the site bias effect
and improve the classification accuracy of patients with major
depressive disorder for an independent test dataset. The most
effective improvement was achieved by the calibration using a
part of the independent dataset. Specifically, a part of the healthy
controls group was used for regressing out site bias. Furthermore,
when we focused on the classification between melancholic
depressed patients and healthy controls, the effect of the
calibration was further improved. In this case, SVM showed
the best performance.

Cooperation With Other Harmonization
Methods
There are some studies trying to overcome site bias. Some studies
used independent component analysis or sparse canonical
component analysis to obtain site-independent brain activity
(13). These methods are time-consuming, and it is possible that
important features which characterize patients with depression
are lost. On the other hand, regressing out is a simple way to
reduce site bias and retains all features. While we employed a
simple linear regression model for this purpose, it can be
A B

DC

FIGURE 3 | The permutation test. The diagnostic labels were randomly permuted for each subject and classification algorithms were applied, such as (A) random
forest, (B) AdaBoost, (C) SLR, (D) SVM. The procedure was repeated 500 times.
TABLE 3 | Leave-One-Site-Out Cross-Validation.

site site1 site2 site3 site4

accuracy 0.5 0.5 0.5 0.63
sensitivity 0 1 0 0.8
specificity 1 0 1 0.45
Subjects from three among four sites are used as the training data and their performance
was evaluated using subjects from the remaining site. Area under the Receiver Operating
Characteristic (ROC) Curve for Test Sites 1, 2, 3, and 4 are 0.71, 0.83, 0.66, and 0.73
respectively.
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A B

D E

C

F

FIGURE 5 | The improvement of the classification performance using the independent site. (A) All subjects from independent site data were used as test data.
(B) The performance of the classification after part of the group of healthy subjects (not used as either the training or test data) are used for the regressing out.
Because there are many combinations from which to choose healthy controls used for the regressing out, we randomly chose healthy controls for the regressing out,
with procedure was repeated 100 times. The error bar indicated the standard deviation. (C) Performance of several classification algorithms. (D-F) The same as
above but using only melancholic patients and healthy controls. (E) The rightmost bar is the accuracy rate that the melancholic classifier correctly classifies non-
melancholic patients as depressed patients.
A B

C

FIGURE 4 | The performance of classification of melancholic patients and healthy controls (A) Accuracy, sensitivity, and specificity of the random forest by LOOCV.
The rightmost bar is the accuracy rate that the melancholic classifier correctly classifies non-melancholic patients as depressed patients. (B) LOOCV performance of
melancholic patients' classification using other classification algorithms. (C) Leave-one-site-out CV performance of melancholic patients' classification. Area under the
ROC Curve for Test Sites 1, 2, 3, and 4 are 0.66, 0.5, 0.82, and 0.79, respectively.
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replaced by or combined with more sophisticated harmonization
methods, such as combat, traveling subject methods, or
generalized linear model (GLM) methods (1, 2, 14–18). Also, a
non-linear model may be possible as done in (32), depending on
the properties (i.e. the number of samples and sampling costs) of
available data sets. Deciding when and for what should be
selected among them is a future direction of this study.

Heterogeneity of the Depressive Disorder
Depressive disorder is known to be heterogeneous. The
melancholic depressive disorder is a typical and severe type of
disorder. This would be a reason why the classification
performance was improved when we focused on melancholic
patients. Some critics suggest that overfitting may happen in this
study because of subsampling a smaller number of subjects from
the whole dataset. We sincerely accept the possibility. However,
our study showed good performance even when we trained the
model with the data set excluding non-melancholic patients and
tested it with the independent data set including non-
melancholic patients (Figures 4B and 5E). The result indicates
that it is important to apply a data cleansing process such that
patients with atypical depression subtypes should be removed
from the training data set. This process may serve to reduce
uncertainty in the training data set to avoid the overfitting to
depression-irrelevant factors. Targeting other types of depressive
disorders would be future work. There are some studies about the
subtyping the depressive disorder by using biological markers
including functional connectivity (1, 6). If a new subtype of
depressive disorder that showed characteristic neural behavior is
found, the diagnosis for this subtype using machine learning
would be improved.

Factors Affecting Classification
Performance
In the preprocess of the fMRI data, we conducted global signal
regression (GSR). While the GSR can minimize global signal
drifts, it may cause an additional bias by moving FC distribution
to a negative direction (33–39). To investigate this possibility, we
tried our proposed method excluding GSR and compared it with
the method including GSR. As a result, the classification
performance did not change so much (Supplementary Figure
1). Even though it was minor in our dataset, we have to bear in
mind that GSR could be a factor to affect mult i-
site generalization.

We used Brainvisa Sulci Atlas to calculate the functional
connectivity according to (7). Different parcellation will lead to
different functional connectivity, resulting in a different
prediction result. On the other hand, the main aim of our
study is the generalization of developed diagnosis models
rather than how to develop the best model suitable for a
specific setting. To support this claim, we showed that our
model was able to adjust the decision boundary between
patients and healthy controls to improve the generalization
(Figure 5).

Finally, we should bear in mind that the condition of
medication may affect our classification performance. To
Frontiers in Psychiatry | www.frontiersin.org 8
minimize the medication effect, we designed this study so that
all patients underwent the fMRI scan before or immediately (less
than two weeks) after starting medication of selective serotonin
reuptake inhibitors (SSRIs). However, acute neural effect of
SSRIs was possible as reported in (40, 41), and we did not
completely control the medication effect. To overcome this
limitation, more sophisticated clinical trials will be required in
our future study.

Interaction Effects Between Sites and
Features
In this study, we did not consider the interaction between site
and other attributes such as age and sex. There is a possibility
that the removal of the confounding bias could be more efficient
if we consider the interaction. Actually, when we performed
ANOVA for the interaction, the distribution of p-values of all
FCs significantly differed from uniform distribution (Chi-square
goodness-of-fit test, Supplementary Figure 2), implying that the
interaction would be not neglectable. However, the inclusion of
interaction increases the number of regression coefficients, which
possibly leads to larger generalization errors, especially when the
number of participants for calibration is limited. Assuming this
scenario, we adopted a fixed effect regression in this study.

For Clinical Diagnosis
To avoid overfitting, we employed a univariate feature selection
method using a rank-sum test and filtered out non-significant
FCs for the classification. While the method combined with a
SVM classifier achieved the best generalization performance in
our study, we should not conclude that all the selected FCs were
the biomarkers crucial for depression diagnosis: The univariate
feature selection method is apt to increase the risk of false
positive more than the pre-designed significance level (i.e. the
p-value threshold). We expected that SLR could be an alternative
approach to coping with both generalization and feature
selection simultaneously. However, the result was negative.
Accordingly, the reasonable strategy to discover necessary and
sufficient FCs for depression diagnosis is still an open question.

When we consider an application for clinical diagnosis, site bias
is a large problem. If traveling subjects, who visit multiple sites to
undergo fMRI with the same protocol, are available, we would be
able to perform more effective calibration and thereby achieve
better performance for the diagnosis of patients with MDD (2).
Even if traveling subjects are not available, our proposed procedure
would be helpful. Site bias should be calibrated using data from
healthy subjects before clinical diagnosis, using the fMRI scanner
used for the clinical diagnosis, which would be a more practical
way for an application at a novel site.
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