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Abstract

We study scale dependence of the cosmic microwave background (CMB) power spectrum

in a class of small, single-field models of inflation which lead to a high value of the tensor to

scalar ratio. The inflaton potentials that we consider are degree 5 polynomials, for which we

precisely calculate the power spectrum, and extract the cosmological parameters: the scalar

index ns, the running of the scalar index nrun and the tensor to scalar ratio r. We find that for

non-vanishing nrun and for r as small as r = 0.001, the precisely calculated values of ns and

nrun deviate significantly from what the standard analytic treatment predicts. We study in

detail, and discuss the probable reasons for such deviations. As such, all previously consid-

ered models (of this kind) are based upon inaccurate assumptions. We scan the possible

values of potential parameters for which the cosmological parameters are within the allowed

range by observations. The 5 parameter class is able to reproduce all of the allowed values

of ns and nrun for values of r that are as high as 0.001. Subsequently this study at once

refutes previous such models built using the analytical Stewart-Lyth term, and revives the

small field brand, by building models that do yield an appreciable r while conforming to

known CMB observables.

Introduction

Recent years have shown an increase in cosmological observational data, largely due to the

Planck mission [1], and the searches for primordial gravitational waves (GW) signal in the cos-

mic microwave background (CMB) by terrestrial experiments such as BICEP2 and the Keck

Array [2, 3]. Inflation [4–7] is widely accepted as a probable model for the origin of our uni-

verse, one of the hallmarks of which is the production of GW (for example [4, 8]).

Sensitivity for detecting GW in the CMB have, over the years, improved constantly. Con-

straints on the tensor-to-scalar ratio r were tightened [1–3, 9–12] and it is expected that a sen-

sitivity level of r≲ 0.03 be reached in the near future [13]. Furthermore one can optimistically

expect the next decade to yield measurements of r≲ 0.001 or better [14]. Constant headway

is also made in the model building front, as some models become less probable, while others

gain dominance.

We study a class of models that were proposed by Ben-Dayan & Brustein [15]. These

models sport, along with the ability to conform to known observable quantities such as the
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primordial power spectrum (PPS) scalar index (ns), and its running (nrun), the generation of

appreciable amplitude of GW signal. This type of models appear in many fundamental physics

frameworks, such as effective field theory, supergravity and string theory. A discussion regard-

ing small field models and the possibility of GW generation [16–18] soon followed. In these

models, high values of r in the CMB are generally associated with a scale dependence of the

scalar power spectrum. We study the models proposed by Ben-Dayan & Brustein using exact

calculations. For each model, we solve the background eqautions and the Mukhanov-Sassaki

(MS) equations [19–21] to obtain a primordial power spectrum. This process is applied to a

large sample of models and allows us to study the dependence of cosmological parameters on

the potential parameters with unprecedented accuracy.

Significant differences between analytical predictions of the commonly used Stewart-Lyth

(SL) expressions [22, 23] for CMB observables and the precise results were found. These dis-

crepencies were already found in [24], however all previous discussions of such models [15–

18] nevertheless heavily rely on the SL expression, thus the importance of this discrepancy is

enhanced. These differences arise from several factors, chief among them is breaking of slow-

roll hierarchy. When the hierarchy is broken the time derivatives of the first and second slow-

roll parameters (�H, δH) cannot be neglected. Hence, rather than general arguments, these

models require precise calculations in order to study their validity. This also means that, in

some cases, it is not possible to use Hankel functions as an approximate solution of the MS

equation. This was discussed in some length in [25]. In other cases the Hankel functions can

still be used, but either require adjustments, or some additional requirements must be met as

in [26].

1 The primordial power spectrum and the cosmological parameters

The primordial power spectrum (PPS) is traditionally characterized by its spectral index ns

and the index running nrun (sometimes also denoted as α), which are given by the first and sec-

ond logarithmic derivatives of the logarithm of the PPS:

ns ¼ 1þ
@ log ðPsÞ

@ log ðkÞ

�
�
�
�
�
aH¼k

; ð1Þ

nrun ¼
@

2 log ðPsÞ

@ log ðkÞ2

�
�
�
�
�
aH¼k

¼
@ns

@ log ðkÞ

�
�
�
�
�
aH¼k

; ð2Þ

where aH = k denotes the CMB scale.

1.1 A brief review

The process of relating slow-roll parameters to the power spectrum is documented extensively

in [22] and described in broad strokes in [23].

Following is a brief review of the process.

In principle, the process of deriving the PPS given an inflationary potential is straightfor-

ward. The background evolution equations

_H ¼ �
_�2

2

€� ¼ � 3H _� � dV
d�

8
>><

>>:

ð3Þ
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are solved to construct the pump field:

Z ¼
a _�

H
; ð4Þ

where a dot denotes a derivative with respect to cosmic time. The MS equations [19–21] are:

@
2Uk

@t2
þ Uk � o

2

kðtÞ ¼ 0; ð5Þ

in conformal time τ and in Fourier space with wave vector k, where ω(τ) is given by:

o2

kðtÞ � k2 �
Z00

Z

� �

: ð6Þ

Here a prime denotes a derivative with respect to conformal time. The eigenfunctions Uk(τ) of

these equations are recovered. Evaluating these at a time τ later than the latest freeze-out time

yields the PPS generated by the inflationary potential V.

In [22], Stewart & Lyth derive an analytic expression for the spectral index of a wide array

of inflationary scenarios. They first assume a slow-roll inflation, sufficiently slow, so that both

slow roll parameters,

�H � �
_H

H2
;

dH �
€�

H _�
;

ð7Þ

can be approximated by constants. It is useful to rewrite the quantity Z00
Z as:

Z00

Z
¼ 2a2H2 1þ

3dH

2
þ �H þ

d
2

H

2
þ
�HdH

2
þ

1

2H
_�H þ

_dH

� �� �

: ð8Þ

For strictly constant �H, δH,

Z00

Z
¼

~C
t2
; ð9Þ

with ~C a constant. In this case, the background solution corresponds to power law inflation.

The resulting MS equations becomes the Bessel equations which can be solved analytically.

When the Bunch-Davies boundary conditions are imposed, the resulting solution is given by a

Hankel function of the first kind:

UkðtÞ ¼

ffiffiffi
p

4

r

ei nþ1
2ð Þ

p
2
ffiffiffiffiffiffi
� t
p

Hð1Þ

n
ð� ktÞ; ð10Þ

with the index ν given by:

n ¼
3þ 2dH þ �H

2ð1 � �HÞ
: ð11Þ

The resulting power spectrum is given by:

ðPRÞ
1
2 ¼ 2n� 3

2ð1 � �HÞ
1
2
� n GðnÞ

G 3

2

� �
H2

2pj _�j
: ð12Þ

Upon derivation of PR with respect to log(k) and evaluating the derivative at k = aH the scalar
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index is obtained,

ns � 1

2
¼

@n

@ log ðkÞ
b � log 1 � �Hð Þ½ �

�
1 � 2n

1 � �H
�Hð�H þ dHÞ � 2�H � dH:

ð13Þ

Inserting ν from Eq (11) one gets:

ns � 1 ¼

þ 2�

"

4�2
H þ 5�HdH � d

2

H þ
dH �⃛

H€�

 !

b � log 1 � �Hð Þð Þ

� 2
�H

1 � �H

� �

ð1þ 2�H þ dHÞð�H þ dHÞ � 2�H � dH

#

;

ð14Þ

with b = 2 − log(2) − γ, γ being the Euler number. The resulting scalar index running is given

(for instance in [23]) by:

nrun ¼ � 8�2

H � 10�HdH þ 2d
2

H � 2
dH �⃛

H€�
: ð15Þ

We note that

_dH

H
¼ dH �H � dH þ

�⃛

H€�

 !

’
dH �⃛

H€�
� d

2

H ;

which in the slow-roll paradigm is usually taken to be small, appears in both Eqs (14) and (15).

It might be tempting then, to drop these terms. However, this term was shown in [22], and

later in [23] to be required for a better than *1% accurate prediction of the CMB observables.

The authors of [22] then proceed to connect slow-roll parameters to the potential and its

derivatives by a process of Taylor expanding with respect to cosmic time, and re-substituting

the Friedman equations to 2nd order. Thus they are able to obtain an analytical expression that

connects the PPS observables directly to the potential and its derivatives to a high degree of

accuracy. Following the same procedure for the running of the scalar index, yields (again, to

2nd order):

ns ’ 1 � 6εV;0 þ 2ZV;0

þ 2

"
Z2

V;0

3
�

5

3
� 12b

� �

ε2

V;0

� ð8bþ 1ÞεV;0ZV;0 þ bþ
1

3

� �

x
2

V;0

#

;

ð16Þ

nrun ’ 16εV;0ZV;0 � 24ε2

V;0 � 2x
2

V;0; ð17Þ

where the subscript 0 denotes evaluating the quantity at the CMB point and the subscript V
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denotes that these are potential derivatives:

εV ¼
1

2

V 0

V

� �2

; ð18Þ

ZV ¼
V 00

V
; ð19Þ

x
2

V ¼
V 0V 000

V2
: ð20Þ

However, when �H or δH are not strictly constants, the analytic solution to the MS equation is

not generally known. We show that the above analytic expressions are not accurate enough for

certain models where �H and δH are time-dependent. Therefore, one has to use the precise cal-

culations which takes into account the deviations of the MS equation solutions from the Han-

kel functions.

Another observable, used to parametrize the amplitude of GW at the onset of inflation is

the scalar-to-tensor ratio r, r = 16�H. In fact, should we ever detect a GW signal, we would be

able to directly probe the energy scale of inflation [27].

2 Inflationary models

Small field models of inflation in which inflation occurs near a flat feature, a maximum, or a

saddle point are studied (see [28] for a review). This class of models is interesting because they

appear in many fundamental physics frameworks, effective field theory, supergravity [29] and

string theory [30] in successive order of complexity. Our focus on such models is also moti-

vated by the expected properties of the moduli potentials in string theory. More generally

speaking these type of models can be viewed as a Taylor expansion approach to other models

[31]. A different more observable-oriented classification of models can be found in [32], in

which analysis our models fall into the toward-exit class.

In general, inflation will occur in a multi-dimensional space, however, the results for multi-

field inflation cannot usually be obtained in a simple way. In many known cases it is possible

to identify a-posteriori a single degree of freedom along which inflation takes place. To gain

some insight about the expected typical results effective single field potentials can be used.

Generic small field models predict a red spectrum of scalar perturbations, negligible spec-

tral index running and non-gaussianity. They also predict a characteristic suppression of ten-

sor perturbations [33]. Hence, they were not viewed as candidate models for high-r inflation.

Large field models of inflation are thus the standard candidates for high-r inflation.

In [15], a new class of more complicated single small field models of inflation was consid-

ered (see also [16]) that can predict, contrary to popular wisdom [27, 34], an observable GW

signal in the CMB (see also [35]). The notion that observable signal GW precludes small field

models partly stems from [34] and similar analyses that study monomial potential models as

small field models. The spectral index, its running, the tensor to scalar ratio and the number of

e-folds were claimed to cover all the parameter space currently allowed by cosmological obser-

vations. The main feature of these models is that the high value of r is accompanied by a rela-

tively strong scale dependence of the resulting power spectrum. Another unique feature of

models in this class is their ability to predict, again contrary to popular wisdom [36], a negative

spectral index running. The single observable consequence that seems common to all single

field models is the negligible amount of non-gaussianity. In [24] the inflationary potential was
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Taylor-expanded up to order 4. The approach applied in [24] is similar, however it seems only

potentials that are monotonic in the entire CMB window were considered.

The current work yields corrected predictions of this class of models by a systematic high-

precision analysis, thus providing a viable alternative to the large field-high r option. The anal-

ysis of [15] is extended, in preparation for a future detailed comparison of the models to data.

This is done in order to simplify the parametrization of the potential and facilitate a compre-

hensive numerical study.

2.1 Inflaton potentials

The following class of polynomial inflationary potentials proposed in [15] is:

Vð�Þ ¼ V0 1þ
X5

p¼1

ap�
p

 !

: ð21Þ

The virtue of these models from a phenomenological point-of-view is the ability to separate

the CMB region from the region of large e-fold production. Hence, these potentials can pro-

duce a very different spectrum early on, than in the later stages of inflation. Fig 1 illustrates

this point, with separate CMB region and e-fold generation region. In the context of both

classification systems mentioned, current observational data weakly support these [37, 38].

However the small field model studied in [38] are monomial potential models of the form

V/ 1 − ap ϕp, which are different from many of our models.

In many models εV * 1/N2, ηV * 1/N2, and the time derivative d
Hdt can approximately be

replaced with a factor of 1

N2 [39]. In the above models this standard hierarchal dependence

is broken, they have a more complicated dependence while obeying the slow-roll conditions

�H, δH� 1. In [15] it was shown that these models can be written as:

Vð�Þ ¼ V0 1 �

ffiffiffiffi
r0

8

r

�þ
Z0

2
�

2
þ

a0

3
ffiffiffiffiffiffi
2r0

p �
3
þ a4�

4
þ a5�

5

 !

: ð22Þ

Here r0, η0, α0 are defined as r ¼ 8 V 0
V Þ

2
�

, Z ¼ V 00
V , α = −2ξ2, respectively. The subscript 0 means

that these are the values at the CMB point.

Specifically for a potential of the form V / 1þ
P5

p¼1
ap�

p
, the SL analytic expression for

the scalar index and its running (Eqs (16) and (17)) is given by

ns ’ 1 � 3a2
1
þ 4a2

þ 2

"
4a2

2

3
�

5

3
� 12b

� �
a4

1

4

� ð8bþ 1Þa2
1
a2 þ ð6bþ 2Þa1a3

#

;

ð23Þ

nrun ’ 16a2

1
a2 � 6a4

1
� 2a1a3: ð24Þ

2.2 Reduced parameter space

The potential in (22) is a small field candidate, which after some scaling and normalization,

depends on four free parameters. One parameter is used for setting r0 at the CMB point, and

thus the predicted amplitude of the GW signal produced, while the other two parameters are
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used to parametrize the ns − nrun-plane. The fourth parameter determines the number of e-

folds from the CMB point to the end of inflation. ϕend is set to 1 to simplify the analysis. It fol-

lows that

1

2

V 0

V

� �2

j�¼1 ¼ 1: ð25Þ

Suppose we want inflation to end at ϕ = α, we can rescale ϕ:

�! ~� ¼
�

a
: ð26Þ

In this formulation,

V ¼ V0 1þ
X

p

apa
p ~�p

 !

¼ V0 1þ
X

p

~ap
~�p

 !

; ð27Þ

where ~ap ¼ apa
p. Since this is the exact same potential, it follows the exact same CMB observ-

ables are yielded. Thus, applying condition (25) can be viewed as a scaling scheme for the dif-

ferent terms in the potential which does not limit the generality of our results.

Substituting the expression for the potential and its derivative at ϕ = 1 we get:

�
ffiffiffi
2
p
¼

P5

p¼1
p � ap

1þ
P5

p¼1
ap

: ð28Þ

Fig 1. A graph depicting � 1=
ffiffiffiffiffi
2�
p

as a function of the inflaton ϕ for a model for which r0 = 0.001. The CMB interval is covered by *8 e-

folds generated while the field changes by about Δϕ * 0.1. Most of the e-folds are generated when ϕ reaches *0.4.

https://doi.org/10.1371/journal.pone.0197735.g001
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a4 is now given in terms of the other coefficients:

a4 ¼
� 1

4þ
ffiffiffi
2
p

ffiffiffi
2
p
þ

X

p2ð1;2;3;5Þ

pþ
ffiffiffi
2
p� �

ap

 !

ð29Þ

Using the standard definition for the number of e-folds N ¼
R �end
�CMB

Hdt ’ �
R �end
�CMB

V
V 0 d�, and

the approximation Vð�Þ ¼ 1þ
P5

p¼1
ap�

p
’ 1 yields a rough estimate for a5 as a function of

N,

N ’ �
Z 1

0

Vða1; a2; a3; a5Þ

V 0ða1; a2; a3; a5Þ
d� ’ �

Z 1

0

d�
V 0ða1; a2; a3; a5Þ

: ð30Þ

This estimate is then used as a starting point to refine a5 by solving the background equations

iteratively thereby obtaining the accurate coefficient a5 that yields the correct N. Thus a

4-dimensional parameter space r0, a2, a3, N is defined. The parameters a2, a3 are constrained

by the requirement |a2|, |a3|� 1, a1 is constrained by the observable value of r and a5 is

determined by the other parameters and by the number of e-folds (taken to be in between

50 * 60). The PPS considered is in the range of the first log(2500)*8 e-folds of inflation.

3 Precise evaluation of the cosmological parameters

Using the analytic results in Eqs (16) and (17) it can be concluded that the above class of mod-

els can cover the part of the ns − nrun plane of interest [15]. However, several approximations

are made along the way. Significant deviations from analytic prediction are found, of the order

of a percent or so in estimating ns and 50% or more in estimating nrun. The unavoidable con-

clusion is that rather than a general argument, a precise calculation is necessary to extract the

cosmological parameters these models yield.

3.1 From potentials to cosmological parameters

The process of calculating the cosmological parameters for a given potential is the following. A

potential candidate is built by setting a parameter (for instance r0), and randomly drawing the

other parameters (in this example a2 and a3) from a uniform distribution function. The limits

of this distribution function are set by hand and require a process of trial and error (guided by

theoretical insights such as overall behaviour of precisely calculated ns and nrun). After the 3

first parameters are fixed, Eq (29) is used to relate a4 to a5, and the value of a5 is calculated for

a the desired value of N. a5 is found as explained above, with no approximations. The choice of

which parameters to fix and which to randomly draw relies on the observables studied.

For each potential the Friedmann equations and the inflaton scalar field equation are

solved. The initial conditions are set such that integration starts 3.5 efolds before the CMB

point with _� ¼ 0. In that fashion we ensure that we are well within the slow roll regime, and

on the attractor solution when the CMB point is reached. The solution is used to construct Z
and ωk as described in (4) and (6). The eigenfunctions for the MS equations (5) are found and

used to calculate the power spectrum. Finally we provide a fit for the power spectrum, from

which we extract ns and nrun.

4 Cosmological parameters of small field models

In this section we present the results of evaluating cosmological parameters for many small

field models. In Fig 2 we show an example for which we calculate ns and nrun for about 1100

models with a fixed scalar to tensor ratio r0 = 0.001. The results are shown on a ns − nrun joint
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probability graph with the 68%, 95% contours that are the probability estimators as yielded by

a CosmoMC [40] ΛCDM +index running model run, with the most recent Bicep & Planck

data (including WMAP 9-year mission) [12].

The reason for choosing the value of r0 = 0.001 (and not a higher value, for example,

r = 0.01) was the following. We discovered that as we increased the values of r, the inflaton

potentials needed to be more complicated and additional parameters were required. Also, we

encountered several technical difficulties which we were able to resolve for the lower values

of r. Solving these difficulties and constructing a reliable framework for numerical calculations

of the CMB observables is an essential step towards building models with higher values of r,

which we intend to do in a future publication.

We allow the values of ns to vary quite substantially, rather than restrict them to the narrow

range that is allowed by the data. Our idea is that when r and nrun are free to vary, the con-

straints on ns are relaxed in a significant way. The reason is that there is some degeneracy

among the parameters. This is validated in the preliminary analysis that we present in this

paper. In addition, despite of the fact that some models have yielded an almost flat (and some

even a blue) ns and therefore are in conflict with the data, we find their analysis useful because

insight regarding the departure of precisely calculated results from what the analytic SL term

((16)) predicts (see below), is gained.

5 Inflationary models

5.1 Evaluating cosmological parameters for fixed r0

The ns − nrun plane was covered with models which yield a fixed value of r0 = 0.001. The cosmo-

logical parameters of some 3500 potentials were calculated. Fig 2 shows cosmological parame-

ters of * 1100 models. A significant number of the models yield values of ns and nrun within

the 68% and 95% likelihood region. The most probable value for V 00
V ¼ � 0:0052� 0:0034. This

Fig 2. Shown are the results of evaluating ns and nrun for about 1100 models for which r0 = 0.001. The contour curves are the 68% and 95%

confidence estimators, obtained from a CosmoMC ΛCDM + index running model run [40] using the Planck & Bicep joint data analysis [12].

The pivot scale used in the analysis is kpivot = 0.05 h Mpc−1, which is the same scale as in [12].

https://doi.org/10.1371/journal.pone.0197735.g002

Small field models with gravitational wave signature supported by CMB data

PLOS ONE | https://doi.org/10.1371/journal.pone.0197735 May 24, 2018 9 / 22

https://doi.org/10.1371/journal.pone.0197735.g002
https://doi.org/10.1371/journal.pone.0197735


is within the 68% CL Planck results, with or without including high-l polarization data. The

third coefficient values are given by V 000V 0
V2 ¼ 0:0138� 0:0065, which is in better agreement with

the result without high-l data. However the 2015 Planck analysis [41] sets �4� 0 which might

bias the results slightly. In the 2013 analysis [42] this was not done, and our results agree with

their analyses, including our values for Vð4ÞV 0
V2 . Additional factors that contribute to the difference

in analyses, are the approximate connection between Hubble flow functions �i and the potential

derivative quantities �V ; ZV ; x
2

V . An interesting feature of these models is the departure of pre-

cisely calculated results from what the analytic SL expression (16) predicts, to be discussed later.

It might be possible to cover the ns − nrun allowed region with models with a higher scalar-to-

tensor ratio. However the treatment of models which yield higher r is more complex, since by

increasing r, one is forced to consider a larger Δϕ range CMB region. The CMB region (see Fig

1) is roughly 3 times larger in ϕ for models with r0 = 0.01, thus it will typically result in a run-

ning of running of the power spectrum.

5.2 Evaluating cosmological parameters for fixed η0

The effects of varying r0 on the resulting power spectrum were studied. In order to do this η0

was set to 0 for simplicity, and the ns − nrun plane was covered with models of varying r0 and

α0. Fig 3 shows the results of this study.

Notice that the effect of varying both r0 and α0 on the changes in the value of ns is more

pronounced than expected. Usually one expects ns − 1 to first order to be/ �
3r0

8
and thus

Δns/Δr0’ 10−4 * 10−5. At second order, we expect ns−1 to be/
a0

15
and thus Δns/Δα0’ 10−3,

whereas in this case the change in ns is of the order of 10−2. A possible explanation to this phe-

nomenon is a discrepancy between the analytic predictions made using (16) and the precise

calculations (see below).

5.3 Comparison of calculated results and the Stewart-Lyth analytic

predictions

An additional study of models with a larger value of r was conducted. This was done in order

to confirm the ability of this class of models to produce significant GW signal, while yielding

acceptable values of ns and nrun. For r ≳ 10−3, a significant deviation from the analytical

expressions in Eqs (16) and (17) was found. Potentials that by the standard analytic treatment

should have yielded acceptable observables, were wide off the mark. On the other hand poten-

tials which were supposed to be ruled out, yielded observables inside the ns − nrun acceptable

domain. Fig 4 elucidates this point, with a potential (Fig 4, upper panel), for which r0 = 0.001.

The resulting ns and nrun are within the 68% probability allowed region, while the analytic

expressions yield values outside the 95% probability allowed region. The example in Fig 4,

lower panel shows the opposite also occurs.

Table 1 contains as examples ten specific potentials that were chosen such that the

precise results for ns and nrun are within the accepted values. All of the models produce a

tensor to scalar ratio r0 = 0.001. The table also contains the analytic predictions made with Eqs

(16 and 17). As can be seen from the table, the discrepancy between the analytic predictions

and the precise calculations can be quite significant for nrun. The spectrum is composed

using 15 k − modes, and the error in the rightmost column is the cumulative error defined as

error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

k ðfitðlog kÞ � sampleðlog kÞÞ2
q

. The mean deviation per k−mode is the error

divided by 15. The differences between the analytic predictions and the results of precise calcu-

lations are quite common for this type of inflationary potentials for r ≳ 0.001, as shown in

Small field models with gravitational wave signature supported by CMB data
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Fig 5. About 3500 potentials were analysed (Fig 5 show only a partial sample), and ns and nrun

were extracted for each. The deviation in ns between analytic predictions and precise results,

normalized by the sum of the two is then found. Fig 5 also shows a marked drift towards lower

values of ns and higher values of nrun. The mean drift is approximately given by (Δns,Δnrun) =

(-0.01, 0.02), with * 17 − 18% standard deviation.

Fig 4. Comparison of the precise results and analytic predictions made with (16). Each panel shows the precisely calculated results, fitted by

a quadratic polynomial to extract ns and nrun. The curve predicted by (16) is plotted as a reference. In the upper panel we show a potential that

would be excluded based on the analytic result, whereas the precise results is well within the 68% probability curve. In the lower panel the exact

opposite is the case, with an analytically accepted result, but an excluded precise one.

https://doi.org/10.1371/journal.pone.0197735.g004

Fig 3. Covering the ns − nrun plane with constant r and constant α characteristics, for η0 = 0.

https://doi.org/10.1371/journal.pone.0197735.g003
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5.4 Possible explanations of the source of deviation between precise results

and analytical estimates

From the discussion in Appendix B, one can easily see that the definition of ν, is potentially the

most significant discrepancy. The effect of this change in definition is an error of less than

about 0.4%.

Table 2 contains three examples of potentials. Two yield observables that are within accept-

able limits, and a third shows an excluded precise result with an allowed analytic prediction.

These examples are used to study the origin of discrepancy. The differences between the slow-

roll parameters defined via the potential vs. their definition in terms of time derivatives are

also discussed in appendix B. We have found, that in the degree 5 polynomial potentials that

were studied, small but significant departures from the relations in Eq (B:44) are detected. For

instance δH = −0.0016 and δV = 0.001 at the time when ns is evaluated. Table 3 contains values

Table 1. Shown is a table of 10 potentials constructed such that r0 = 0.001, and N = 60. The parameters a2 and a3 are constructed by randomly drawing from a uniform

distribution as explained in Section 4. The discrepancy in ns is around 0.8%*1.25%, while the nrun discrepancy is much more pronounced.

a2 a3 precise ns analytic ns precise nrun analytic nrun Fit error (×10−4)

0.0005 −0.3041 0.9777 0.9856 −0.0196 −0.0409 1.8

−0.0013 −0.2795 0.9713 0.9796 −0.0175 −0.0373 1.5

−0.0001 −0.2188 0.9780 0.9877 −0.0125 −0.0293 1.1

−0.0042 −0.1538 0.9627 0.9748 −0.0067 −0.0203 0.8

−0.0032 −0.2923 0.9631 0.9711 −0.0185 −0.0387 1.9

−0.0002 −0.2709 0.9760 0.9843 −0.0168 −0.0363 1.6

−0.0026 −0.1342 0.9710 0.9820 −0.0055 −0.0178 0.6

−0.0031 −0.1517 0.9670 0.9793 −0.0066 −0.0201 0.8

−0.0011 −0.1563 0.9757 0.9868 −0.0072 −0.0209 0.7

−0.0024 −0.2808 0.9662 0.9752 −0.0174 −0.0373 1.9

https://doi.org/10.1371/journal.pone.0197735.t001

Fig 5. Shown are the results of a precise calculation of the cosmological parameters of * 200 models (red squares), as well as the

corresponding analytic predictions (yellow triangles) calculated according to (16) and (17). The cyan and black x’s mark the mean value of

the precise and analytic results (respectively).

https://doi.org/10.1371/journal.pone.0197735.g005
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of the three quantities �H; dH;
dH �⃛

H €�
as precisely calculated and analytically approximated, for

three potentials of the 5 degree polynomial class. Table 4 contains the scalar index for the cor-

responding potentials (examples 1,2 and 3).

The overall effect of this discrepancy can sometimes amount to a 5 * 8% error towards

higher values.

Finally there is also a significant difference in the derivatives of ν and νSL, νSL being ν in the

SL formulation:

nSL ¼
3þ 2dH þ �H

2ð1 � �HÞ
; ð31Þ

where time dependency of the slow roll parameters is neglected. This difference is mainly due

to neglecting the term
dH �⃛

H €�
in the definition of Z00

Z . This yields a difference in the derivative terms

of the order of 0.02 * 0.04, which in turn is responsible for a difference in ns of the order of

4 * 8%. Using νSL instead of the full term, tends to drive the resulting ns downwards.

The tendencies of the two aforementioned errors are opposite, and so they might some-

times cancel each other. This makes it possible to get an accurate result using the standard

SL expression for a specific potential, but studying a collection of such potentials reveals the

incomplete nature of this cancellation.

Table 4 shows the different results using different methods of deriving the scalar index. We

use three different analytical methods: (1) Eq (B:45)—The SL original method, extracting a

term for the scalar index as a function of the potential and its derivatives, (2) Eq (14)—The SL

original method, but not relating slow roll quantities to potential and derivatives, and (3)

Using the same methods as the SL analysis, with the definition for ν as in Eqs (B:36,40,42).

From this analysis it seems the origin of the most significant error is the inaccurate relations

Table 2. Shown are three examples for a 5 degree polynomial inflationary potentials. Examples no. 1 and 3 yield a precise result for ns which is well within the 68%

probability region. Example no.2 is the opposite case, with an analytic prediction within the 68% region, but a precise result which is excluded. The following tables, refer

to these potential examples.

Ex. no. a1 a2 a3 a4 a5 ns
1 −0.01118 −0.0008 −0.2468 0.8726 −0.7825 0.9698

2 −0.01118 −0.0057 −0.2344 0.8631 −0.7804 0.9495

3 −0.01118 −0.0025 −0.1782 0.7100 −0.6916 0.9661

https://doi.org/10.1371/journal.pone.0197735.t002

Table 3. A table containing the three leading slow-roll parameters, as precisely calculated, vs. the values evaluated

by the analytic approximation in Eq (B:45). While the difference in value for �H is negligible, the difference in δH

might already be substantial and the difference for
dH �⃛

H €�
is significant.

Ex. no. Quantity slow roll value pot. der. value

1 � 6.28�10−5 6.24�10−5

δ −0.0068 −0.0038

d �⃛

H €�
0.0255 0.0165

2 � 6.23�10−5 6.20�10−5

δ 0.0037 0.0063

d �⃛

H €�
0.0237 0.0159

3 � 6.26�10−5 6.23�10−5

δ −0.0016 0.001

d �⃛

H €�
0.0198 0.0119

https://doi.org/10.1371/journal.pone.0197735.t003
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between slow roll parameters and their potential and derivatives counterparts. Second in sig-

nificance is the definition of ν with the full Z00
Z t2 expression, along with the proper derivation of

@n

@logðkÞ. The evaluation of −τaH(1 − �H) = 1 is off by * 0.04% and the difference between c 3

2

� �

and ψ(ν) yields a correction of the order of * 0.01%.

There might be additional factors that stem from the temporal dependence of ν in the MS

equation, however, these mostly affect the running of the spectral index, and are harder to esti-

mate accurately.

Taking these approximations into account, lowers the discrepancy to the order of 0.5%, in

a consistent manner. Another possible explanation is that the time-dependence in (8), modi-

fies the corresponding o2
kðtÞ ¼ k2 �

~C
t2

� �
to o2

kðtÞ ¼ k2 �
f ðtÞ
t2

� �
. This could lead to modified

solutions for the MS equation. An example of this phenomenon is given in [43], where the

Hankel functions were replaced by the Whittaker functions (albeit these models are observa-

tionally excluded). It is worth mentioning that this avenue was studied analytically by Dodel-

son & Stewart [44, 45]. They derived an expression for the scalar index in cases where the

slow-roll hierarchy breaks down. However, this analysis was not checked numerically. Addi-

tional derivation attempts aiming at yielding better precision analytical expression for the

scalar index ns were made in [26, 46]. Specifically [26] supplies an analysis of the predicted

level of accuracy as a function of the horizon flow functions �1� �H and �2� 2(�H + δh), in

Fig 6. The different approximation schemes were put to the numerical test in the context of

our models. Fig 7 shows that all methods of approximation yield results varying in accuracy

and precision levels, it also shows however that the SEG approximation is the best candidate

to improve on, since on average they yield errors of less than 1%. Studying results where rela-

tive errors in ns are over 1%, for each expression and locating it on the �1 − |�2| diagram in

Fig 8 reveals that the analysis offered in [26] is not completely applicable to our models. Fig 9

shows that for the models studied, even though the conditions outlined in [26] are met, and

�1 �2 × ΔN< 10−2*3 for ΔN = 60, the relative error between numerical result and SEG-CH

expression can be above 1%.

6 Summary, conclusions and outlook

An interesting class of models that can produce a high tensor-to-scalar ratio while conforming

to observable values of ns and nrun was presented and studied. This work has shown that while

the arguments for small field model validity presented in [[15, 16] generally apply, the method

by which they choose favoured models is based on approximations that are not always accurate

enough for the cases studied. While this work argued this possible weakness, it also supplied a

remedy: The precise calculation method. Using precise calculations points to new candidates

previously disregarded. Specifically, The predictions made using the standard SL analytic

Table 4. Shown are different results for different methods of calculating the scalar index ns. These were calculated for the 3 example potentials mentioned in Table 2.

The first is the numerical result. Next is the standard Stewart & Lyth expression Eq (B:45). Another result is given by using (14), without substituting potential and deriva-

tive expressions for slow roll parameters. Finally we use Eqs (B:40,36,42), to accurately assess the scalar index.

Ex. no. Num. value Eq (B:45) Eq (14) Eq (B:36,40,42)

1 ns 0.9698 0.9833 1.05 0.9650

rel. error 0/NA 1.38% 7.99% −0.49%

2 ns 0.9495 0.9643 1.027 0.9474

rel. error 0/NA 1.54% 7.8% −0.21%

3 ns 0.9661 0.9803 1.031 0.9695

rel. error 0/NA 1.4% 6.6% 0.35%

https://doi.org/10.1371/journal.pone.0197735.t004
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expressions were found to deviate by more than 1% from the actual results, for many models

in this class. Other approximate expressions such as those suggested in [26, 44, 46] are, in gen-

eral, better than the SL expressions, but still miss by more than 1% in some cases.

We hope to extend this work to models that produce higher values of r, and determine the

best candidate for small field inflationary models [47].

Appendix A—Benchmark tests

6.0.1 Power law inflation

The accuracy of the procedure is tested by using the benchmark case of power law inflation

(a/ tp). This is the only case for which the analytic results are exact since �H and δH are

Fig 6. Regions in the �1-|�2| parameter space where the spectral amplitudes could be calculated with an accuracy better than 1%,

according to analysis presented in [26]. In the dark shaded region the Stewart-Lyth (SL) approximation [22], as well as all other

approximations are supposedly sufficiently accurate. Second-order corrections, as calculated by Stewart and Gong (SG) [46], extend

that region to the light shaded region. The constant horizon approximation at order n (chn), and the growing horizon approximation

at order n (ghn), do well below the thick line. The rays indicate where the corresponding higher order corrections are necessary. The

thick line itself is the condition �1|�2|< (A/100%)/ΔN, with ΔN = 10 and A = 1%. We study these approximations and others, and find

that our models defy these analyses. Figure and caption adapted with author permission from [26].

https://doi.org/10.1371/journal.pone.0197735.g006
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Fig 7. Around 50,000 of our models numerically simulated and compared to different analytical expressions reveals a varying level of

accuracy in predicting the correct scalar index. The figure shows only a partial sample of *8000 restricted to �1 < 0.0275, |�2|< 0.0275 and

0.96< ns< 0.99. Each data point is a relative error between the numerical result of a model and an analytical expression from [44] (DS,green

circles), [46] (SG,red diamonds), [26] (SEG-GH, growing horizon variant—blue triangle, and SEG-CH, constant horizon variant—inverted

cyan triangle), and the usual SL [22] expression (purple squares).

https://doi.org/10.1371/journal.pone.0197735.g007

Fig 8. Different analytical expressions and their errors relative to the exact numerical analysis, presented on the �1−|�2| plane. Each data

point is the relative error between the analytic expression and the numerical result, and the color bars to the right of each panel indicate the

percentage of relative error. The errors are filtered to show only errors above 1%, with numerical results 0.96< ns < 0.99.

https://doi.org/10.1371/journal.pone.0197735.g008
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constants �H ¼
1

p, and dH ¼ �
1

p. The cosmological parameters are given by:

ns ¼ 1 �
2

p
;

nrun ¼ 0:

8
<

:
ð32Þ

In S1 Fig, results of the convergence of the precise calculations to analytic predictions for the

case of power law inflation are shown. The overall shape of both precise calculations and ana-

lytic curves agree and a relative error in ns, estimated by:

nprecise
s � nanalytic

s

� �
= 1

2
nprecise

s þ nanalytic
s

� �
; is of the order of 10−2 * 10−3%. The method for error

estimate in nrun is more subtle, since the correct value of nrun is zero. In order to assess our

error in nrun the following diagnostic was therefore used: the difference between the precise

and analytic ns is divided by the difference in log(k). The criterion for convergence is that the

absolute value of nrun is smaller than
Dns

DlogðkÞ.

S2 Fig displays the convergence of the precisely calculated results for nrun, using the diag-

nostic
Dns

DlogðkÞ. It is apparent that nrun is always bounded from above by
Dns

DlogðkÞ. Additionally the

extracted nrun is an order of magnitude or so below current observational bound.

6.0.2 Quadratic potentials

As we aim to study models that produce slow roll parameters which are time dependent, we

need to check the precision of the numerical code against such models.

Consequently we tested the accuracy of our calculations for quadratic potentials of the type

V ¼
1

2
m2�

2
: ð33Þ

Fig 9. While satisfying the condition �1|�2| × ΔN< 10−2*3, for ΔN = 60, one finds a relative difference of well over 1% between analytical

predictions and numerical results. This is in contrast to the analysis proposed in [26].

https://doi.org/10.1371/journal.pone.0197735.g009
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In these cases the analytic expression for the scalar index is given by,

ns ¼ 1 �
8

4N þ 2
þ

32b
ð4N þ 2Þ

2
; ð34Þ

Here N is the number of efolds and b is the same as in (14). S3 Fig presents the results of this

study, as relative errors between precise calculations and the SL analytic expressions. These

results are accurate to * 0.1%. However there is a systematic error that is traced back to the

inaccuracy of the approximation:

N ¼
Z tend

tCMB

Hdt ’ �
Z �end

�CMB

V
V 0

d�: ð35Þ

A shift N! N − 0.8 is sufficient to reduce the systematic error such that the relative error is of

the order of 10−3 * 10−4%. Additional types of simple potentials, which yield time-dependent

slow-roll parameters were also studied. In all cases the relative error between calculated results

and the traditional SL expression (16) is bounded from above by *0.1%. Furthermore, a more

careful analytical treatment leads to better accuracy, bounded from above by about 0.02% rela-

tive error. Additionally, we were able to recover the “Cosmic ring” phenomenon, that is the

PPS response to a step function in the potential. This response feature in the PPS was first stud-

ied in [48].

We take all these results as a strong indication of sufficient accuracy of our calculations.

Appendix B—A short recap of the Stewart-Lyth formulation

In order to better understand the origin of discrepancy between precise results and the analyti-

cal SL expression, we retrace the procedure of deriving an analytical expression for ns. Recall-

ing the definition for the pump field Z, and the MS equation (Eqs (4) and (5)). The parameter

ν is properly defined as:

n ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z00

Z
t2 þ

1

4

r

: ð36Þ

However, in the SL formulation, the approximations made lead to the defining of ν as:

nSL ¼
3þ 2dH þ �H

2ð1 � �HÞ
; ð37Þ

which can be very different. Then,

U 00K þ k2 �
n2 � 1

4

� �

t2

� �

Uk ¼ 0: ð38Þ

For a constant ν this becomes the Bessel equation, with known solutions. As mentioned before

(8), the value of Z00
Z is given by:

Z00

Z
¼ 2a2H2 1þ

3dH

2
þ �H þ

d
2

H

2
þ
�HdH

2
þ

1

2H
_�H þ

_dH

� �� �

: ð39Þ

In many cases, one assumes that the time derivatives are small and can be neglected. However,

these derivatives yield 2nd order terms that can significantly affect the value of Z00
Z . The full
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expression is given by:

Z00

Z
¼ 2a2H2 1þ

3dH

2
þ �H þ �

2

H þ 2�HdH þ
1

2

dH �⃛

H€�

 !

; ð40Þ

which may differ from Eq (39) when d
2

H and/or
dH €�

H _�
are non-negligible. �2

H is usually of the

order of 10−5 or less, even for models with high r.

Applying boundary conditions and taking the small arguments limit we are left with a

power spectrum of:

log ðPRÞ ¼ � logð32p2G2ð 3

2
ÞÞ

þ2n logð2Þ þ 2 logðkÞ þ 2 logðGðnÞÞ

þð1 � 2nÞ logð� ktÞ;

ð41Þ

which yields the scalar index of:

ns ¼ 4 � 2nþ 2 log 2ð Þ þ c nð Þð Þ
@n

@ logðkÞ
; ð42Þ

with the digamma function cðxÞ � G0ðxÞ
GðxÞ . The final expression is heavily dependent on the value

and time derivative of ν. This is a possible source of discrepancy. It is now customary to define:

a ¼
�

V;�
V

�2

b ¼
V;��

V g ¼
V
;�3

V;�
; ð43Þ

or related quantities (εV ¼
a

2
for instance). Having defined these, usually one connects the orig-

inal slow roll parameters with the above quantities by [22]

�H ’
a

2
�

a2

3
þ

ab

3

dH ’
a

2
� b �

2a2

3
þ

4ab

3
�

b
2

3
�

ag

3

dH �⃛

H€�
’ a2 �

5ab

2
þ b

2
þ ag:

ð44Þ

With these relations one can substitute the slow-roll parameters in Eq (14), for the quantities

in Eq (44), to get the most commonly used analytical expression for the scalar index [23]:

ns ’ 1 � 6εV þ 2ZV

þ 2�

"
Z2

V

3
� ð8bþ 1ÞεVZV

�
5

3
� 12b

� �

ε2
V þ bþ

1

3

� �

x
2

V

#

;

ð45Þ

where εV ¼
a

2
; ZV ¼ b ; x

2

V ¼ ag, and with the same b as in (14).

Supporting information

S1 Fig. Shown is the convergence of results of precise calculations (crosses) to analytic ones

(solid curve). As the power law index grows, convergence to a de-Sitter inflation is apparent.
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The embedded panel demonstrates the high accuracy level, as the initial typical error is of

order 10−2 * 10−3% and it decreases as a function of the power law index p.

(EPS)

S2 Fig. Convergence of the numerical results for nrun to the analytic value. Shown are the

numerical results for nrun (diamonds) and the diagnostic
Dns

D logðkÞ (squares). Also, we show that

the values for nrun as extracted, are well below current observational bound. As such the accu-

racy levels in nrun are sufficient.

(EPS)

S3 Fig. Relative error (in percents) between numerical results and the SL analytical expres-

sion (black X’s). The errors converge to 0 for large values of N. Shifting the number of the

efolds by N! N − 0.8 yields a relative error of the order of 10−3 * 10−4% (green pluses).

(EPS)
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