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Sensor technologies allow ethologists to continuously monitor the behaviors of large

numbers of animals over extended periods of time. This creates new opportunities to

study livestock behavior in commercial settings, but also newmethodological challenges.

Densely sampled behavioral data from large heterogeneous groups can contain a

range of complex patterns and stochastic structures that may be difficult to visualize

using conventional exploratory data analysis techniques. The goal of this research was

to assess the efficacy of unsupervised machine learning tools in recovering complex

behavioral patterns from such datasets to better inform subsequent statistical modeling.

This methodological case study was carried out using records on milking order, or

the sequence in which cows arrange themselves as they enter the milking parlor.

Data was collected over a 6-month period from a closed group of 200 mixed-parity

Holstein cattle on an organic dairy. Cows at the front and rear of the queue proved

more consistent in their entry position than animals at the center of the queue, a

systematic pattern of heterogeneity more clearly visualized using entropy estimates, a

scale and distribution-free alternative to variance robust to outliers. Dimension reduction

techniques were then used to visualize relationships between cows. No evidence of

social cohesion was recovered, but Diffusion Map embeddings proved more adept

than PCA at revealing the underlying linear geometry of this data. Median parlor entry

positions from the pre- and post-pasture subperiods were highly correlated (R = 0.91),

suggesting a surprising degree of temporal stationarity. Data Mechanics visualizations,

however, revealed heterogeneous non-stationary among subgroups of animals in the

center of the group and herd-level temporal outliers. A repeated measures model

recovered inconsistent evidence of a relationships between entry position and cow

attributes. Mutual conditional entropy tests, a permutation-based approach to assessing

bivariate correlations robust to non-independence, confirmed a significant but non-linear
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association with peak milk yield, but revealed the age effect to be potentially confounded

by health status. Finally, queueing records were related back to behaviors recorded via

ear tag accelerometers using linear models and mutual conditional entropy tests. Both

approaches recovered consistent evidence of differences in home pen behaviors across

subsections of the queue.

Keywords: milking order, exploratory data analysis, unsupervised machine learning, data mechanics, entropy,

manifold learning, precision livestock

INTRODUCTION

For much of its history, ethological research in livestock has
relied on human observers to encode behaviors of interest (1).
While developing a detailed ethogram and observer training
protocols constitute no simple task, there are several inherent
advantages to this approach for subsequent statistical analyses.
Continuous involvement of a human in the incoming data
stream allows many erroneous data points to be identified and
excluded from downstream analyses that they might otherwise
destabilize. Extensive involvement of research personnel in the
data collection phase also nurtures a deeper familiarity with the
system under study. This not only aids in the specification of an
appropriate statistical model and interpretation of results, but is
often critical in identifying unexpected behavioral patterns that
can inspire novel hypotheses.

Unfortunately, the inherent quality of such data imposes
practical limitations on the quantity that can be produced. This
can restrict both the number of animals utilized in a study
and the period of time over which they are observed. The
later limitation can overlook important dynamic features of
the behavioral patterns under consideration. Restrictions on the
number of animals that can be studied, on the other hand, can
fundamentally alter the behavioral mechanisms at play in a herd.
For example, the linearity of dominance hierarchies are known
to change with group size (2). As commercial herds and flocks
become ever larger, this only serves to broaden the gap between
experimental findings and the welfare challenges they are meant
to inform. Subsampling of animals or observations windows may
be employed to reduce the number of observations collected
without restricting the size of the study system. If the pre-existing
base of scientific literature does not provide clear guidance on
the selection of target animals or focal periods, however, such
strategies may risk overlooking finer-grain behavioral patterns
and skewing inferences about the collective behavior of the
group (3, 4).

In recent years, livestock sensor technologies have become
a popular alternative to visual observation (5–8). While the
behaviors recorded are neither as complex or as detailed as
those quantified via an observational ethogram, such devices
have the capacity to continuously monitor hundreds or even
thousands of animals for extended periods of time. Such a
substantial expansion in the bandwidth capacity of ethological
studies creates many new opportunities to better understand
the behavior of livestock, particularly in large-scale commercial
settings, but also raises newmethodological challenges. Replacing

nuanced human intuition with basic computer logicmay increase
the risk of erroneous data points, an issue that is only further
compounded by the scale of data produced by such technologies,
which renders many conventional visualizations techniques
ineffective in identifying outliers. Observations recorded over
extended time periods with high sampling frequency from large
heterogeneous social groups may also contain a range of complex
stochastic features—autocorrelation, temporal non-stationary,
heterogeneous variance structures, non-independence between
experimental units, etc. —that can lead to spurious inferences
when not appropriately specified in a conventional liner model.
The hands-off and somewhat black-boxed nature of many
sensor platforms, however, do not nurture the intuition needed
to identify many of these model structures a priori. Such
insights must instead be drawn directly from the data itself, but
here again, standard visualization tools may not scale to such
large datasets.

Unsupervised machine learning (UML) tools offer a distinct
empirical approach to knowledge discovery that are purpose
built for large and complex datasets (9). Whereas, conventional
linear models excel at providing answers to targeted experimental
hypotheses, UML algorithms strive to identify and characterize
the non-random patterns hiding beneath the stochastic surface
of a dataset using model-free iterative techniques that impose
few structural assumptions. This open-ended and highly flexible
approach to data exploration may offer an empirical means
by which to recover much of the familiarity with a study
system that is lost with the shift from direct observation to
sensor platforms. The purpose of this research was contrast the
behavioral insights gleaned from UML algorithms with those
recovered using conventional exploratory data analysis (EDA)
techniques, and to then explore how such information could be
best integrated into standard linear analysis pipelines.

Milking order, or the sequence in which cows enter the
parlor to be milked, is recorded in all RFID (Radio Frequency
Identification) equipped milking systems, making such records
one of the most universal automated data streams to be found on
modern dairies. Despite their ubiquity, such records are seldom
used to inform individual or herd-level management strategies.
This lack of utility, however, has not been for lack of study.
Milking order has been the subject of scientific study since 1950’s
(10), with early investigators speculating that such records might
contain pertinent information about individual cow productivity
(11, 12), health (13), and social status (12, 14, 15). The modest
base of scientific literature that has since been compiled on
this topic, however, has struggled to recover repeatable evidence
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of such associations (16–19). While such inconsistency may
simply reflect non-uniformity in the behavioral strategies driving
queueing patterns across different herds and farm environments,
misspecification of the linear models used to describe this system
could also contribute to volatility in these statistical inferences.
The objective of this methodological case study will be visualize
the various stochastic aspects of such records using UML tools
in an effort to identify erroneous data points and heterogeneous
variance structures that may not be recovered using conventional
EDA techniques.

METHODS

Study Animal Management
Data for this case study was repurposed from a feed trial
assessing the effect of an organic fat supplement on cow health
and productivity through the first 150 days of lactation (20).
All animal handling and experimental protocols were approved
by the Colorado State University Institution of Animal Care
and Use Committee (Protocol ID: 16-6704AA). The study ran
from January to July of 2017 on a certified organic dairy in
Northern Colorado. A total of 200 mixed-parity Holstein cows
were enrolled over a 1.5 month period as study-eligible animals
calved. Cows were maintained in a closed herd for the duration
of the study, with sick animals temporarily removed to a hospital
pen when necessary. The study pen was an open-sided free
stall barn, stocked at just above half capacity with respect to
bunk space and beds, with free access to an adjacent outdoor
dry lot. At roughly the midpoint of the trial, cows were moved
overnight to a grass pasture that conformed with organic grazing
requirements [for more details on pen setup see (21)]. Cows had
access to total mixed ration (TMR) ration following eachmilking.
Animals were temporarily split into two subsections of the pen
following the morning milking to facilitate administration of
control and treatment diets. Cows remained locked for roughly
45min following this division so that farm and research staff
could collect health and fertility data. Additionally, all animals
were fitted with CowManager R© ear tag accelerometers (Agis
Automatisering BV, Harmelen, Netherlands). This commercial
sensor platform, while designed and optimized for disease and
heat detection, also provided hourly time budget estimates
for total time (min) engaged in a range of behaviors—eating,
rumination, non-activity, activity, and high activity—as well as
average skin temperature.

Data Wrangling
Raw milk logs were exported from the rotary parlor following
each morning milking (ALPRO, DeLaval, Tumba, Sweden), and
were processed using data wrangling tools available in R version
3.5.1 (22). To account for missing records due to illnesses and
RFID reader errors, ordinal entry positions were normalized
by the total number of cows recorded in a given milking
(18). Transforming the data to an entry quantile served to
make the domain restriction uniform across days. Additionally,
“dividing out” daily variations in herd size served to prevent
this uncontrolled experimental factor from artificially increasing
individual variability in entry position. For example, if a cow

were always the last animal to enter the parlor, her ordinal entry
position might vary widely with herd size, but her entry quantile
would always be 1.

The first 55 days of records were excluded from analyses to
allow all animals to enter the herd over the rolling enrollment
period and become established in their parlor entry position (16).
To avoid irregularities in cow movements, several observation
days surrounding management changes were also dropped,
including: the 2 days preceding transition to pasture, the 4 days
following pasture access, and the final 7 days on trial. Any days
where <75% of the herd was successfully recorded in the parlor
were also dropped. This left a total of 80 days of milk order
observations−26 recorded while cows remained overnight in
their pen, and 54 after the transition to overnight pasture. Finally,
cows that were not present in at least 50% of the remaining
milkings were excluded from further analysis. Of the 177 cows
with sufficient records, 114 had no recorded health events.

Quantifying Degree of Randomness
The first step in understanding this system was to determine
if there was any evidence of non-random patterns in queue
formation. Had this data been collected observationally,
researchers might have simply noted if the same cows
consistently entered the parlor in a given section of the queue.
Standard summary statistics do not readily lend themselves to
making an equivalent empirical determination, however, as cow
identity is a discrete variable with no inherent nominal value.
This issue is encountered fairly regularly in ethological studies,
where many qualitative behaviors have no natural ordering,
such as: locations occupied in a pen at discrete time points,
conspecifics an individual interacts with, feedstuffs or enrichment
items engaged with, etc. Here we use entropy to quantify the
stochasticity of cow-membership within each fixed quantile range
(Hq). To compute these values, the queue was divided into
20 equally-sized segments (q0−0.05, ..., q0.95−1). For each queue
segment, counts were generated to determine how frequently
each individual cow had been observed in that range of entry
quantiles. Shannon’s entropy was then calculated conditional of
queue segment (q) using the formula in Equation 1 (23).

Hq = −
∑

c = cow

nc|q

Nq

∗ log2

(

nc|q

Nq

)

(1)

nc|q = total times a given cow (c) is observed in quantile

position (q)

Nq = total animals observed in queue segment (q) across

observed milkings

With this metric, the more consistently a smaller set of cows
are observed in a given segment of the queue, the smaller the
entropy values becomes to reflect less stochasticity in the system.
In standard statistical models, the nominal value of estimators
such as loglikelihood and AIC scale with the size of the data
set, and must be interpreted relative the value of equivalent

Frontiers in Veterinary Science | www.frontiersin.org 3 August 2020 | Volume 7 | Article 523

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
ramya
Rectangle
math_1.gif

ramya
Rectangle
math_2.gif



McVey et al. Mind the Queue

terms assessed against a null model. Analogously, the nominal
value of the entropy estimates scales with the number of discrete
categories used. The maximum theoretical value occurs when no
underlying deterministic structures are present and all categories
are equally likely to occur, which algebraically simplifies to the
log of the number of discrete categories used (23). Here the
maximum theoretical entropy value would be log2(114) = 6.83.
To visually contrast differences in stochasticity across the queue,
the observed entropy values were plotted against the median
entry quantile of the corresponding queue segment using the
ggplot2 package, with maximum theoretical entropy added as a
horizontal reference line (24).

Non-random patterns in queue formation could also be
explored by tracking the entry position of individual cows over
time. As entry quantile has a numerical value, we can now
also use variance to quantify and contrast stochasticity between
animals. As with all analytical approaches reviewed in this paper,
there are both strengths and shortcomings to either approach
(Table 1). In this system there are two potential drawbacks to
this conventional summary statistic. The first is that variance
estimates are quite sensitive to outliers, making it difficult to
empirically distinguish between cows that occupy a wider range
of queue positions and animals who typically occupy a narrower
range but might have gotten jostled far from their normal
position on one or several occasions. The second drawback
is that, because variance quantifies dispersion about a central
value, it cannot distinguish between cows that demonstrate little
consistency in entry position and multimodal queuing patterns.
For example, if a cow always entered the parlor either first or
last, we would intuitively determine that this pattern is non-
random, but the corresponding variance estimate would be the
largest in the herd. These issues are circumvented, however, by
discretizing entry quantile values and again using entropy to
quantify stochasticity. To evaluate an individual cow’s variability
in quantile range-memberships (Hc), count data was used to
recalculate Shannon’s entropy conditional on cow ID (c) using
Equation 2 (23).

Hc = −
∑

q = Queue Segment

nq|c

Nc

∗ log2

(

nq|c

Nc

)

(2)

nq|c = total times a given cow (c) is observed in quantile position (q)

Nc = total number of days a given cow (c) was observed in the queue

Here the maximum possible entropy value, signifying a cow
is equally likely to occupy any queue segment, would be
log2(20) = 4.32. Observed entropy and variance values were
visually compared using the ggplot2 package (24). To test
if an individual cow demonstrated less stochasticity in entry
positions than would be expected with a purely random
queueing process, entry quantile values were again permuted
within each observation day, and both variance and entropy
recalculated. This process was repeated over 5,000 iterations to
generate empirical cumulative density functions (CDFs) for both

stochasticity estimators under the null, which were then used to
estimate p-values for the corresponding observed values.

Visualization of Inter-animal Relationships
Having recovered evidence of non-random patterns, the next
step was to begin characterizing the behavioral mechanisms
driving this heterogeneity. The most fundamental question that
need be answered to inform further analysis was the degree to
which queueing patterns were driven by individual or collective
behaviors. Because cows jockey for position with one another in
the crowd pen, where they are pushed up to enter the parlor, we
know intuitively that entry quantile records cannot be considered
truly independent observations. If cows move through this melee
as independent agents, such that their position within the queue
is determined by individual attributes—preferences, dominance,
etc. —then a linear model may still provide a reasonable
approximation of the underlying system. Early observational
work on milking order, however, has suggested that cows may
form consistent associations when entering the milking parlor,
particularly when heifers are reared together (13, 25). If cows
move into the parlor in cohesive units, such that queue position is
more determined by clique-level than individual attributes, then
network analyses may be a more appropriate.

Principal Component Analysis (PCA) is commonly employed
to visualize relationships between observational units in high
dimensional datasets. In this approach, redundancy between
variables, here each milking record, is captured using either
covariance or correlation assessed across all data points, here
all animals. An eigenvector decomposition is then used to
linearly compress the information contained in the data via
rotation of the orthogonal axes. New axes (loadings) are added
iteratively such that each new dimension is pointed in the
direction of greatest remaining variability until only noise
remains (26). Each data point is then projected into the resulting
low-dimension linear space (27). PCA was here performed
only on animals with no recorded health in order to prevent
any anomalous queuing behaviors recorded from acutely or
chronically ill animals from obscuring the queuing patterns
of the broader herd. The correlation matrix was constructed
using all pairwise complete observations, and a scree plot was
used to determine the dimensionality of the resulting space (see
Supplemental Materials). The plotly package (28) was then used
to visualize the final embedding.

While PCA provides a computationally expedient means of
visualizing high dimensional data, the underlying assumption
of linearity is not always appropriate (26, 27). In some data
sets complex geometric constraints, such as those commonly
found with images or raw accelerometer data, and other
latent deterministic features may project data points onto high
dimensional geometric surfaces collectively called manifolds
(29, 30). When these topologies are non-linear (cones, spheres,
donuts, etc.), the spatial relationships between data points cannot
always be reliably maintained when projected directly into a
linear (Euclidean) space, which can lead to incorrect inferences
(27, 31). Imagine, for example, you had a round globe of
the world and wanted instead a flat map. Applying PCA to
this task would be analogous to smooshing the globe flat on
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TABLE 1 | Summary of analytical approaches compared in this manuscript, and a comparison of their relative strengths and shortcomings.

Analytical Goal Approach Strengths Shortcomings

Quantifying randomness Variance • Uses continuous measures • Cannot use categorical data

• Assumes unimodality

• Sensitive to outliers

Entropy • Uses categorical data

• Permits Multimodality

• Robust to Outliers

• Continuous measures must be discretized,

which can result in loss of information

Visualizing inter-animal

relationships

PCA • No metaparameters

• Assess embedding via loadings

• Assumes latent structures are linear (additive)

Diffusion map • No linearity assumption • Employs metaparameters

• Embedding qualitatively assessed

using visualizations

Visualizing temporal

non-stationarity

Residual plots of stational repeated

measures model

• Considers all data points simultaneously • Non-homogeneous temporal trends may

be overlooked

Time × Response scatter plots for each

cow

• Easy to create and visually assess

for non-stationarity

• Difficult to contextualize trends across

entire herd

Data mechanics plot • Simultaneously visualize social and temporal

structure

• Non-homogeneous temporal trends

visually enhanced

• Row and column cluster granularity must be

determined visually

Association between queue

position and cow attributes

Linear mixed effect model • Targeted hypotheses

• Simultaneous estimation of

multiple covariates

• Non-independence between animals inflates

rate of Type I Errors

Mutual conditional entropy permutation

test

• Robust to between-animal

non-independence

• Detects non-linear patterns

• Cannot adjust for influence of other

variables (confounders)

Association between queue

position and accelerometer

logs of home pen behavior

Linear mixed effect model • Targeted hypotheses • Convergence issues with two large sets of

repeated measures

Mutual conditional entropy permutation

test

• Generalized pattern detection

• Easily extended to large data

• Cannot adjust for confounding variables

a table. Some of the original geographic relationships would
be discernable, but some locations would appear erroneously
close, and some landscapes would be entirely obscured. Modern
manifold learning algorithms strive to more reliably project the
complex geometric relationships between observational units
into a standard Euclidean space by approximating the surface of
a non-linear manifold with a series of interconnected flat surfaces
that can then be “unwrapped” onto a linear space (32). Returning
to the previous pedagogical metaphor, this would be analogous
to taking pictures of the globe centered around a number of
key geographic locations, and then attempting to arrange the
overlapping images onto a flat table. Some geographic features
will still be lost, particularly over sparsely sampled regions like the
oceans, but the spatial relationships between landmarks would
collectively provemore representative of the original topography.

To further explore the underlying structure of this data absent
assumptions of linearity, and thereby potentially accommodate
any complex geometric constraints imposed on milk order
records by latent social structures within the herd, a diffusion
map algorithm was implemented using functions provided in
base R (22). This was done here by first calculating the Euclidean
distance between temporally aligned vectors of parlor entry
quantiles for each pairwise combination of cows, scaled to adjust
for missing records, and then inverting these values to create

a similarity matrix. From this similarity matrix a weighted
network was created by progressively adding links for the k =

10 nearest neighbors surrounding each data point. A spectral
value decomposition was then performed on the corresponding
graph Laplacian matrix (27, 33). The resulting eigenvalues were
used to select the appropriate number of dimensions, and the
corresponding eigenvectors visualized using the 3D scatter tools
from the plotly package (28). Finally, as a means of comparing
geometric structures identified in the observed dataset with those
of a completely randomized queuing process, the permutated
dataset generated in the previous section was also embedded and
visualized using plotly graphics (28).

Characterization of Temporal Dynamics
Having determined from the previous visualizations that a
linear model might be a reasonable representation of the
underlying deterministic structures of this system, the next step
was to explore the temporal dynamics of this dataset. In a
standard repeated measures model, multiple observations from
the same animal are assumed to be identically and independently
sampled, implying that sampling order should not affect the
observed value. If the observation period is sufficiently long
to allow the underlying process to shift or evolve over time,
however, stationarity cannot be assumed. Failure to statistically
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accommodate a temporal trend can not only lead to spurious
inferences due to incorrect estimation of error variance, but
also risks overlooking dynamic features of the behaviors under
consideration (34). In practice temporal trends are often assessed
by first fitting a stationary model and analyzing the resulting
residuals. This may suffice when the temporal trend is uniform
across animals, but risks overlooking more complex non-
homogeneous temporal affects. This could occur if only a subset
of the larger group displays a non-stationary pattern, a risk that is
likely heightened in large socially heterogeneous groups. In this
physically constrained system, where we know that every cow
moving forwards in the queue must force other cows backwards,
compensatory trends could also be easily overlooked in collective
assessment of residuals.

We first assessed temporal trend using two conventional EDA
techniques. First, the ggplot2 package (24) was used to generate
scatter plots of entry quantile values against the corresponding
observation date for each individual cow, with pasture access
annotated with a vertical line. Plots were visually inspected for
non-stationary, and are provided in Supplemental Materials.
Next, to further explore the impact of the shift from pen to
overnight pasture access on morning queueing patterns, median
queue positions from the two subperiods were plotted against
using the ggplot2 package (24), and Pearson correlation (R) and
Kendall Tau (τ ) were computed using the stats package (22).
While these preliminary visualizations were easy to both generate
and interpret, both treat cows as independent and somewhat
isolated units. With such a large number of animals to consider,
the capacity for human pattern detection is quickly overwhelmed,
making it difficult to contextualize trends within the broader
herd. Further, this approach fails to leverage non-independence
between animals entering the parlor, and thus risks overlooking
subtler collective responses.

Data mechanics visualizations were implemented to
simultaneously explore systematic heterogeneity in milk
entry quantiles both between animals and across the temporal
axis. This was done by first using entry quantile values to
compute two Euclidean distance matrices: one quantifying the
similarity between pairwise combinations of cows, the second
quantifying similarity between pairwise combinations of daily
milking sequences. These distance matrices were then used to
generate two independent hierarchical clustering trees using the
WardD2method (22, 26). By cutting both trees at a fixed number
of clusters, observation days and cows were both partitioned into
empirically defined categories, and a contingency table was then
formed with cow clusters as the row variable and day clusters as
the column variable. The original distance matrices were then
updated, using the clustering structure between cows to create a
weighted distance matrix between days and vice versa, thereby
allowing mutual information to be shared between the temporal
and social axes of the dataset (see Supplemental Materials for
details). After several iterations of this algorithm, clusterings
converged toward a contingency table with minimal entropy,
wherein the entry quantile values within each cell were as
homogenous as possible. When the entry quantile values
were subsequently visualized using a heat map, this highly
generalizable entropy minimization technique served to visually

enhance heterogeneity within the data driven by non-random
patterns along either axis. Further, by facilitating the transfer of
information between axes, interaction effects between the social
and temporal dimensions of this system were magnified, which
here provided a means to explore non-homogeneous temporal
non-stationary between subgroups within the herd (35–37).

The data mechanics pipeline was used to analyze the temporal
dynamics present in both the complete milking order dataset
and the subset of animals with no recorded health events. Heat
map visualizations were generated using the pheatmap package
in R (38), with observation days arranged on the column axis
and Cow ID’s arranged on the row axis. Fixed values for the
number of clusters used to divide the row and column axes could
not be determined a priori. Instead this algorithm was applied
on a grid from 1 to 10 clusters for either axis. The resulting
100 heat maps scanned visually to determine the clustering
granularity required to bring into resolution any interactions
between social and temporal mechanisms. While this process
may be computationally cumbersome, it is empirically analogous
to systematically varying the focus of a light microscope to
bring into resolution microbes of unknown size—a tedious but
effective means of identifying all relevant structures within a
sample (35). Finally, the RColorBrewer package (39) was used to
add color annotations to the column margin, to clarify temporal
patterns, and to the row margins, which served to visualize
potential relationships between queue position, a selection of
individual cow attribute variables, and the onset of recorded
health complications.

Linear Analysis of Cow Attributes
Having thoroughly characterized the stochastic structures
present in this dataset, the insights gleaned from the preceding
visualizations were incorporated into a linear model to evaluate
the relationship between queue position and several cow
attributes. The 4 days identified as outliers by the data mechanics
visualizations were first removed and the dataset converted to
long format to be analyzed as a repeated measures model using
the nlme package (40). Cow was fit as a random intercept via
maximum likelihood method. Guided by the results of entropy
and data mechanics visualizations, VarIdent was used to estimate
separate error variance terms for each cow, and the necessity of
this data-hungry heterogeneous variance model confirmed via
likelihood ratio test against the null model with homogenous
variance (34). After centering and scaling cow attribute variables,
linear fixed effects were added for cow age (days old at start
of trial), calving date (approximately the date of entry into the
herd), and peak milk yield (estimated via the 95th quantile of
each cow’s 150 day parlor lactation record). Interaction effects
were created for each combination of these linear terms, and a
categorical effect added for the control and treatment groups of
the fat supplementation trial. Models were generated for both
the complete dataset and the subset of animals with no recorded
health events, which consisted of 160 and 104 cows, respectively
after removing animals with incomplete attribute records. The
predictive value of each fixed effect term was evaluated via a
Wald’s test. Where a significant association was identified at the
standard α = 0.05 (Type I Error) confidence level, this pattern
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was visualized by plotting the cow attribute variable against the
predicted queue position for each cow (fixed effect+ BLUP).

While UML insights served to improve the specification of
model variance structures within-animal, the validity of statistical
insights made at the between-animal level is still contingent
upon the correct estimation of model degrees of freedom. A
fundamental assumption of frequentist tests is that observations
must be independently sampled. When observations are not
independent, the effective degrees of freedom present in the
model may be lower than the nominal value. This causes the
model to be overconfident in its estimation of error terms,
increasing the risk of a false positive result. Non-independence
due to repeated sampling (pseudoreplication) has here been
accounted for by fitting a random effect for each cow, but non-
independence between animals has not been accommodated. The
results of the diffusionmap and datamechanics visualizations did
not recover overwhelming evidence of coordinated movements
between animals through the queue, which would have signified
non-independence due to social cohesion (positive interclass
correlation between animals); however, we both visualized via
data mechanics and know intuitively that in this physically
constrained system any cow moving forward in the queue must
be countered with other cows being forced backwards and vice
versa. If this effect extends beyond isolated fluctuations in daily
formation of the queue, then the presence of some animals
in the herd might systematically dampen or even completely
prevent other animals from demonstrating behavioral patterns
that they would otherwise display independently or in another
herd with a different social composition (negative interclass
correlation between animals). This would not only serve to
confound the behavioral mechanisms at play, but such cows
whose behaviors are suppressed by their herd mates cannot be
said to be contributing fully to the model, potentially reducing
the effective sample size. This could allow sampling fluctuations
to produce misleading statistical inferences, even in this large
sample of animals (41–43).

UML algorithms cannot recover information about behaviors
that were never expressed, and so are also not immune to the
biasing effects of non-independence between animals. These
tools can, however, provide model-free tests of association that
may serve as a sanity check for statistical inferences when
degrees of freedom may be uncertain. We explore this option
here by again combining modern clustering tools with a flexible
information theoretic approach to pattern detection (35). First,
independent clustering tress were used to subdivide the herd
based on queuing records and each of the cow attributed
variable. The resulting categorical variables were then used to
form contingency tables between queue subgroups and each
of the candidate predictor variables. If no relationship existed
between these two axes, then a cow belonging to a given row
category based on queue records would be just as likely to
belong to any of the column categories based on cow attribute
and vice versa. If instead an underlying biological mechanism
was present linking these axes, then cows within a range of
cow attribute values would be spread unevenly among queue
subgroups. Such heterogeneity in cell counts was quantified by
calculating a weighted mutual conditional entropy (MCE) value

across first the rows and then the columns of the contingency
table and averaging the results, which reflected the amount
of mutual information shared between the two variables. To
determine if the observed MCE value was significantly smaller
than would be expected from random fluctuations in the sample,
row and column classifiers were randomly permuted across
cows to remove any underlying bivariate relationship and MCE
recalculated. This randomization procedure was repeated over
2,000 iterations, and the observed entropy value compared to the
resulting empirical CDF to produce a p-value for the significance
of the bivariate association. Mutual conditional entropy tests
were performed for all significant or marginally significant
linear effects for both regression models. While the number of
clusters used to discretize the cow attribute and queue records
may be specified a priori provided strong biological reasoning
or empirical evidence, mutual conditional entropy tests were
here preformed on a grid from two clusters up to the highest
visible granularity of the corresponding clustering tree, and
the optimal metaparameter values selected by minimizing the
average marginal rank.

Exploring Associations Between Sensor
and Queue Records
Previous studies seeking to identify factors that predict an
animal’s parlor entry position have focused primarily on
biological drivers of queueing behavior related to productivity,
health, and traditional measures of fitness such as age and size
(44). As this herd was also fitted with ear tag accelerometers,
it is here also possible to explore relationships between queue
position and behavioral patterns displayed between milkings.
Due to the size of these datasets, however, this small step beyond
the bounds of the existing literature constitutes a considerable
leap in statistical complexity within a linearmodeling framework.
A multivariate mixed model that considers all observations
from either dataset would exceed the capacity of many solvers
(45). A simpler approach to exploring this relationship might
therefore be to compress the information available in parlor entry
records into a grouping variable and then attempt to identify
differences in the various home pen behaviors across the resulting
subsections of the herd.

We implement this strategy here by using the nlme package
to fit linear mixed models, with cow fit as a random intercept,
against each of the five behaviors recorded by the CowManager
platform (non-activity, activity, high activity, rumination, eating)
and also average body temperature (40). To avoid the risk of
anomalous behaviors that might skew model inferences, only
cows with no recorded health events were used. Hour of the day
was fit as a categorical variable to capture cyclical patterns. Days
on trial was also fit as a categorical fixed effect to allow for non-
smooth longitudinal changes in behaviors due weather and also
the shift to pasture. Finally, queue groups were determined by
arbitrarily dividing the herd into quartiles based on median entry
position. The resulting categorical variable was then fit as both
a main effect and an interaction effect against both cyclic and
longitudinal time effects. Due to the size of the model, temporal
correlation and heterogeneous variance models both exceeded
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the capacity of this package to converge. Comparisons of the
cyclic and longitudinal trends in behavioral patterns between
queue groups were made using the plotting utility available in the
emmeans package (46), with the complete results provided in the
Supplemental Materials.

While linear models provide an expedient means to
statistically evaluate targeted experimental hypotheses, the more
open-ended approach to knowledge discovery provided by UML
algorithms may offer an advantage in exploratory data analysis
problems such as this. We explore the utility of this alternative
strategy here by again employing a mutual conditional entropy
(MCE) test to identify significant associations between these two
behavioral axes (35). The flexibility of hierarchical clustering
tools allows this technique to be directly extended from the
previous section, which compared repeated measures of queue
position against a univariate covariate, to accommodate both
high dimensional datasets. For each parameter recorded by the
CowManager platform, this model free test of association was
performed on the complete sensor record, on subsets of the
records corresponding to each of the three lounging periods
(morning, afternoon, and night), and finally on a subset of the
records where observations from all three lounging periods had
been aggregated. As in the previous section, the number of
clusters used to discretize queue and sensor data were evaluated
on a grid, here from tree depths 2–10. To characterize the
divergent behavioral patterns across queue groups identified by
significant tests of association, tube plots were created by plotting
each within-day subgroup median on a circular grid and then
stacking rings to form a tube using the 3D plotting tools in the
plotly package (28).

RESULTS AND DISCUSSION

Quantifying Degree of Randomness
Looking first at the entropy calculations for each segment of
the queue visualized in Figure 1, it is clear that all parlor
entry positions are not stochastically equivalent. The same
animals are seen consistently at the very front and back of
the queue, such that the resulting entropy values are far lower
than would be seen with a purely random queueing process.
Moving toward the middle of the queue, however, there is
progressively less consistency in the animals present across
milkings, such that the observed entropy values approach a
random process. Looking next at the stochasticity demonstrated
by each individual cow in Figure 2, we see there is again
a clear gradient. Cows with median entry quantiles at the
front and rear of the herd again show far greater consistency
in their entry positions. As their median quantile position
moves toward the center of the herd they become more
variable in their entry positions over the observation window.
This gradient is seen using both entropy and variance as
estimators of stochasticity, but is more visually distinct using
entropy estimates. While discretizing an intrinsically continuous
parameter results in a loss of information, we see here that
this sacrifice has excluded extraneous noise in the system to
bring the underlying stochastic pattern into clearer resolution.
This data thus highlights the potential upside of amending

FIGURE 1 | Entropy estimates from observed (red) and randomly permuted

(blue) datasets are plotted against the median quantile value for the

corresponding segment of the queue. The front and end of the queue are the

least stochastic, but all sections of the queue demonstrate lower entropy than

with purely random queue formation.

entropy estimates to the traditional cadre of summary statistics,
particularly when working with outcome variables that are prone
to extreme or anomalous values.

In examining the results of the permutation tests, nearly
all animals demonstrated significantly less stochasticity in their
entry positions at the standard α = 0.05 significance level as
compared with a completely randomized queueing process. Only
3 cows out of 114 overlapped with the empirical distribution
of entropy estimates under a randomized queueing pattern, and
only 1 cow overlapped when variance was used as the estimator
of stochasticity. This suggests that nearly all animals in the herd
might contribute some information about the underlying non-
random patterns in queue formation to subsequent analyses;
however, the amount of information they contribute may not
be equal, as there is considerable heterogeneity between cows.
Of greater concern, this heterogeneity is systematic, as there
are no cows showing high consistency in entry quantile in
the center of the queue. If this pattern is not driven by
variability in the underlying predictors of queue position, but
instead reflects either an underlying behavioral mechanism
or something even more fundamental to this system such
as the inherent domain constraint (18), this could lead to
inaccurate statistical inferences. To avoid such risks, these simple
visualizations provide clear evidence that a non-trivial variance
model should be incorporated into the model specification
phase to accommodate the heterogeneous variance structures in
this dataset.

Finally, the insights gleaned from these entropy-based
visualization techniques agree well with the prior literature.
Previous studies have repeatedly determined milk order records
to be significantly more consistent than would be expected from
a random queuing process using an array of correlation and
regression-based approaches (10, 12, 16–18, 47). Fewer papers,
however, have explored differences in the consistency of entry
positions between animals. Gadbury (13) observed that only
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FIGURE 2 | Observed entropy (A) and variance (B) values for each cow plotted against their corresponding median entry position. Cows with the greatest

consistency in parlor entry position are found at the front and end of the queue. With both estimators, nearly all cows in the herd demonstrate less stochasticity in

parlor entry position than completely random queue formation as determined by permutation test.

a subset of his herd seemed to demonstrate clear preferences
for parlor entry positions. Such preferences do not appear
to have been constrained to the front or back of the queue,
however, as Gadbury (13) also reported animals with a preference
for the middle of the queue. In a more recent analysis with
large commercial herds, however, Beggs et al. (18) reported
a nearly identical parabolic relationship between mean entry
quantile and variance.With clear and consistent evidence of non-
random patterns having been recovered from this dataset, further
investigation of the behavioral mechanisms that might give rise to
such heterogeneity in milk order records was clearly warranted.

Visualization of Inter-animal Relationships
Visual inspection of the scree plot produced from PCA analysis
revealed only one significant dimension was recovered from
the original 80-dimensional dataset. To visualize the resulting
projections, the first two principal components were plotted
(Figure 3A). Cows appeared evenly spaced along the first
principal axis with no clear gaps between observations. In two
dimensions points also appeared randomly scattered with no
clear clustering. Thus, the PCA results revealed no compelling
visual evidence of social cohesion. The color encoding further
revealed that the first principal component conveyed information
about the center of each cow’s entry quantile observations.
As this was the only significant dimension, this may suggest
that a linear model to predict variations in central moment
would be a reasonable representation of this dataset. This
feature of the dataset was not, however, self-evident in the
geometric relationships between data points revealed by the
PCA projection, and thus might have been overlooked without
specification of color encoding by median entry quantile value
a priori.

Evaluation of eigenvalues returned by the diffusion map
embedding identified five significant dimensions. The 3D
visualizations of these axes in Figure 3B and provided in

Supplemental Materials revealed quite clearly the underlying
linear geometry of this dataset. Color encodings showed that the
relative positions of animals along this narrow geometric band

were determined by median entry quantile, further reinforcing
that central moment was the most defining feature of this dataset.

As with the PCA results, cows appeared fairly evenly spread
along this linear object, with no clear clustering to suggest social

cohesion amongst large or temporally persistent subgroups.
Comparing these results with the embedding of the permutated

queue records (Figure 3C), no clear geometric features were

recovered from data simulated from a purely random queueing
strategy. This reinforced that the linearity of the observed records

was not simply an artifact of the physical linearization of cows as
they enter the parlor single-file, but a reflection of a consistent
pattern in queue formation that might be driven by some
underlying behavioral or biological mechanism.

While the diffusion map embeddings convey a clear linear
geometry, there was also unexplained curvature in the band
along which cows were projected. This proved not to be an

inherent feature of the data itself but a harmonic artifact imposed
by the spectral value decomposition of the graph Laplacian

used to deduce the shape of the underlying network between

cows (48). Such a mathematical operation has several physical
interpretations. One is that an singular value decomposition
(SVD) of the Laplacian is akin to walking around an object
in the dark and striking with a mallet at many points across
its surface so that the quality of the resulting sounds can
be used to discern its shape (49). The linear geometry of
this dataset forms a “rope-like” network (48). When the SVD
decomposition “strikes” such a network to assess the quality of
sound produced, it responds like a plucked guitar string. As
a result, each axis of the subsequent embedding contains an
element of the harmonic series, producing the curvature seen
in these milk order visualizations. Fortunately, this artifact can
be described by closed form equations (48) and imposed onto
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FIGURE 3 | Dimension reduction of milk order records colored by median entry quantile value: (A) PCA embedding returns one principal axis reflecting each cows

central moment of entry position. (B) The first three significant axes of diffusion map embeddings reveals a clearly linear underlying geometry reflecting central

moment. (C) Diffusion map embeddding of data from the simulation of purely random queue formation recovers no distinctive geometry. (D) Harmonic series (purple

points) imposed over observed cow records (yellow points) reveal curvilinear geometry is a embeding artifact. Note: Interactive versions of 3D plots are availble in

Supplemental Materials.

the data to aid in discerning authentic geometric features of
the data (Figure 3D). Thus, while diffusion map did provide
a clearer geometric representation of the inherent linearity of
this dataset than PCA, this dataset al.so reinforces that modern
manifold learning techniques are also not infallible in recovering
the underlying geometry of high dimensional data. While such
embedding techniques may provide helpful insights into the
underlying structure of large datasets, a conservative approach
to visual interpretation of such results is still warranted.

Characterization of Temporal Dynamics
Independent visualization of parlor entry records from each
individual cow (see Supplemental Materials) revealed that the
majority of animals in this sample were surprisingly stationary in
their queueing position. Animals that frequented the front and
end of the queue, being more consistent in their entry position,
provided clearer visual evidence for a lack of temporal trend.
Cows in the middle of the queue showed far greater variability in
their entry positions, making it more difficult to visually discern
temporal trend from stochastic fluctuations. Only two animals
were identified as having a clearly visible trend: cow 13,467,

who had no recorded health events, and cow 13,826, who was
diagnosed with metritis during the enrollment phase early in the
trial. Both cows showed similar trajectories, starting nearer the
end of the herd and moving progressively forward toward the
front, but neither change in queue position coincided with the
shift to overnight pasture access.

This consistency in queue position was further reflected
in a clear linear association between median entry quantiles
from overnight pen and pasture subperiods (see Figure 4). A
slightly wider spread was discernable amongst cows occupying
the middle ranks, but for the majority of animals, median entry
quantile values did not change more than ±0.2. Among the
handful of animals demonstrating a more extreme shift, these
jumps tended to be in the forward direction toward the head
of the queue. Overall, fewer extreme shifts were seen in this
dataset than in a similar bivariate means plot provided in Beggs
et al. (18), though this may simply be a reflection of the longer
subperiods over which median entry positions were assessed.
Correlations between these values were also quite high, with
a Pearson correlation estimate of 0.91 (p < 2.2e-16) and a
Kendal Tau estimate of 0.74 (p < 2.2e-16). These values are, as
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FIGURE 4 | Scatter plot showing strong agreement of median parlor entry quantiles between the pen and pasture subperiods. A small portion of cows which

demonstrated a larger shift in entry position moved forward in the queue after the shift to pasture from pen.

expected, higher than the estimates of consistency reported for
individual milk order samples (17, 19), but on par with results
using subperiod averages on similar time scales (12, 16, 18).
Given the extreme shift in management routine spanning these
two subperiods, however, this level of stability in parlor entry
positions was an unexpected result. Such resilience to changes
in overnight housing environment and the subsequent distance
traversed to access the parlor could suggest that milking order is
largely determined in the crowd pen, a result supported by early
observations by Soffie et al. (12), who reported little correlation
between the order of cows exiting the home pen and entering the
parlor past the first few animals.

Collective assessment of entry quantile records using
data mechanics visualizations did, however, reveal additional
temporal features not identified using independent visualizations
of cow records or collective assessment of aggregate records. The
first and perhaps must surprising insight was that, with finer
granularity in number clusters applied to the temporal (row)
axis, data mechanics identified several days with anomalous
queuing patterns. In Figure 5, a total of 8 column clusters are
imposed without any social stratification on the subset of cows
with no health events. If these records were completely stationary
with no temporal effects, we would expect days to be randomly
partitioned into these eight categories. Instead 4 days are isolated
from the remaining observations. Days 85 and 91 are separated

into clusters of size n = 1, and 89 and 91 are also isolated into
their own cluster of size n = 2. Looking from left to right along
the heat map to identify temporal heterogeneity, it is easy to see
that on these observation days animals typically occupying the
extremes of the queue appear to have been pushed toward the
center and animals typically found in the center of the herd were
either pushed toward the extremes or inverted their tendency
to stay toward the front or end of this middle section of the
queue. While some of the entry quantile values encompassed by
these observation days would likely be identified as outliers for
individual cows, other values would likely be deemed irregular
but not worthy of exclusion. These clustering results, on the other
hand, suggest that either transient environmental or internal
social factors have disrupted the entire herd and caused them
to collectively respond with highly irregular queuing patterns.
As the row axis is stratified to allow for non-homogeneous
temporal responses across subsets of animals, these same days
are consistently isolated from the remainder of the dataset,
reinforcing that these observations constitute an outlier that
should be excluded from any downstream analyses.

Looking next at the coarser stratifications of the temporal axis,
we also see that pen and pasture observations are not equally
dispersed among the column clusters. As the animal (row) axis
is more finely stratified to allow for social heterogeneity within
the herd, the source of the temporal heterogeneity between these
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FIGURE 5 | Data Mechanics visualization of cows with no recorded health events. Clustering along the temporal axis has isolated 4 days of milk order observations in

middle of the pasture subperiod with anomalous queuing patterns, which can be viewed as irregularities in color values scanning from left to right. These days remain

isolated in Data Mechanics mappings which also allow for social stratification along the row axis (see Supplemental Materials), suggesting that these observations

likely constitute outliers. Color annotations along the column axis reveal observations from the pen and pasture subperiods remain fairly distinct. No clear patterns or

gradients are seen on the row color annotations for cow attributes, even though the heat map itself clearly reflects a gradient along the column axis driven by individual

differences in queue entry position. Progressive clustering of the row axis did not bring any additional patterns in cow attribute variables into clear resolution.

two environments comes into resolution. In Figure 6, which
contains entry quantile observations on both sick and healthy
animals, pen and pasture observations are perfectly stratified

across only two column clusters. Looking at the subsets of
animals who consistently entered at the front and rear of the
herd, entry quantile values appear quite homogenous in color
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FIGURE 6 | Data Mechanics visualization of all cows. Color annotations of the column axis reveal that coarser clustering along the temporal axis has revealed a

perfect division of observations between pen and pasture subperiods. Scanning from left to right within the heat map, cows occupying the front and rear of the queue

appear consistent in entry quantile values. Cows in the center of the herd appear to be the source of this temporal heterogeneity, as evidence by systematic changes

(Continued)
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FIGURE 6 | in color along the column axis. In the cluster of animals starting with cow 1431, there is a progressive shift from the rear of the herd in the pen period

toward the front of the herd in the pasture. As row color annotations reveal not all these animals have recorded health events on record, this pattern likely cannot be

explained away by anomalous behaviors from acute or chronic illness.

between the two temporal clusters. Scanning from left to right
among the subgroups of animals that frequented the center of
the queue, on the other hand, systematic fluctuations in daily
entry quantile values can be seen even without finer temporal
stratification. This pattern is clearest in the cluster which contains
both cow 13,467 and cow 13,826—the two animals identified
by independent inspection of cow entry quantile plots to show
evidence of non-stationarity. In this subgroup, cows showed a
tendency to frequent the latter half of the queue when coming
to the milking parlor from the home pen, but during the
pasture period showed progressively greater proclivity to enter
in the front half of the queue. Where this shift is the most
uniform in the latter half of the pasture period, we also see
a compensatory pattern in the subgroup directly above, where
cows shifted from nearer the front to the back half of the
queue. Whether these results reflect the coordinated movement
of relatively small social subgroups or just a common response
to environmental conditions is impossible to say from this
data alone. These results do make it clear, however, that not
only are the cows occupying the center of the queue less
consistently in their entry position, they are also less stable in
their entry pattern. Further, these visualizations underscore that
these divergent dynamics in the pen and pasture subperiods
cannot be captured by a simple fixed effect term. The simplest
option would be to drop from the analysis the animals that
show the strongest non-stationary patterns. With such a large
group, this would still leave ample observations to maintain
statistical power, but could risk biasing the subsequent inferences.
Alternatively, by specifying a heterogeneous variance model
between animals, as was deemed necessary in the original entropy
plots, the influence of these cows on the fitted model may
be reduced sufficiently that deviations from the assumption of
stationarity in this subgroup might not unduly destabilize the
final model.

Finally, some preliminary insights can be gleaned from the
cow attributes added to the row margins of both heat maps. In
Figure 6, animals with documented health events appear fairly
evenly dispersed across subsections of the queue. A slightly lower
rate of illness might be attributed to animals that consistently
occupied the very front of the queue, and perhaps a marginally
higher rate of transition diseases was seen in the animals at
the very rear of the queue, but these patterns appear subtle at
best and thus likely not the only determinant of queue position.
This result was somewhat surprising, as previous research has
suggested that sick animals tend to populate the rear of the queue
(11, 16, 17, 19). If this previously reported trend is driven by
a reluctance among animals in the acute phases of a disease to
move, it is possible that the daily health checks prescribed in
this experimental trial succeeded in identifying and removing
sick animals from the herd sufficiently early that this behavioral
mechanismwas not at play in this dataset. Thismight suggest that

inclusion of these additional animals into subsequent analyses
might not unduly bias subsequent behavioral inferences. Of
perhaps greater concern to subsequent modeling is the lack of
clear color gradients among cows attribute values across the
queue, which could indicate that underlying associations may
either be weak or that there are complex interaction effects
creating a non-uniform trend.

Linear Analysis of Cow Attributes
For both the full dataset and the subset of healthy animals,
likelihood ratio tests revealed the heterogeneous variance model
allowing for differing degrees of variability in queue position
across cows to be a costly but necessary model component (p
< 0.0001). With the model fit to cows with no recorded health
events, significant linear associations were recovered for two
fixed effects. Cows with higher peak milk yields demonstrated a
tendency to enter nearer the rear of the queue (B̂ = 0.14, F1,96 =
9.58, p = 0.003). A significant interaction term revealed this
trend was further amplified for older cows (B̂ = 0.07, F1,96 =

6.11, p = 0.015). No other terms approached significance for
this dataset. With the model fit to all cows that attended at least
50% of recorded milkings, no predictors were significant at the
α = 0.05 cutoff. Peak yield remained marginally significant
(B̂ = 0.06, F1,152 = 2.93, p = 0.089), as did the interaction
term between peak yield and cow age (B̂ = 0.04, F1,152 =

2.92, p = 0.090). With this larger dataset, however, cow
age also demonstrated a marginally significant trend, indicating
older cows tended to be nearer the front of the queue (B̂ =

−0.07, F1,152 = 3.84, p = 0.052).
In contrasting the results of these two models, the loss

of significant association between entry quantile values and
peak yield with the addition of sick animals is perhaps not
surprising. If a disease challenge early in the trial curtailed peak
lactation in these cows but did not cause chronically deficient
production, then the 95th quantile value of milk yield used here
to estimate peak lactation level may not adequately reflected the
overall productivity of these animals across the duration of this
extended trial, obscuring the underlying biological mechanism.
The emergence of a nearly significant association between entry
quantile and age with the addition sick animals, however, is
more difficult to explain. Given that peak yield and age are
highly correlated biological parameters (rall = 0.66, rhealthy =

0.70), this sample may simply contain too few older cows with
low productivity levels by which to disentangle the positive
association with peak yield from the negative association with
cow age. Alternatively, if a diseased state permanently alters
a cow’s queueing pattern and if risk of health complications
in turn varies with age, then health status may be a lurking
variable masquerading as an age effect. In either case, a
relatively small number of animals may be unduly influencing
statistical inferences.
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Visual examination of predicted queue positions plotted
against age and peak yield for both the full dataset (see
Figure 7) and healthy subset (see Supplemental Materials) seem
to confirm thesemisgivings. Looking first at age, the first lactation
heifers, being evenly spread across the center of the queue, cannot
be driving this linear effect. Among the multiparous animals, the
five cows seen consistently in the front of the queue are indeed
among the oldest in the herd, but if this handful of animals and
their corresponding queue positions are ignored, a clear gradient
is not visible among the remaining cows. Results of the mutual
conditional entropy tests confirm this suspicion. For the disease
free subset the MCE test confirms the insignificant association
found in the linear model (p2,2 = 0.103). For the full dataset,
where the linear effect is marginally significant, theMCE test does
not (p7,2 = 0.305). This suggests that either that age effect is only
discernable after adjusting for peak yield or that the association is
not robust.

Looking next at peak yield, a clear global trend could not be
discerned. Among the lower-yielding cows, a group comprised
predominantly of heifers, a linear trend is difficult to discern,
but amongst older cows a slight positive gradient is perhaps
perceptible. Results of the mutual conditional entropy tests not
only confirmed this trend among the healthy animals(p3,5 =

0.036), but also within the full dataset (p2,3 = 0.012) where the
linear effect was only suggestive. Visualization of the contingency
table for this later result revealed no distinctive pattern among the
lowest and highest yielding clusters, but a nearly perfect division
of roughly 50 moderate-yielding cows into the leading queue
cluster. This result suggests that the MCE tests may also be used
in mixed modeling analyses to recover non-random patterns
that are not well-represented by linear trends. Such a non-
linear trend here could belie more complex interaction effects
between these or other unmeasured biological drivers of queue
position. Alternatively, a multilevel model may be necessary
to disentangle complex hierarchical relationships between the
drivers of position preference and a cow’s ability to assert
that preference.

Contextualizing these results within the existing base of
literature underscores the inconsistency in drivers of queuing
behaviors. With respect to milk yield, several studies have found
no significant association (12, 16), but among those that have,
most have reported high yielding cows frequent the front of the
queue. Differences in motivation to obtain feed might explain
this result. In early studies, cows were offered concentrate in
the milking parlor, which may have increased the motivation of
high yielding animals with greater energy deficiencies to enter
the parlor (11, 13). In more recent work, cows may have been
motivated to access limited feed bunk space on commercial
dairies (19) or to obtain prime pasture (50). In this study, as
all animals were locked following milking to facilitate feeding
treatments and health checks, cows would have had ample access
silage regardless of queue position. Alternatively, Rathore (11)
suggested greater intermammary pressure might motivate high
yielding animals to be milked earlier. As this herd was milked
three times daily, however, this biological driver may also have
been attenuated. Indeed, among modern studies with herds
milked thrice daily, Polikarpus et al. (16) found no significant

correlation and Grasso et al. (17) also found high yielding cows
frequented the rear of the queue. Ultimately, as yield is influenced
by a wide range of health and management factors, any number
of confounding variables might be implicated in explaining this
somewhat unexpected result. In this study a significant linear
association between age and entry position was not found. Recent
work by Berry et al. (19), which identified a non-linear trend
across parity, and by Grasso et al. (17), which highlighting
significant interactions of parity with other biological drivers of
queue position, suggests that a linear effect may not adequately
capture the underlying biological relationship. A larger and more
structured sample may be necessary to bring more complex age
dynamics into clearer resolution.

Exploring Associations Between Sensor
and Queue Records
Visual inspection of means plots produced from mixed model
analysis of sensor records recovered only a handful of statistically
significant differences between queue quartiles when hour
and day effects were assessed individually, but several global
trends were still readily visible. With respect to minutes
recorded as active, the 1st−3rd queue quartiles were visually
indistinguishable in their cyclical behavioral patterns, but cows
in the fourth queue quartile were consistently more active,
particularly during the night and morning lounging period. With
respect to longitudinal trends across days, fourth queue quartile
animals were again more active across the observation window,
whereas cows in the first queue quartile were consistently the
least active. These patterns were somewhat mirrored in the
longitudinal and cyclical analysis of high activity minutes, but
the pattern was both less distinct and less consistent. No clear
qualitative insights could be drawn for cyclical or longitudinal
patterns in non-activity. Cyclical patterns in minutes spent eating
were not seen overnight or in the afternoon, but first queue
quantile cows may have spent slightly more time eating after
the morning milking. Longitudinal analysis of eating patterns
suggested cows in the fourth queue quartile spent relatively less
time eating, whereas the cows in the first and second queue
quartile consistently spentmore time at the bunk. This contrasted
with longitudinal results for minutes spent ruminating, where
the cows in the second queue quartile were consistently low.
No clear distinctions between groups were recovered in cyclical
rumination patterns. Temperature patterns were, surprisingly,
themost visually distinct of all the sensor parameters. Cows in the
first queue quartile were consistently lower in body temperature
in both the longitudinal and cyclical time dimensions as
compared with the remainder of the herd.

While the preceding analyses revealed few statistically
significant differences at individual time points, collective
analysis of days and subsets of the 24 h management cycle
would uundoubtedly return statistically significant differences
for the broader qualitative trends visually identified via mean
plots. Within a linear modeling framework, however, this
constitutes no small task. For all of the above models, Wald’s
tests revealed Group-by-Hour interactions effects to be highly
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FIGURE 7 | Visualizations for all cows that attended >50% of observed milkings. Scatter plots of predicted queue position against cow age (A) and peak yield

(B), scaled for heterogeneity in repeated samples of entry quantiles. For both attributes, linear trends are only readily discerned among multiparous animals. Sparsity in

parity 3+ animals might skew the calculation of age effect as a continuous variable. (B) Visualization of contingency table results derived from independent clusterings

used in MCE test of bivariate association. Age effect is lost with empirical discretization (C). A non-linear trend is recovered with peak yield (D).

significant components of the model (p < 0.0001). Group-
by-date interaction effects were also significant for activity,
high activity, and temperature models (p < 0.05). This
suggests that these models should not be simplified to a
single cyclical or longitudinal trend, which would allow overall
differences between groups to be tested via a single group
intercept term. Targeted hypotheses comparing comprehensive
trends between groups would instead require formulation of
linear contrasts—a daunting task with so many fixed effects
terms used to accommodate the high sampling frequency
and extended observation period of this dataset. Further,
as with the linear models with cow attributes, behavioral
synchronization due to social cohesion or compensatory use
of physical resources in the pen could again create non-
independence between animals in such sensor records. Any
such issues in estimation of model degrees of freedom,
compounded with the inability to fit behaviorally and empirically
compelling correlation and variance models, would only serve
to further confound the estimation of appropriate p-values from
these models.

Fortunately, the qualitative trends identified via the preceding
means plots largely aligned with the significant bivariate

associations identified by mutual conditional entropy tests
summarized in Table 2. Activity again proved to be the
most distinctive behavioral axis. Significant associations were
identified for all three lounging periods when analyzed both
independently and in aggregate, with the afternoon lounging
periods being the most distinct. High activity also showed a
significant relation to queue records, but this association may
have been driven predominantly by overnight lounging period.
Whereas, no clear qualitative patterns were identified for non-
activity data via the means plots, a significant association with
queue records was identified during the afternoon lounging
period. A highly significant relationship was identified for
time spent eating for the full sensor record, but given that
time budgets recorded by this platform were segmented
somewhat arbitrarily at the start of each hour, this result
may simply reflect a lag in the arrival of cows to the feed
bunk after exiting the parlor. Significant associations were not
found during the lounging periods at the standard α =

0.05 cutoff, though records from the afternoon lounging
period approached significance. These results were mirrored
in rumination patterns, where again no significant association
was recovered, but the afternoon lounging period approached
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TABLE 2 | P-values generated from mutual conditional entropy tests comparing

queue records to sensor logs.

All Lounging Morning Afternoon Night

Non-activity <0.0017,5 0.0482,5 0.4328,7 0.0022,5 0.1322,6

Activity <0.0013,8 0.0062,8 0.0382,11 <0.0012,3 0.0332,9

High Activity 0.0522,9 0.0282,2 0.27210,9 0.3063,4 0.0142,4

Eating 0.0047,6 0.2347,5 0.1886,4 0.0662,4 0.2129,2

Rumination 0.0212,4 0.059,3 0.3257,2 0.08310,3 0.1528,10

Temperature <0.0015,10 0.0045,5 0.0227,3 0.0063,5 0.0155,3

Subscripts represent the number of clusters used to discretize the row variable (queue

records) and column variable (sensor records). For example, in the test for morning non-

activity, cows were assigned to 8 clusters using queue records and 7 clusters using sensor

logs. Activity and temperature data demonstrated the strongest association with queue

records. The afternoon lounging period produced the strongest associations between

queue and all sensor dimensions save for high activity, which showed the strongest

distinction overnight.

significance. Finally, as with the linear modeling results,
temperature proved highly distinct between queue subgroups for
all subperiods.

Visual inspection of tube plots produced with median
queue subgroup values again yielded insights comparable to
the linear modeling results (Figure 8). Based on the results
of the MCE tests, all behavioral axes cows were clustered
into two subgroups based on queueing records, with Group
1 cows consisting of 80 animals at the front of the queue,
and Group 2 cows constituting the 34 animals in the rear.
Tube plots of minutes spent active revealed Group 2 cows
to be more active across all three lounging periods. This
pattern was the most consistent in the morning and overnight
lounging periods, though this difference was ultimately quite
subtle and seldom constituted more than a few minutes. In
the afternoon subperiod there was evidence of several periods
with anomalously high activity levels, most of which occurred
post-pasture access. The significant association recovered for
minutes spent highly active in the overnight subperiod appeared
to be largely driven by increased activity immediately following
the evening milking, which could reflect divergent home pen
behaviors, but might also have been driven by delays in
milking. To complement these results for active and high
active minutes, the significant association for afternoon non-
activity records appears to have been driven by increased non-
activity among the Group 1 cows during the 3 h immediately
preceding the night milking. As anticipated, differences in time
spent eating were largely restricted to the 2–3 h immediately
following milking. Cows only lingered at the feed bunk during
the morning lounging period, where median eating times
for Group 1 cows were perhaps slightly higher. Similarly,
differences in rumination also appeared restricted to time periods
immediately following milking, with no clear differences seen
during the lounging period with this coarse stratification of
animals. Finally, as with the mean plots, body temperature
values again produced surprisingly distinctive results.More finely
segmented into five queue groups by the mutual conditional
entropy test, the tube plots proved a slightly cumbersome
means of comparing temperature records, but a clear visual

distinction could still be made between the Group 2 animals
and the remainder of the herd. For all three lounging periods,
this relatively small cluster of 17 cows that constituted the
very front of the milking queue demonstrated lower median
body temperature values, a distinction seen most clearly
at night.

The strong agreement between the results of these two
analytical pipelines suggests that UML and conventional
linear modeling approaches could be used interchangeably
or in concert to glean preliminary insights from exploratory
analyses of large sensor-based datasets that may inform future
hypothesis-driven studies. Perhaps the most surprising result
of these analyses, that cows frequenting the back of the
queue are consistently more active between milkings, may
indeed warrant further exploration. In much of the prior
literature, health challenges that impede movement (lameness,
subclinical mastitis, etc.) have been identified as the main
driver of delayed entry into the parlor (13, 16, 17, 51). In
fact, this mechanism is so well-established that it has even
been proposed that milk order records might be incorporated
into genetic evaluations to improve estimates of health traits
(19). As these analyses were run on the subset of animals
with no recorded health events, however, it is possible
that this dataset has brought other behavioral mechanisms
into focus.

One potential explanation for these results might be a
dominance gradient. Previous studies have found that animals
of low social status frequent the rear of the herd in voluntary
movements (10, 52), and social dominance is known to impact
resource access in spatially constricted conditions (53, 54) such
as those found at the entrance to the milking parlor. If low
dominance animals are in turn also forced to wait longer or
walk farther to access resources in the home pen, this could
potentially explain the increased activity levels of animals found
in the rear of the queue. While the early literature has found
the relationship between dominance value and milking order to
be tenuous at best (11–13, 15), it is possible that such social
mechanisms may have been confounded by health status, with
linear analyses of limited sample size failing to disentangle
these mechanisms in non-disaggregated data. Alternatively, in
more recent analyses in automated milking systems, where
dominance has proven highly correlated with milking order
(55), greater attention has also been paid to “avoiders”—
animals that seem to actively avoid social interactions and
therefore occupy no clear position in the herd hierarchy (44).
On this farm, where resources are not severely restricted
and animals are frequently remixed, energetic investments in
a dominance hierarchy may offer few returns (2). Such a
behavioral strategy might also explain why it is high-yielding
multiparous cows and not heifers that occupy the end of the
queue. Both these hypotheses are ultimately purely speculative
interpretations of these exploratory results; however, if proposals
to incorporate milk order records into genetic indices are
progressed, any correlations between queueing position and
consistent individual differences in home pen behaviors likely
warrant closer inspection to mitigate the risk of unintended and
potentially deleterious selection pressures.
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FIGURE 8 | Tube plot visualizations for minutes spent active during the morning lounging period. Based on the results of the MCE tests, all behavioral axes cows were

clustered into two subgroups based on queueing records, with Group 1 cows (A) consisting of 80 animals at the front of the queue, and Group 2 cows

(B) constituting the 34 animals in the rear. Cyclical patterns can be seen around the diameter of the tube, and longitudinal patterns observed along its length. The

median activity level of Group 2 animals, consisting of 34 animals in the rear of the queue, is heightened during the middle of the lounging period for the duration of the

trial. Interactive 3D plots for all sensor output fields are provided in Supplemental Materials.

CONCLUSIONS

As with previous studies of milk order records, these analyses
perhaps raise more questions than answers. As dairy record
management systems grow to accommodate an ever wider
range data streams, perhaps future work considering more
herds from a wider range of management strategies will
succeed in further untangling the complex web of explanatory
variables at the individual, herd, and farm levels that drive
variation in queueing patterns. This dataset has, none the less,
demonstrated the utility of unsupervised machine learning tools
in ethological studies using sensor platforms to study larger
groups of animals over extended periods of time. While these
analyses recovered no evidence of social cohesion amongst
large or temporally consistent subgroups, information theoretic
approaches succeeded in clarifying the underlying pattern of
heterogeneity in error variance between animals and also
demonstrated an advantage in recovering evidence of non-
uniform patterns in temporal non-stationary over basic EDA
tools. After incorporating these insights into the structure
of subsequent linear models, these model-free tools then
showed some capacity to confirm inferential results where
probabilistic assumptions were not strictly met, as well as an
aptitude for recovering significant associations not captured by
a simple linear effect. This flexible clustering-based approach
to identifying significant bivariate associations was then easily
extended to accommodate two high dimensional behavioral
axes, providing equivalent insights to more computationally
taxing mixed effect models. While UML approaches are by

no means infallible, as seen here with artifacts produced by
the spectral embeddings, these analyses have demonstrated
that such tools can add value at every stage of the standard
hypothesis-driven linear analysis pipeline, and may even
offer an advantages over model-based approaches in early-
stage exploratory projects. While many new methodological
developments are doubtless on the ethological horizon, we hope
this algorithmic toolset will provide a meaningful step forwards
to meet the challenges of a future defined by ever larger and more
complex data.
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