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Abstract

Generalised estimating equations with the sandwich standard-error estimator provide a promising method of analysis

for stepped wedge cluster randomised trials. However, they have inflated type-one error when used with a small number

of clusters, which is common for stepped wedge cluster randomised trials. We present a large simulation study of binary

outcomes comparing bias-corrected standard errors from Fay and Graubard; Mancl and DeRouen; Kauermann and

Carroll; Morel, Bokossa, and Neerchal; and Mackinnon and White with an independent and exchangeable working

correlation matrix. We constructed 95% confidence intervals using a t-distribution with degrees of freedom including

clusters minus parameters (DFC-P), cluster periods minus parameters, and estimators from Fay and Graubard (DFFG),

and Pan and Wall. Fay and Graubard and an approximation to Kauermann and Carroll (with simpler matrix inversion)

were unbiased in a wide range of scenarios with an independent working correlation matrix and more than 12 clusters.

They gave confidence intervals with close to 95% coverage with DFFG with 12 or more clusters, and DFC-P with 18 or

more clusters. Both standard errors were conservative with fewer clusters. With an exchangeable working correlation

matrix, approximated Kauermann and Carroll and Fay and Graubard had a small degree of under-coverage.
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1. Introduction

Many small sample corrections are available for generalised estimating equations1 (GEE) with the sandwich
standard-error estimator,2–7 but there has been limited research on which are appropriate for use in stepped
wedge trials (SW-CRTs) with a binary outcome.
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An SW-CRT is a type of cluster randomised trial (CRT). Groups of individuals, known as clusters, are

randomised to different sequences. The sequence dictates the time at which clusters will switch from a control

condition to receive the intervention (Figure 1). In practice, SW-CRTS often collect binary outcomes and ran-

domise a small number of clusters: a recent systematic review indicated that 75% of trials randomised 23 or fewer

clusters.8

Analysis of SW-CRTs requires consideration of the correlation between observations in each cluster. The

strength of correlation may depend on the timing of observations within clusters, for example correlation

can be stronger between observations from the same cluster collected closer together in time.9 GEE, which

estimate population average effects, together with the sandwich standard-error estimator account for this corre-

lation and are asymptotically robust to misspecification of correlation structures.1,10 This is useful in a trial

setting, where analysis methods must be prespecified often with little information to guide the choice of correla-

tion structure.
With a small number of clusters, the standard-error estimates from GEE with sandwich standard-errors are

biased, and the variability in the estimated standard errors means than confidence intervals are too narrow when

constructed using a normal distribution.11 A rule of thumb for parallel CRTs is that 40 clusters are required to

avoid these issues,12 and this limits the utility of GEE for CRTs.
Many corrections have been developed to improve estimation of sandwich standard-errors in finite sam-

ples,2–5,7 and confidence intervals can be estimated using a t-distribution rather than a normal distribution to

allow for the standard-error variability; several suggestions for the degrees of freedom (DF) have been pub-

lished.3,6 The performance of these corrections is an area of active research in the context of longitudinal

data,13,14 parallel CRTs,15,16 and SW-CRTs,17,18 and many of these papers have shown that GEE can be used

with as few as 10 clusters using these corrections. However, research gaps remain for SW-CRTs, such as perfor-

mance of the corrections with a binary outcome and varying cluster size.
In this paper, we begin by reviewing the literature studying several of the corrections suitable for SW-CRTs.

We report the results of an extensive simulation study comparing the performance of these standard-error

corrections and several DF estimators in the context of SW-CRTs with a binary outcome. We also assess whether

GEE are robust to misspecification of the working correlation structure in this context. We provide guidance on

which are suitable methods in this setting and demonstrate use of the methods under study in an illustrative

example.

Figure 1. Trial designs used in the simulation study. SW-CRTs with no baseline period and (a) three or (b) six sequences. Coloured
cell¼ intervention, white cells¼ control.
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2. Generalised estimating equations with small-sample correction

There have been several corrections published to improve the performance of GEE with sandwich standard errors

in small samples. In this paper we consider the following standard-error corrections and the use of a t-distribution.

Details of these methods are given in Supplementary text 1.

2.1 Sandwich standard-error corrections

We consider several modifications that aim to reduce bias in the sandwich standard errors:

• Kauermann and Carroll (KC)4

• Fay and Graubard (FG)3

• Mancl and DeRouen (MD)5

• Morel, Bokossa, and Neerchal (MBN)7

• Mackinnon and White (MW)2

Some additional corrections were excluded because of computational complexity with varying cluster size that

will limit their utility in CRTs.6,14,19,20

2.2 Degree-of-freedom corrections

In smaller samples, as well as correcting the standard-error estimator, p-values and confidence intervals may need

to utilise the t-distribution to account for variability in the standard error estimation.
We consider the following estimators for t-distribution degrees of freedom (DF):

• Satterthwaite-type DF accounts explicitly for variability in the standard-error estimator. We consider estima-

tors from Pan and Wall (DFPW) 21 and Fay and Graubard (DFFG).
3

• Simpler estimators for the DF can be derived from the trial design. A common option is to use clusters minus

parameters (DFC-P). Further trial design DF considered in this paper are described in section 4.

3. Literature review

The simplest correction, MW, has been found to give good standard error bias correction with a common cluster

size in CRT and longitudinal data settings, leading to well-controlled type-one error when combined with

DFC-P.
15,22 However, it has not been studied in the SW-CRT setting. The performance is similar regardless of

working correlation matrix.13

KC has been found to give standard errors with little bias in longitudinal data settings,14 CRTs,23 and SW-

CRTS.17 Type-one error and confidence interval coverage have been well maintained with DFC-P, including

variable cluster size with a coefficient of variation up to 0.6.15,18 Type-one error has often been inflated with

the use of DFInf
13,15,17,23 and DFPW,

13 but type-one error has sometimes been maintained with DFInf with

common cluster size.24 Performance is similar regardless of working correlation matrix.13,17 We also identified

variation in the expression17 and implementation25–27 of this correction, with approximations being used by

some.14,28

Scott et al. show that FG is a simplification of KC.17 The performance of FG has been less clear. FG has been

shown to give standard errors with low bias for SW-CRTs,17 but to overcorrect standard errors in a longitudinal

setting with small cluster size.14 For SW-CRTs, type-one error and confidence interval coverage have been well

maintained with DFC-P and DFFG.
17,18 For CRTs, type-one error and confidence interval coverage have been well

maintained with DFInf
24 and DFC-P,

15 but conservative with DFFG.
16 For longitudinal data, DFPW and DFInf

have both resulted in inflated type-one error.13 Performance is similar regardless of working correlation

matrix.13,17

MD has consistently been found to over correct the standard errors in longitudinal data,19,29 CRTs,23,30 and

SW-CRTs.17 Generally, p-values and confidence intervals constructed with DFInf
15,17,18,23,24,30 and DFPW

13,14,30

have had close to the correct size, although there have been exceptions to this.13 Conservative type-one error and

confidence intervals have been observed with DFC-P.
15,18,30 Performance may be improved with use of an inde-

pendent working correlation matrix.19
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MBN has been found to overcorrect standard errors for SW-CRTS.17 Type-one error remained inflated and
confidence interval coverage remained low with DFInf.

13,17,24,31 Other DF have led to conservative type-one error
in longitudinal settings.13,14 In the CRT settings, Li and Redden15 found that DFC-P gave conservative type-one
error with common cluster size, and inflated type-one error with varying cluster size. Performance is similar
regardless of working correlation matrix.13,17

4. Simulation study methods

We conducted a simulation study to compare these small sample corrections. Simulation study parameters were
selected to represent the most common characteristics of SW-CRTs, based on several recent reviews.8,32,33

Scenarios simulated are summarised in Table 1 and further details are given in Supplementary Text 2.
Simulations were conducted in R v3.5.34

All combinations of parameters were generated unless otherwise stated, and we simulated 1000 datasets for
each scenario. This gave 95% probability of estimating confidence-interval coverage between 93.6% and 96.4%
when there is true 95% coverage.

The simulations were conducted in two phases. Phase one included 64 scenarios with 18 clusters to identify the
small-sample corrections that gave good coverage in the widest range of scenarios. Phase two involved a wider
range of 690 scenarios with a smaller number of small sample corrections chosen based on the results of
phase one.

4.1 Data generation process

4.1.1 Method used to generate binary data

In order to simulate binary data specifying the marginal effects, we used the method of Emrich and Piedmonte.35

Observations are sampled from a multivariate-normal distribution with zero means. The covariance matrix for the
multivariate-normal distribution is determined using an algorithm, so that the dichotomised data will have the
desired correlation structure on the proportion scale. The sampled values are dichotomised at values that give
the required marginal probabilities.

4.1.2 Prevalence and intervention effects

We simulated a repeated cross-sectional design with data collected at six measurement occasions. Individuals were
each observed once and different individuals were observed in each measurement occasion. We simulated an

Table 1. Summary of data generation scenarios, see Supplementary Text 2 for more details.

Parameter Phase one Phase two

Control prevalence in the

first measurement occasion

30% 30%

Time trend Linear, odds ratio¼ 1.05 for

each measurement occasion

(6 occasions for all trial designs)

Linear, odds ratio¼ 1.05 for

each measurement occasion

(6 occasions for all trial designs)

Intervention effect Odds ratio¼ 1.3 Odds ratio¼ 1.3

ICC within measurement occasion (q) 0.01, 0.1 0.01, 0.05, 0.1

Correlation structures between

measurement occasions

Exchangeable Exchangeable

AR(1) r¼ 0.6 AR(1) r¼ 0.6

AR(1) r¼ 0.8 AR(1) r¼ 0.8

AR(1) r¼ 0.8 with 50% less

correlation between control

and intervention

AR(1) r¼ 0.8 with 50% less

correlation between control

and intervention

Number of sequences 3,6 3,6

Number of clusters (C) 18 6,12,18, 24,

42,48, 54

Cluster size 24, 60 24, 60,300a

Coefficient of variation (CV) of cluster size 0, 0.4 0, 0.4

aThe scenario with cluster size of 300 was only run with exchangeable within cluster correlation, 12, 24, and 42 clusters, and no variability in

cluster size.
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outcome prevalence of 30% (odds¼ 0.43) in the control condition in the first measurement occasion. This

increased with a linear (on the log scale) trend with OR¼ 1.05 at each measurement occasion, so that by the

sixth occasion, the outcome prevalence in the control condition would have been 37% (odd-

s¼ 0.43� 1.055¼ 0.55). This did not change with the trial design to facilitate comparability of the underlying

data. The intervention effect had OR¼ 1.3. These characteristics were the same in both phases of the simulations.

4.1.3 Correlation structures

In phase one of the simulations, we simulated data with either a high (0.1), or low (0.01) intracluster correlation

coefficient (ICC) within each measurement occasion on the proportion scale (q in Supplementary Text 2). For

phase two, we introduced an additional medium (0.05) ICC.
The correlation structures were the same in both phases of the simulations. Within each cluster and measure-

ment occasion, observations were exchangeable on the proportions scale. We simulated four within-cluster cor-

relation structures to vary the correlation between the six measurement occasions:

• Exchangeable: All observations within a cluster were equally correlated to one another.
• Autoregressive (AR(1)) with autoregressive parameter r0¼0.6: The correlation between observations in the

same cluster but different measurement occasions reduced by 40% with each successive occasion.
• AR(1) r0¼0.8: The correlation between observations in the same cluster but different measurement occasions

reduced by 20% with each successive occasion.
• AR(1) r0¼0.8þ 50% reduction in correlation between control and intervention observations: The correlation

between observations in the same cluster reduced by 20% with each successive measurement occasion, and

there is an additional 50% reduction in correlation between observations where one is in the control condition

and the other the intervention condition. This could occur if the intervention effect varied between clusters.

4.1.4 Trial designs

In both phases, we simulated data from SW-CRT designs with either three or six sequences, as shown in Figure 1.

In both designs, there was no period with all clusters in the control as inclusion of this period is inefficient.36,37 In

the design with six sequences, the trial periods coincided with the measurement occasions. In the design with three

sequences, each trial period contained two measurement occasions.
In phase one, we simulated trials with 18 clusters. In phase two, we simulated trials with 6, 12, 18, 24, 42, 48,

and 54 clusters; this allowed us to explore the performance of the corrections with a range of small trials and

explore the behaviour of uncorrected GEE for larger trials.
In both phases, we simulated trials with common and varying (coefficient of variation (CV)¼ 0.4) cluster size.

Varying cluster size was sampled from a negative binomial distribution with the required mean and standard

deviation so that each measurement occasion had a minimum of two observations for each cluster. In phase one,

we simulated clusters with 24 or 60 observations per cluster; where clusters varied in size, this was the mean. A

cluster size of 24 corresponds to four observations in each measurement occasion, and a cluster size of 60

corresponds to 10 observations in each measurement occasion. In phase two, we introduced a limited number

of scenarios with 300 observations per cluster (50 observations per measurement occasion). To maintain a feasible

computational time, this scenario was only introduced with common cluster size, exchangeable correlations, and

12, 24, or 42 clusters.

4.1.5 Analysis methods

All datasets were analysed at the individual level using GEE with sandwich standard errors with both an inde-

pendent and exchangeable working correlation matrix using the R package geepack 38. The GEE used a binomial

distribution with logistic link. The models included an intervention effect and a period effect, with a category for

each trial period.
In phase one, all corrected sandwich estimators described in section 2.1 were calculated using the R package

geesmv 25 with default values for boundary and adjustment values where relevant. For the two standard error

corrections that consistently gave the least biased standard errors, confidence intervals were created using a

normal distribution and t-distribution with the following DF:

• Pan and Wall (DFPW)21: calculated by the R package geesmv V1.3.
• Fay and Graubard (DFFG)

3: calculated by the R package saws V0.9-6.1.

Thompson et al. 429



• Clusters minus parameters (DFC-P): With the trial designs we used, the number of parameters is number of

sequencesþ 1. In scenarios with one cluster randomised to each sequence, this will give a negative result, which

we replaced with 1 DF.
• Cluster periods minus parameters (DFCP-P): Uses cluster periods as the observation unit, and parameters are as

above.
• Cluster periods minus parameters with clusters regarded as additional parameters (DFCP-C-P): This is based on

an ANOVA-style decomposition with clusters as parameters.

The two selected standard errors and two DF that resulted in confidence interval coverage nearest to the 95%

level were carried forward from phase one to phase two.

4.1.6 Post-hoc analysis method. Our simulation study identified problems with the stability of the KC standard

error from the geesmv package. To address this problem, we repeated the simulation using an approximation to

the KC correction (KC-approx) suggested by Gallis et al.28 and implemented in xtgeebcv in Stata. More details

are given in Supplementary text 1.

4.2 Analysis of simulation results

We calculated convergence proportions, standardised bias of intervention effect estimates, and the relative error

of standard errors ([mean estimated standard error]/[standard deviation of the intervention effect estimates across

simulations]� 1). We calculated the mean and standard deviation of DFPW and DFFG; other DF were determined

by the trial design.
We refer to 95% confidence interval coverage (the proportion of results with 95% confidence intervals that

contained the true effect) below 93.6% as low coverage or under covered, and coverage above 96.4% as high

coverage or over covered. Power was calculated as the proportion of datasets with p< 0.05 against the null

hypothesis of no intervention effect.
We used linear regression models to quantify the association between simulation scenario characteristics and

analysis method performance measures such as bias and coverage.

5. Simulation study results

5.1 Phase one

Few analyses failed to converge (<4% in any scenario), and the intervention effect estimate bias was small in all

scenarios (�10% standardised bias in any scenario, Supplementary Table 1 and Supplementary Figure 1).

5.1.1 Standard error bias

Figure 2 shows histograms of the relative error of standard errors in each scenario. Uncorrected standard errors

were underestimated by an average of 9% and 10% with a working independent and exchangeable correlation

matrix, respectively. All corrections gave standard errors closer to the empirical standard deviation. Overall, KC

and FG gave the most accurate standard errors and were the two corrections carried forward in the simulations.

Below, we provide details of the performance of each correction and Supplementary Table 2 shows regression

analyses for each correction.
Kauermann and Carroll: With an independent working correlation matrix, KC standard errors were always

within 10% of the empirical standard deviation. With an exchangeable working correlation matrix, KC were on

average unbiased, but became more variable: KC overcorrected standard errors by >10% in 13/64 (20%) sce-

narios: this occurred mostly (11/13) with exchangeable or AR(1) r¼ 0.8 correlations, so that the correlation

structure was correctly or close to correctly specified, (Supplementary Figure 2) and with ICC¼ 0.1

(Supplementary Figure 3). Bias was similar for scenarios with common and varying cluster size

(Supplementary Table 2).
Fay and Graubard: With an independent working correlation matrix, the FG standard errors were within 10%

of the empirical standard deviation in all scenarios. With an exchangeable working correlation matrix, standard

errors were undercorrected with ICC¼ 0.1 but close to empirical values with ICC¼ 0.01 (mean¼�1% ICC¼ 0.01

vs. �5% ICC¼ 0.1, Supplementary Figure 3).

430 Statistical Methods in Medical Research 30(2)



Mancl and DeRouen: MD standard errors overcorrected by on average 6%. Over correction was greater when

cluster size varied (8% CV¼ 0.4 vs. 5% CV¼ 0, Supplementary Figure 4) and with low ICC (8% ICC¼ 0.01 vs.

5% ICC¼ 0.1, Supplementary Figure 3).
Morel, Bokossa, and Neerchal:MBN standard errors overcorrected by on average 6% with three sequences and

13% with six sequences (Supplementary Figure 5). Bias was on average 3% larger for common cluster size than

varying cluster size (Supplementary Table 2).
Mackinnon and White: MW standard errors followed a similar trend to MBN standard errors, over correcting

on average 3% with three sequences and 16% with six sequences (Supplementary Figure 5). Bias was on average

4% larger for common cluster size than varying cluster size (Supplementary Table 2).

5.1.2 Degrees of freedom

Table 2 summarises estimated DF with FG standard errors and an independent working correlation

matrix. Results were similar with different analysis methods. Supplementary Table 3 shows factors associated

with larger DF.
DFFG were of similar magnitude to DFC-P. There was little variability within scenarios (mean standard devi-

ation (SD)¼1.2).
DFPW were larger than DFFG and had large variability within scenarios (mean SD¼ 61.8).

5.1.3 Coverage of 95% confidence intervals

Figure 3 shows histograms of 95% confidence interval coverage for KC and FG standard errors by working

correlation matrix and DF. With both FG and KC standard errors, coverage was consistently closer to 95% using

a t-distribution with either DFC-P or DFFG than other DF (Supplementary Table 4). These four analysis methods

were continued forward to phase two. Other DF resulted in low coverage.
With an independent working correlation matrix, FG and KC standard errors gave consistent coverage with

both DFC-P and DFFG. With an exchangeable working correlation matrix, coverage largely followed the patterns

of bias in standard errors. KC standard errors had variable coverage due to over correction of standard errors in

some scenarios: this was unaffected by choice of DF. FG standard errors had good coverage with low ICC and

either DF (mean coverage 95.1% and 94.8% with DFFG and DFC-P respectively), but a small degree of under
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Figure 2. Phase one: Histogram of relative error of sandwich standard errors with each small sample correction (rows: Uncorrected
(Uncorr), Kauermann and Carroll (KC), Fay and Graubard (FG), Mancl and DeRouen (MD), Morel, Bokossa, and Neerchal (MBN),
and Mackinnon and White (MW)) for an independent and exchangeable working correlation matrix (columns). All scenarios have 18
clusters. Grey dotted lines indicate 0% error and �10% error.
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coverage with high ICC and either DF due to undercorrection of standard errors (94.3% and 94.5% with DFFG

and DFC-P, respectively).

5.2 Phase two

In phase two, we widened the range of scenarios to include between 6 and 54 clusters, and a larger cluster size of

300, and only considered KC and FG standard errors with DFC-P and DFFG. Similar to phase one, non-

convergence was uncommon: <5% failed to converge in any scenario. There was no indication of

intervention effect estimate bias in any scenario (�11% standardised bias, Supplementary Table 5 and

Supplementary Figure 6).

5.2.1 Standard error bias

Figure 4 shows relative error of KC and FG standard errors (also see Supplementary Table 6).
Kauermann and Carroll: With an independent working correlation matrix, KC standard errors remained unbi-

ased with as few as six clusters. There was a small increase in the variability of estimates with fewer clusters. With

an exchangeable working correlation matrix, the variability of KC standard errors increased with fewer clusters

(Figure 4). The over-correction with an exchangeable working correlation matrix and a true exchangeable cor-

relation structure became more severe with a cluster size of 300 (mean 91% relative error).
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Figure 3. Phase one: Histogram of 95% confidence interval coverage of Kauermann and Carroll (KC) and Fay and Graubard (FG)
standard errors and each working correlation matrix (columns) with each t-distribution degree of freedom estimator (rows, infinite
(Inf, a normal distribution), Fay and Graubard (FG), Pan and Wall (PW), clusters minus parameters (C-P), Cluster periods minus
parameters (CP-P), Cluster periods minus clusters minus parameters (CP-C-P)). Grey dotted lines indicate 93.6%, 95%, and 96.4%
coverage.

Table 2. Phase one: The mean of the within scenario mean and standard deviation (SD) of all degrees of freedom (DF) by number of
sequences.

Sequences DFC-P DFCP-P DFCP-C-P DFFG mean (SD) DFPW mean (SD)

3 14 50 33 13 (1.2) 69 (70.3)

6 11 101 84 12 (1.2) 53 (52)

Note: All calculated with Fay and Graubard standard errors and an independent working correlation matrix.
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Fay and Graubard: With an independent working correlation matrix, FG standard errors had minimal bias

with 12 clusters, but were on average 4% larger than the standard deviation of the intervention effect estimates

with six clusters. With an exchangeable working correlation matrix, they became more variable with fewer

clusters. The under correction with ICC¼ 0.1 became more severe with fewer clusters (mean¼�7% with 12

clusters and �12% with 6 clusters), and overcorrection was seen with ICC¼ 0.01 (mean¼ 2% with 12 clusters and

13% with 6 clusters, Supplementary Figures 7).
Uncorrected: Bias of uncorrected sandwich standard errors increased with fewer clusters, but some remained

with as many as 54 clusters: they were on average 14% smaller than the standard deviation of the intervention

effect estimates with 12 clusters and 3% smaller with 54 clusters (Supplementary Figure 8).

5.2.2 Degrees of freedom

With six clusters, DFFG was on average two DF larger than DFC-P. As the number of clusters increased, the

difference reversed direction (Supplementary Figure 9): with 42 clusters, DFFG was on average four DF smaller

than DFC-P.

5.2.3 Coverage of 95% confidence intervals

Coverage was consistently close to 95% with DFFG, an independent working correlation matrix, and either

standard error (Figure 5 and Supplementary Table 7). DFC-P also performed well with 18 or more clusters

with six sequences, and 12 or more clusters with three sequences.
With an exchangeable working correlation matrix, KC standard errors gave variable but conservative cover-

age: Only 9/690 (1%) scenarios had low coverage with DFFG. With FG standard errors, under correction of
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or 54 clusters (rows). Grey dotted lines indicate 0% error and �10% error.
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standard errors consistently resulted in coverage slightly less than 95%: 54/690 (8%) scenarios had low coverage

with DFFG.
The uncorrected GEE gave confidence intervals with low coverage in all scenarios with 24 or fewer clusters

(Supplementary Figure 10). With 54 clusters, confidence intervals based on a normal distribution had low cov-

erage in 84/192(44%) scenarios and coverage remained low using DFC-P (32/192[26%]) or DFFG (21/192[11%]).

5.2.4 Power

With an independent working correlation matrix, KC and FG standard errors led to similar power (median 0.5%

more power with KC IQR 0% to 0.9%, Supplementary Figure 11). DFC-P led to median 4% lower power than

DFFG with six clusters, 1% lower with 12 clusters, and similar power with 18 or more clusters (Supplementary

Figure 12).
With KC standard errors and DFFG, an exchangeable working correlation matrix led to similar power to an

independent working correlation matrix (median 0.4% more power with an independent working correlation

matrix, IQR -1.3% to 0.4%, Supplementary Figure 13).
With FG standard errors and DFFG, an exchangeable working correlation matrix led to an average 1.8%

higher power than an independent working correlation matrix with 24 observations per cluster, 5.2% higher with

60 observations per cluster, but 39.6% higher power with 300 observations per cluster (Supplementary Figure 13).

5.3 Post-hoc KC approximation

With an independent working correlation matrix, KC-approx was similar to KC and showed minimal bias with as

few as six clusters (Supplementary Figure 14). This lead to confidence intervals with close to 95% coverage with 12

or more clusters and over coverage with six clusters with either DFFG or DFCMP.
With an exchangeable working correlation matrix, KC-approx standard errors had similar performance to FG

standard errors, and did not suffer from the overcorrection seen with KC standard errors (Supplementary Figure

14). Standard errors showed little bias with 42 or more clusters, but were undercorrected with 24 or fewer clusters,

with the degree of undercorrection increasing with fewer clusters (mean under correction¼ 2% with 24 clusters

and 10% with 6 clusters). Despite this, confidence interval coverage was close to nominal levels when the
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dotted lines indicate 93.6%, 95%, and 96.4% coverage.
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correlation structure was correctly specified (4/186 [2%] scenarios had under covered confidence intervals

with DFFG). However, confidence interval coverage was slightly low in scenarios with reduced correlation

between control and intervention observations (13/168 [8%] scenario with low coverage, Supplementary

Figures 15 and 16).
Power followed similar patterns to FG with small increase in power using an exchangeable working correlation

structure with 24 and 60 observations per cluster (mean 1.5% and 4.0% higher), but larger differences with 300

observations per cluster (mean 37.0% higher).

6. Illustrative example

To explore the impact of choice of analysis, we will look at an example trial analysed with each method inves-

tigated in this study. Trajman et al.39 conducted a trial comparing a new TB diagnostic test Xpert MTB/RIF to

the commonly used smear microscopy test. We will focus on the impact of the type of test on the proportion of

cases with a laboratory confirmation of diagnosis, which was a secondary outcome of the trial. This is an example

of a continuous recruitment design with individuals sampled throughout the trial and one outcome collected from

each.40 The trial randomised 14 laboratories (clusters) into seven sequences. In the first month of the trial, all

laboratories were using smear microscopy. Then each month, two laboratories switched to using the new tests, so

that all laboratories were using the new diagnostic test in the eighth month of the trial. There were a total of 3924

observations, with a mean of 136 observations per cluster and CV in cluster size of 0.48.
Table 3 shows the results of this trial analysed with all GEE analyses considered in this simulation study. Each

model included a categorical variable for month to adjust for time and a variable for intervention status.
Standard error inflation by the small sample corrections reflected the results of the simulation study. FG

standard errors with an exchangeable working correlation matrix gave the smallest correction (7% inflation of

the uncorrected standard errors). The largest correction was by the KC standard errors with an exchangeable

Table 3: Example TB diagnostic trial analysed with each GEE method.

Working correlation matrix

Independent Exchangeable

Odds ratio estimate 1.65 1.51

Standard error (percentage increase compared to uncorrected standard error)a

Uncorrected 0.1684 0.1115

FG 0.2056 (þ22%) 0.1196 (þ7%)

KC 0.1891 (þ12%) 0.1948 (þ75%)

MD 0.2198 (þ30%) 0.1395 (þ25%)

MBN 0.1956 (þ16%) 0.1422 (þ28%)

MW 0.2818 (þ67%) 0.1865 (þ67%)

KC approximation 0.1921 (þ14%) 0.1245 (þ12%)

Degrees of Freedom

Pan and Wallb 70.1 17.9

Fay and Graubardb 7.6 10.5

Clusters minus parameters 5 5

Cluster periods minus parameters 103 103

Cluster periods minus parameters with

clusters regarded as parameters

89 89

(95% CI) p-value

Uncorrected (1.19, 2.30) p¼ 0.003 (1.22, 1.88) p< 0.001

FGþDFFG (1.02, 2.66) p¼ 0.04 (1.16, 1.97) p¼ 0.006

FGþDFC-P (0.97, 2.80) p¼ 0.06 (1.11, 2.06) p¼ 0.02

KC approx.þDFFG (1.06, 2.58) p¼ 0.03 (1.15, 1.99) p¼ 0.007

KC approx.þDFC-P (1.01, 2.71) p¼ 0.05 (1.10, 2.08) p¼ 0.02

FG: Fay and Graubard; KC: Kauermann and Carroll; MD: Mancl and DeRouen; MBN: Morel, Bokossa, and Neerchal; MW: Mackinnon and White; GEE:

Generalised estimating equations.
aStandard errors given on the log odds ratio scale.
bUsing Fay and Graubard standard error.
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working correlation matrix (75% inflation of the uncorrected standard errors) demonstrating the overcorrection
of standard errors observed in the simulation study. The KC approximation gave a smaller inflation (14%
increase from the uncorrected standard errors). MW standard errors were also large compared to the other
corrected standard errors.

The most conservative DF are given DFC-P (DFC-P¼5). Consistent with the simulation study, DFFG were
slightly larger (DFFG¼7.6 with an independent and 10.5 with an exchangeable working correlation matrix). All
other DFs were larger; most were over 70.

Table 3 also shows confidence intervals and p-values with the methods found to work consistently well by the
simulation study (FG and KC-approx standard errors, with DFFG and DFC-P) and with no small-sample cor-
rection. The uncorrected analyses conclude that there is strong evidence that the new test increased the odds of a
confirmed diagnosis (p¼ 0.003 and p< 0.001 with an independent and exchangeable working correlation matrix,
respectively). With an independent working correlation matrix, all corrected methods lead to similar conclusions
(0.03� p� 0.06) with confidence intervals with a similar width. With an exchangeable working correlation matrix,
all methods led to some evidence of an effect, DFFG leading to greater evidence (p¼ 0.02 with DFC-P and
p¼ 0.007 for FG and p¼ 0.009 for KC-approx with DFFG) .

7. Discussion

We found that, with as many as 54 clusters, uncorrected sandwich standard errors were smaller than the standard
deviation of the intervention effect estimates across simulations leading to lower than nominal 95% confidence
interval coverage. KC and FG standard errors performed well to mitigate this bias when used with an independent
working correlation matrix, and results were robust to misspecification of the working correlation matrix. Use of
a t-distribution with DFFG gave consistently good confidence interval coverage with at least 12 clusters, and
DFC-P gave similar results with at least 18 clusters. Both DF became conservative with fewer clusters.
Interpretation of results with an exchangeable working correlation matrix is less clear. KC standard errors
required use of an approximation. A small amount of bias remained with FG standard errors leading to coverage
less than 95%. An exchangeable working correlation matrix gave higher power than an independent working
correlation matrix with 300 observations per cluster, but similar power with smaller clusters.

We found that KC standard errors were unbiased when used with an independent working correlation matrix
with cluster size from 24 to 300, CV of cluster size 0 to 0.4, ICC from 0.01 to 0.1, across different true correlation
structures, with 3 or 6 sequences, and with as few as 12 clusters. These findings are consistent with previous
research that reported good overall performance.13,16–18,24 With an exchangeable working correlation matrix, we
found that KC were highly variable in some scenarios due to instability in the matrix inversion required by this
correction.14,28 The approximation we tested, also used in xtgeebcv in Stata,28 corrected this instability, with a
small cost to bias correction: similar to the FG standard errors, a small bias remained with 24 clusters or fewer.
Other CRT and SW-CRT simulations have not encountered the problem of instability with similar cluster size
and ICC without describing the use of alternative calculations,18,23 although this could be due to differences in
implementation that have not been reported. Our results highlight the importance of the implementation of this
correction. Other solutions to the complex inversion such as singular value decomposition (used by the SAS
glimmix procedure 26) may have better performance than the methods we explored.

We found that FG standard errors were unbiased with an independent working correlation matrix with cluster
size from 24 to 300, CV of cluster size from 0 to 0.4, ICC from 0.01 to 0.1, across different true correlation
structures, with three or six sequences, and with as few as 12 clusters. We observed a small bias in standard errors
when used with an exchangeable working correlation matrix leading to a small degree of under coverage of
confidence intervals. Previous studies have concluded that FG standard errors perform well in similar scenari-
os.13,16–18,24 The small size of this bias and impact on confidence interval coverage is likely why the under cor-
rection has not previously been reported. Consistent with our findings, Scott et al. and Leyrat et al. observed
conservative confidence interval coverage and type-one error, respectively, with FG and DFFG and a very small
number of clusters16,17 in SW-CRTs and CRT, respectively.

Our finding that KC and FG provide more consistent standard error estimates with an independent working
correlation matrix is novel in the literature. We also found that this had limited impact on power for KC with any
cluster size, and FG with median to small cluster size, but a large impact on power for FG with large clusters. The
KC findings are contrary to the literature on GEE with sandwich standard errors that suggest power will be higher
the closer the working correlation structure is to the true correlation structure.41 These comparisons of power
should be viewed with some caution, as some of the difference will be mediated by the bias in standard errors with
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an exchangeable working correlation matrix. The drawback to assuming independence is that a separate analysis

is required to estimate the correlation parameters, which CONSORT guidelines recommend reporting.42

Overcorrection of MD, MW, and MBN standard errors has also been reported elsewhere.15,17,23,24 Where

others have found appropriate type-one error and confidence interval coverage using MD, this may be explained

by the choice of DFInf
15,17,18,23,24,30 and DFPW.13,14,30 Our findings do not support the use of an average of KC

and MD standard errors as suggested by others14: our results imply that this would result in standard errors that

are too large. For MBN and MW standard errors, contrary to findings for parallel CRTs,15,22,24 we observed

overcorrection with common cluster size as well as varying cluster size, and moreover, the bias was larger with

common cluster size.
We have also given a detailed comparison of the performance of DFFG and DFPW in comparison to simpler

estimators based on the trial design.
DFPW performed poorly: we found large variability in the estimates, a property that has not been examined in

other simulation studies that have included this method.6,43

DFFG gave less variable estimates than DFPW and provided the most robust confidence interval coverage of the

DF we considered. Others have also found that this method performs well.3,17 We found that DFFG were similar

to DFC-P with 18 or more clusters and so lead to similar coverage. With fewer than 18 clusters, DFFG was larger

than DFC-P and had closer to 95% coverage. Other than by number of clusters, the difference in performance

varied little between the scenarios we considered including common and varying cluster size.

7.1 Strengths and limitations

The strengths of this study are in the comprehensive range of scenarios considered (nearly 700 in phase two), the

wide range of small sample corrections included, and the use of methods that generate correlated data from

marginal effects.
There are several corrections that we did not consider, which may have superior performance to the corrections

we used.6,14,19,20 However, software availability for varying cluster size currently limits the utility of these addi-

tional corrections for CRTs. Our approach has been to identify methods that performed well across a broad range

of scenarios; an alternative correction may have better performance in a particular scenario than those we have

concluded were robust overall. We only considered a common outcome, and we have focused on a binary out-

come, where GEE estimate marginal, or population average, effects: researchers should consider whether this is

the effect of interest in their setting.44 Our simulation study used an SW-CRT design with no baseline period.

However, our results are consistent with other simulation studies that included a baseline period.17,18 The working

correlation structures we considered (exchangeable and independent) did not incorporate the timing of observa-

tions within clusters. We have shown that this did not affect the confidence interval coverage, but as is typically

the case with GEE, power may be improved by choosing a working correlation matrix that more closely follows

the true structure. For example, the working correlation matrix could allow correlation to decay with distance

between observation periods.45

7.2 Concluding remarks

We have shown that GEE with small sample corrections are a robust method of analysis in a range of settings

where SW-CRTs are commonly used. When there are fewer than 50 clusters, we recommend the use of KC, KC-

approx, or FG standard errors with an independent working correlation structure, KC-approx standard errors

with an exchangeable working correlation structure if clusters are large, or FG standard errors with an exchange-

able working correlation structure if clusters are large and ICC is low. A t-distribution is also required with DFFG,

although DFC-P is sufficient for trials with 18 or more clusters.
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