
REVIEW

Biomedically relevant circuit-design strategies
in mammalian synthetic biology

William Bacchus1, Dominique Aubel1,2

and Martin Fussenegger1,3,*

1 Department of Biosystems Science and Engineering, ETH Zurich, Basel,
Switzerland,
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Villeurbanne Cedex, France and
3 Faculty of Science, University of Basel, Basel, Switzerland
* Corresponding author. Department of Biosystems Science and Engineering,

Faculty of Science, University of Basel, Mattenstrasse 26, Basel 4058,
Switzerland. Tel.: þ 41 61 387 31 69; Fax: þ 41 61 387 39 88;
E-mail: fussenegger@bsse.ethz.ch

Received 26.5.13; accepted 7.8.13

The development and progress in synthetic biology has been
remarkable. Although still in its infancy, synthetic biology
has achieved much during the past decade. Improvements
in genetic circuit design have increased the potential for
clinical applicability of synthetic biology research. What
began as simple transcriptional gene switches has rapidly
developed into a variety of complex regulatory circuits
based on the transcriptional, translational and post-transla-
tional regulation. Instead of compounds with potential
pharmacologic side effects, the inducer molecules now used
are metabolites of the human body and even members of
native cell signaling pathways. In this review, we address
recent progress in mammalian synthetic biology circuit
design and focus on how novel designs push synthetic
biology toward clinical implementation. Groundbreaking
research on the implementation of optogenetics and
intercellular communications is addressed, as particularly
optogenetics provides unprecedented opportunities for
clinical application. Along with an increase in synthetic
network complexity, multicellular systems are now being
used to provide a platform for next-generation circuit
design.
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Introduction

Mammalian synthetic biology has established itself in only a
few years as one of the strongest and most innovative
biological disciplines (Grushkin, 2012). What began as simple

transcriptional gene switches responding to supplied inducers
has become an ever-expanding toolbox of genetically encoded
circuits with highly complex functionality. The design of such
mammalian circuits has proliferated, and is now able to apply
regulatory mechanisms at the DNA, RNA or protein levels, or
in some combination thereof (Keefe et al, 2010; Wieland and
Fussenegger, 2012; Wang et al, 2013). The arsenal of circuits
now available includes genetic toggle switches (Kramer et al,
2004b; Greber et al, 2008), band-pass filters (Greber and
Fussenegger, 2010), time delay circuits (Weber et al, 2007b),
memory devices (Burrill et al, 2012), oscillators (Tigges et al,
2009) and biocomputers (Benenson, 2011; Auslander et al,
2012a; Daniel et al, 2013). Circuits have been designed for
diverse purposes, including to perform logic calculations
(Rinaudo et al, 2007; Auslander et al, 2012a), screen for
anti-tuberculosis compounds (Weber et al, 2008), control
T-cell proliferation (Chen et al, 2010), kill cancer cells (Xie et al,
2011) or treat metabolic disorders (Kemmer et al, 2010; Ye et al,
2011, 2013).

However, despite increased complexity and highly innova-
tive circuit design, synthetic biology’s current state is still that
of a ‘proof of concept’ discipline. To progress toward clinically
relevant applications, synthetic biology design has changed
drastically in recent years. Of crucial importance are both the
design of regulatory circuits and the biocompatibility of
regulatory compounds. The original gene switches were
constructed to respond to compounds with potential pharma-
cological side effects, such as antibiotics (Fussenegger et al,
2000; Weber et al, 2002). Newer circuits aim to reduce
potentially negative impacts on patients, and therefore use
food components and food additives such as vitamins and
amino acids (Weber et al, 2007b; Bacchus et al, 2012), cell
metabolites (Weber et al, 2007a; Wang et al, 2008), signaling
transduction partners (Culler et al, 2010) and even endogenous
cell type-specific transcription factors (Nissim and Bar-Ziv,
2010) to regulate the circuit function. This enables synthetic
circuits to be directly integrated with the patient’s metabolic
networks to interface and respond to endogenous signals
already present in the patient (Weber and Fussenegger, 2012).

Part of the success of mammalian synthetic biology has been
due to its ability to constantly improve and create more
advanced and robust genetic circuits. But another part of its
success has been its ability to interact with other emerging
biological disciplines (Ehrbar et al, 2008; Milias-Argeitis et al,
2011; Guo et al, 2012; Heng et al, 2013), the most obvious
example being optogenetics (Chow et al, 2010; Chow and
Boyden, 2011). Research at the interface with optogenetics has
led to the development of non-invasive traceless methods of
regulating various cellular functions by simple light irradiation
(Levskaya et al, 2005; Tyszkiewicz and Muir, 2008; Yazawa
et al, 2009; Kennedy et al, 2010; Ye et al, 2011; Wang et al, 2012;
Bugaj et al, 2013; Muller et al, 2013a, 2013b). Photoreceptors,
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the sensory building blocks of optogenetic circuits, are
abundant in nature. They are continually being identified,
characterized and genetically modified by researchers, and
therefore provide a constant flow of novel building blocks for
constructing light-responsive synthetic biology tools (Airan
et al, 2009; Chow et al, 2010).

Multicellular organisms consist of different consortia of
specialized cells that have evolved to execute and coordinate,
by intercellular communication, specific activities to distribute
highly complex tasks and workload to increase the overall
fitness of the organism. Likewise, with synthetic biology-based
circuits becoming increasingly complex and multilayered
(Auslander et al, 2012a; Moon et al, 2012), a single designer
cell will no longer be able to cope with the complexity of
programmed functionalities. To ovecome this limitation,
engineered activities and metabolic workload will need to be
distributed among different communicating designer cell
populations that coordinate their activities to provide con-
certed actions. The design and construction of synthetic
intercellular communication has thus far provided a ready
and sustainable solution (Li and You, 2011). Engineering
specialized and interconnected cell populations allows for a
plug-and-play approach where the combinations themselves
determine the overall function of the cellular consortium
(Regot et al, 2011; Tamsir et al, 2011). Synthetic multicellular
consortia of communicating cell populations show increased
control precision and reliability (Koseska et al, 2009) and will
foster advances in tissue engineering, the assembly of complex
cellular patterns with novel functionalities (Liu et al, 2011),
and the design of synthetic hormone systems (Weber et al,
2007a). Also, the distribution of synthetic circuits among
specialized cell populations may overcome apparent limita-
tions in the engineering capacity and metabolic activities of
individual cells and will enable the design of increasingly
complex multicellular gene networks (Bacchus et al, 2012;
Rusk, 2012).

In this review, we cover the novel repertoire of mammalian
synthetic circuit design. We discuss regulatory circuits that enable
a direct link between synthetic biology and endogenous
cellular activities, continuing advances in circuit design, synthetic
circuits that implement optogenetic features, and conclude
with a discussion of synthetic intercellular communication and
prosthetic networks.

Synthetic circuits based on rewired
cell-signaling pathways

To integrate synthetic circuits with endogenous signaling
pathways, cells are engineered to express transmembrane
receptors that respond via endogenous signal transduction
pathways. In this way, the circuits use the natural signaling
mechanism of the cell to regulate cellular functions. This can be
done in a direct way, via elevated levels of second messengers
(Airan et al, 2009), or an indirect way, via activation of
synthetic promoters (Kemmer et al, 2011; Ye et al, 2011, 2013;
Stanley et al, 2012). This design enables a generic strategy for
constructing synthetic control systems, which can be designed
to respond to either endogenous or externally applied stimuli
depending on which receptor is used.

This strategy was adopted to construct a synthetic circuit for
the treatment of the metabolic syndrome, a collection of
interdependent pathologies including hypertension, hyper-
glycemia, obesity and dyslipidemia. Cells were engineered
to express a chimeric trace amine-associated receptor 1
(cTAAR1), which produced a stronger cAMP response
compared with its native counterpart in response to the
clinically licensed antihypertensive drug Guanabenz (Wyten-
sins) (Ye et al, 2013). Increased intercellular cAMP levels
triggered transgene expression from a synthetic promoter
(PCRE) via the cAMP-responsive element binding protein 1
(CREB1). In this way, the oral dose of Guanabenz was
simultaneously controlling hypertension as well as expression
of a bifunctional therapeutic peptide hormone, GLP-1-Leptin,
which combines the anorexic and insulin secretion-stimulat-
ing effect of the glucagon-like peptide 1 (GLP-1) with the lipid
level, food intake- and body weight-controlling capacity of
leptin. Implanting the circuit in mice that were developing
symptoms of the metabolic syndrome (ob/ob mice) enabled
simultaneous correction of all associated pathologies
(Figure 1A) (Ye et al, 2013).

Melanopsin, the photopigment of retinal ganglion cells that
interacts with retinal (vitamin A), has been utilized to induce
light sensitivity in otherwise non-sensitive cells (Melyan et al,
2005). In retinal ganglion cells, blue-light stimulation of
melanopsin activates transient receptor potential channels
(TRP channels) via a G-protein signaling cascade, resulting in
calcium influx. By linking melanopsin signal transduction to
the endogenous signaling pathway of the nuclear factor of
activated T cells (NFAT), which is responsive to elevated
calcium levels, Ye et al (2011) constructed a blue light-
responsive circuit that enabled transgene expression from an
NFAT-responsive promoter. Expression of the GLP-1 under the
control of the NFAT-responsive promoter resulted in blue light-
controlled blood-glucose homeostasis in type 2 diabetic mice
(Figure 1B) (Ye et al, 2011).

In a similar manner, Stanley et al (2012) utilized the
endogenous signaling pathway of NFAT to regulate gene
expression directly by engineering the control of TRP channel
activation, in an approach that combined synthetic biology
with nanotechnology. Iron oxide nanoparticles coated with
His antibodies were targeted to a temperature-sensitive TRP
channel, which had been modified to express extracellular
His-epitope tags (TRPV1His). The metal nanoparticles absorb
radio-wave energy and transfer the heat to the temperature-
sensitive TRPV1His, which opens the channel and triggers
calcium influx. These elevated calcium levels resulted in
transgene expression from an NFAT-responsive promoter, and
when used in mice, radio wave-heated activation of a modified
human insulin gene was able to regulate glucose levels in the
animals (Figure 1C) (Stanley et al, 2012).

Culler et al (2010) reported a highly sophisticated strategy to
use the recognition of disease markers to reprogram cell fate.
They constructed an RNA-based device composed of specific
aptamers designed to recognize endogenous signaling part-
ners such as the subunits p50 and p65 of the transcription
factor NF-kB. The aptamers were placed into key intronic
locations near an alternatively spliced exon that harbored a
stop codon. The exclusion of the alternative exon, which was
part of a three-exon, two-intron minigene fused to a suicide
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gene (HSV-TK), was dependent on the binding of the p50 and
p65 subunits to the aptamers. In the presence of tumor
necrosis factor-a, the NF-kB pathway was induced, leading to
the translocation of p50 and p65 to the nucleus. Subsequently,
their presence in the nucleus regulated exon exclusion of the
alternative exon and HSV-TK expression, ultimately resulting
in cell death (Figure 1D) (Culler et al, 2010).

Sophisticated two-/multi-input design
allows for increased circuit complexity

The successful development of synthetic gene circuits mainly
rests on the construction of gene regulation systems where one
specific input is converted by the circuit into a specific genetic
output. These circuits are likely to have limitations in therapeutic
settings, as disease states typically have complex biological
profiles (Evan and Littlewood, 1998; Banegas et al, 2007). Recent
work in synthetic biology is therefore focused on constructing
two-input or even multiple-input circuits where combinations of
the input signals determine the final genetic response.

A simple yet efficient strategy for designing two-input circuits
able to respond to AND-gate logics was illustrated by Nissim
and Bar-Ziv (2010). They used the activation strengths of the
synthetic promoters CXCL1, SSX1 and H2A1 in various cancer
cell lines. Each promoter regulated the expression of one of the

two components in a split transcription factor, enabling
functional gene activation only when both promoters used
were sufficiently active. The split transcription factor consisted
of two fusion proteins, one of which was the bacterial DocS
fused to the viral VP16 transactivation domain, and the other of
which was the bacterial Coh2 fused to the yeast Gal4-DNA-
binding domain. DocS–Coh2 association and subsequent
activation of a Gal4 synthetic promoter by the associated
transcription factor were dependent on the combined activity of
CXCL1, SSX1 and H2A1 promoters. As the levels of endogenous
transcription factors in turn controlled the activity of these
promoters, this system allowed for cancer cell-specific recogni-
tion and the production of a response modifying subsequent
cancer cell fate (Figure 2A) (Nissim and Bar-Ziv, 2010).

A highly sophisticated multi-input design circuit, which
allowed for specific cancer cell recognition and destruction,
has been reported by Xie et al (2011). They constructed a cell-
type classifier that scored high and low levels of cancer cell-
specific microRNAs and when matching the predetermined
profile, programmed the identified cancer cells for apoptosis.
The high-level microRNA markers, miR-21, miR-17 and miR-
30a, targeted mRNA of the transactivator rtTA and the
transrepressor LacI. rtTA was designed to activate expression
of LacI, while LacI in turn was designed to repress the
expression of the apoptosis-inducing hBax, by binding to the
CAGop promoter. High levels of all three high-level microRNA
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Figure 1 Synthetic circuits based on the rewired cell-signaling pathways. (A) Guanabenz-induced synthetic circuit for the treatment of metabolic syndrome. Cells
engineered to express the chimeric trace amine-associated receptor (cTAAR1) respond to Guanabenz by activating endogenous cAMP signaling. Increased levels of
cAMP activate PCRE-driven transgene expression of Glp-1-Leptin via a cAMP-responsive element binding protein 1 (CREB1). When implanted in mice developing
symptoms of metabolic syndrome, the circuit enabled simultaneous targeting of several metabolic disorders (Ye et al, 2013). (B) Blue light- and (C) radio wave-induced
synthetic circuits enabling glucose homeostasis. (B) Cells engineered to trigger calcium influx through transient receptor potential channels (TRPCs) by expressing blue
light-responsive melanopsin, link blue-light sensing to transgene expression via an NFAT-responsive promoter (PNFAT). Implanted in diabetic mice, the circuit enabled
blue light-controlled glucose homeostasis when expressing glucagon-like peptide 1 (Ye et al, 2011). (C) Cells engineered to trigger calcium influx through temperature-
sensitive, His-tagged TRPCs (TRPV1HIS). Antibody-coated nanoparticles for His-tag recognition (NP) enabled local nanoparticle heating of TRPV1HIS, consequently
allowing for calcium influx, linking radio-wave exposure to transgene expression via an NFAT-responsive promoter (PNFAT). Implanted in mice, the circuit enabled radio
wave-controlled regulation of blood glucose levels by expressing insulin (Stanley et al, 2012). (D) Synthetic circuit responsive to endogenous proteins allow for disease-
targeted cell death. The RNA-based devise is composed of specific aptamers for p50/p65 recognition (white circle), localized at key intronic positions near an alternative
spliced exon harboring a stop codon (red area) in a three-exon, two-intron minigene fused to a suicide gene (HSV-TK). Activation of the NF-kB pathway by stimulation of
the tumor necrosis factor receptor (TNFR) with tumor necrosis factor-a (TNFa) enables p50/p65 regulation of exon exclusion, thereby linking disease markers to the
killing of the diseased cells (Culler et al, 2010).
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markers would be required for the expression of hBax. Low
microRNA markers, miR-141, miR-142(3p) and miR-146a,
were set to target the translation of hBax. This enabled the
apoptosis-inducing transgene to be only translated if the levels
of all three low-level microRNA markers are indeed low. When
the cell classifier locked into the specific high- and low-level

microRNA profile it executed specific destruction of matching
cancer cells (Figure 2B) (Xie et al, 2011).

The possibility of designing synthetic circuits capable of
performing logic gate calculations was a landmark advance in
synthetic biology (Kramer et al, 2004a; Rinaudo et al, 2007).
Recent work by Auslander et al (2012a) presents the
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engineering of combinatorial circuits, using integrated two-
molecule input, capable of performing complex logic calcula-
tions. For the construction of such circuits they used the
transcription factors ET1 and TtgA1, which respond to
erythromycin and phloretin, as well as the RNA-binding
proteins MS2 and L7Ae, which inhibit the translation of
transcripts containing the specific RNA target motifs MS2box

and C/Dbox. In a plug-and-play fashion, implementing these
simple transcription-translation control elements, trigger-
programmable circuits able to process NOT, AND, N-AND
and N-IMPLY logics were constructed. XOR computations were
achieved by different combinations of two N-IMPLY gates and
the combination of three logic gates enabled cells to perform
calculations as complex as additions (one AND gate and two
N-IMPLY gates) and subtractions (three N-IMPLY gates)
(Figure 2C) (Auslander et al, 2012a).

Light-responsive synthetic circuits

Light-sensing proteins are abundant in nature, and they permit
light energy to be transferred into specific cellular responses
(Sharrock, 2008; Do et al, 2009). Examples include the
microbial light-sensitive ion channels called opsins, which
become permeable to ion fluxes in response to light. The
introduction of opsins into mammalian cells has in recent
years become a powerful biological tool called optogenetics,
which allows for spatiotemporal control of cellular functions
(Zhang et al, 2006). When engineered to express light-
responsive opsin, the activation state of single neuronal cells
can be regulated (Boyden et al, 2005), heart function can be
controlled (Arrenberg et al, 2010; Bruegmann et al, 2010) and
vision restored (Doroudchi et al, 2011) simply by applying
light. The potential of light as a non-invasive regulator of
functions at the cellular, organ and even organism level has not
gone unnoticed by synthetic biologists (Schroder-Lang et al,
2007; Airan et al, 2009; Chaudhury et al, 2013). Optogenetics
has been shown to be a powerful tool in mammalian synthetic
biology, allowing for precise and easy control of cell fate with
spatiotemporal precision.

Blue light-controlled circuits

Photosensitive proteins found in nature dimerize when
exposed to light, and this property is being used to generate

light-responsive synthetic circuits in mammalian cells. Such
light-responsive elements include photoreactive light-oxygen-
voltage domains (LOV domains) bound to the co-factor flavin
mononucleotide (FMN), which upon blue-light absorption
enable protein–protein interactions in prokaryotes, fungi and
plants, and in doing so, regulate various cellular functions
(Demarsy and Fankhauser, 2009; Herrou and Crosson, 2011).

Implementing the blue light-dependent protein–protein
interaction of the Arabidopsis derived flavin-binding kelch
repeat f-box 1 (FKF1), containing an LOV domain, to the
GIGANTEA protein (GI) resulted in the first light-regulated
transgene expression system in mammalian cells (Yazawa
et al, 2009). Yazawa et al fused GI to a Gal4-DNA-binding
protein and FKF1 to a VP16 transactivation domain. Upon
blue-light illumination, the FKF1-VP16 fusion protein was
recruited to the GI-Gal4-DNA-binding protein, thereby
enabling activation of gene expression from its cognate
promoter containing Gal4-specific operator sites (Figure 3A)
(Yazawa et al, 2009). Replacement of the Gal4-DNA-binding
protein with a zinc finger protein (ZFP) made it possible to
target specific sequences with engineered ZFP, thereby open-
ing the possibility of also regulating endogenous genes in
response to light (Polstein and Gersbach, 2012).

The smallest LOV domain-containing protein VIVID (VVD),
derived from Neurospora crassa, incorporates the co-factor
flavin adenine dinucleotide (FAD). VVD was utilized by Wang
et al (2012) to engineer blue light-inducible regulation. A
modified version of VVD was fused to a monomeric variant of
the Gal4-DNA-binding domain and the p65 transactivation
domain. Upon blue-light illumination, VVD was able to
dimerize, consequently allowing the reconstituted Gal4-DNA-
binding domain dimer to bind to its cognate promoter and
activate gene expression. This design allowed for spatial control
of gene expression in mice (Figure 3B) (Wang et al, 2012).

Blue light-induced protein–protein interaction found in
Arabidopsis thaliana, between cryptochrome 2 (CRY2), which
requires FAD as a co-factor, and the cryptochrome-interacting
basic-helix-loop-helix (CIB1), was implemented to regulate
transgene expression by fusing the dimerization partners to
the two parts of an artificially split Cre recombinase (Kennedy
et al, 2010). Blue light enabled these parts to combine and thus
produce Cre activity. This eliminated a stop sequence flanked
by two loxP sites, thereby allowing for gene expression
(Figure 3C) (Kennedy et al, 2010). CRY2 has further been

Figure 2 Multi-input design for increased circuit complexity. (A) Two-input circuit for cancer cell recognition and destruction. The synthetic promoters CXCL1, SSX1
and H2A1, which show diverse activation strengths in various cancer cell lines, are engineered to control the gene expression of either one of two subunits, DocS-VP16
and Gal4BD-Coh2, which together comprise a split transactivator. As the activities of the synthetic promoter combinations (P1; either CXCL1, SSX1 or H2A1, P2; either
CXCL1, SSX1 or H2A1) used are regulated by endogenous, cell-specific transcription factors (TF1, TF2), the split transactivator is only expressed in a cell line where
sufficient activities of both promoters are obtained. The association of DocS and Coh2 produces a functional transactivator that activates gene expression of a killer gene
(TK1) from a Gal4-synthetic promoter (PGal4), thus leading to cell death (Nissim and Bar-Ziv, 2010). (B) Multi-input circuit for cancer cell recognition and destruction. A cell
type classifier for HeLa cells was constructed by implementing endogenous expressed microRNA profiles consisting of high- or low-expressed microRNA (high/low
sensors). Three high-expressed microRNAs (miR-21, miR-17 and miR-30a) targeted the mRNA of the activator rtTA and the repressor LacI (miR-21t, miR-17t and
miR30at). rtTA was designed to activate the expression of LacI and LacI in its turn was designed to repress the final expression of a output gene (GOI), thereby only
allowing for the activation of the gene in the presence of all three high-expressed microRNAs. Three low-expressed microRNAs (miR-141, miR142(3p) and miR-146a)
further targeted the mRNA of the output gene (miR-141t, miR-142(3p)t and miR-146at), only allowing for its expression at low levels of all three of the microRNAs.
Regulation of a killer gene (hBax) with this cancer cell classifier enabled cell type-specific destruction of the HeLa cells (Xie et al, 2011). (C) Two-input circuits enable
construction of plug-and-play assemblies performing sophisticated computations. The transcription factors ET1 and TtgA1, which repress the promoter activity of PETR2

and PTtgR1 in response to erythromycin (E) and phloretin (P), were combined with the RNA-binding proteins MS2 and L7Ae, which inhibit the translation of transcripts
containing the specific target motifs MS2box and C/Dbox, to construct circuits capable of performing easy computations such as N-IMPLY logics, which are induced in the
presence of only one specific input molecule. Assembling such simple circuits in a plug-and-play fashion allowed the construction of complex circuits capable of
performing half-subtractor and half-adder computations (Auslander et al, 2012a).
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implemented in achieving blue light-mediated protein oligo-
merization and photoactivation of the endogenous b-catenin
pathway (Bugaj et al, 2013).

Blue light has also been utilized to directly control protein
function by stimulating enzymatic activity upon exposure to
blue light (Wu et al, 2009; Zhou et al, 2012), achieving blue
light-responsive migration of stem cells in synthetic extra-
cellular matrices (Guo et al, 2012) and enabling blue light-
guided protein localization (Strickland et al, 2012).

Red light-controlled circuits

Not only blue light-responsive optogenetic tools have been

introduced in mammalian cell-based synthetic biology. Con-

current with the first blue light-based systems came red light-

based systems where precise spatiotemporal control of cellular

morphology was demonstrated by a system utilizing the plant

phytochrome B (PhyB) and its interaction with phytochrome

interacting factor 6 (PIF6) upon exposure to red/far-red light.
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split transactivator, which consequently activates gene expression from a Gal4-promoter (UASG)5 (Yazawa et al, 2009). (B) A fusion protein composed of VVD fused to
the p65 activator and a monomeric variant of the Gal4-DNA-binding domain (GBD) is unable to bind to the Gal4 promoter ((UASG)5) and activate gene expression due to
the monomeric structure of the GBD. Blue-light illumination enables VVD dimerization due to its chromophore flavin adenine dinucleotide (FAD), thus reconstituting the
GBD dimer and consequently activating gene expression (Wang et al, 2012). (C) Fusion proteins of CRY2 and CIBN to each part of a split Cre recombinase lacking
enzymatic activity (CreN and CreC) enabled associated and reconstituted Cre activity through the blue light-dependent interaction of CRY2, which requires FAD, and
CIBN. The functional Cre acts by eliminating a stop sequence flanked by loxP sites, subsequently permitting gene expression (Kennedy et al, 2010). (D) Red light-
controlled circuit. The two proteins PhyB and PIF6 interact upon red light while far-red light inhibits the interaction. Fusions of PhyB, which uses the chromophore
phytochromobilin (PCB), to VP16 and PIF6 to the TetR repressor enabled red light-dependent association of the split transactivator, consequently activating gene
expression from a TetR-promoter ((TetO)13). This action was reversed using far-red light, which caused dissociation of the PhyB and PIF6 fusions (Muller et al, 2013a).
(E) UVB light-controlled circuit. Fusion proteins of UVR8 to the E repressor and WD40 to VP16 enabled association of the split transactivator upon UVB illumination as
the UVR8 homo-dimerization is released, allowing for WD40-VP16 recruitment. The reconstituted transactivator enables gene expression from a promoter containing an
E-responsive operator motif ((etr)8) (Muller et al, 2013b).
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This system required exogenous addition of the co-factor
phytochromobilin (PCB) (Levskaya et al, 2009).

Capitalizing on the interaction mechanism of PhyB and
PIF6, the first mammalian gene regulation system responsive
to red light was constructed (Muller et al, 2013a). Muller et al
engineered a split transcription factor based on the fusion
proteins of the tetracycline repressor TetR to PIF6 and PhyB
fused to the VP16 transactivation domain. Red light enabled
the reconstitution of the split transcription factor, thereby
activating gene expression from a TetR-specific target pro-
moter. Far-red light illumination resulted in the dissociation of
PhyB from PIF6 and the de-activation of gene expression
(Figure 3D). The authors further showed its utility by inducing
spatially controlled angiogenesis in chicken embryos using red
light-controlled expression of the human vascular endothelial
growth factor splice variant 121 (hVEGF121) (Muller et al,
2013a).

Ultraviolet B light-controlled circuits

A genetic circuit responding to ultraviolet B (UVB) light has
recently been reported (Muller et al, 2013b). The authors used
the A. thaliana photoreceptor protein UV resistance locus 8
(UVR8), which homo-dimerizes in the absence of UVB light,
and the WD40 domain of its interacting partner COP1. By fusing
UVR8 to the macrolide repressor E and WD40 to the VP16
transactivation domain, they constructed a split transcription
factor that was activated upon exposure to UVB light, which
released UVR8 homo-dimerization, allowing for WD40-VP16
recruitment. The reconstituted transcription factor then
activated gene expression from a chimeric promoter containing
the E-responsive operator motif (etr8) (Figure 3E). Finally,
multichromatic control of gene expression was established
by combining light control circuits responding to blue, red and
UVB light. Such multichromatic systems were implemented in a
circuit used to control angiogenesis signaling processes (Muller
et al, 2013b).

Engineering intercellular communication

Humans communicate via speech, but simpler organisms such
as bacteria developed ways to communicate through direct
exchange of molecules to monitor and adapt to their environ-
ment. For example, quorum sensing enables bacteria to
synchronize activities, such as motility and gene expression,
within a large group of cells, thereby adapting population-wide
behavior (Bassler, 1999; Waters and Bassler, 2005). At the
cellular level of the human body, specialized cells, such as those
of the immune- or endocrine systems, communicate through
signaling molecules to regulate crucial biological processes.
The natural existence of specialized cells, performing specific
tasks that are coordinated by intercellular signaling, has in
recent years inspired the design of synthetic multicellular
assemblies (Weber et al, 2007a; Bacchus et al, 2012; Ortiz
and Endy, 2012; Rusk, 2012). Not only does synthetic
intercellular communication networks represent a way for
synthetic biologists to build and thereby understand naturally
existing systems (Weber et al, 2007a; Balagadde et al, 2008;
Song et al, 2009), but it also allows to design gene network

topologies with increasing complexity and new control
dynamics (Bacchus et al, 2012). Intercellular communication
enables the engineering of genetic circuits that allow for robust
and timely gene expression in entire cellular populations
(Prindle et al, 2012), the possibility for programmed pattern
formation (Basu et al, 2005; Liu et al, 2011), as well as the
creation of interconnected multicellular assemblies, very
similar to those found in nature (Bacchus et al, 2012; Macia
et al, 2012).

The first synthetic intercellular communication system in
mammalian cells, constructed by Weber et al (2007a), allowed
engineered sender cells to produce a metabolic signal in a cell
density-dependent manner, and engineered receiver cells to
respond to that signal with a distinct genetic response. The
sender cells were engineered to express mouse-derived alcohol
dehydrogenase (ADH), allowing supplemented ethanol to be
converted into the volatile metabolite acetaldehyde. The
receiver cells were engineered with an acetaldehyde-inducible
regulation system based on the genetic components derived
from Aspergillus nidulans, which enabled gene expression
upon reception of acetaldehyde. Replacement of the engi-
neered mammalian sender cells with those of E. coli,
S. cerevisiae and L. sativum, organisms naturally expressing
ADH, allowed for interkingdom communication, as the
produced acetaldehyde was routed to the mammalian receiver
cells. When microencapsulated circuit-transgenic designer
cells were implanted into mice, the mammalian sender and
receiver cells functioned in a manner similar to hormones.
Ethanol provided through drinking water was converted by the
sender cells into acetaldehyde and broadcast to the receiver
cells, thereby triggering transgene expression (Figure 4A)
(Weber et al, 2007a).

The generic design for constructing intercellular commu-
nication in mammalian cells (Weber and Fussenegger, 2011) by
implementing distinct sender and receiver cell populations
has been adapted to create intercellular communication
systems responding to L-arginine (Weber et al, 2009), biotin
(Weber et al, 2007a), nitric oxide (Wang et al, 2008) and
L-tryptophan (Bacchus et al, 2012). The latter system was
composed of sender cells engineered to express the bacterial
gene tryptophan synthase (TrpB), allowing for the conversion
of supplemented indole into the amino acid L-tryptophan.
The receiver cells expressed a target gene via a constructed
L-tryptophan-inducible regulation system based on the
genetic components derived from Chlamydia trachomatis.
The potential of intercellular communication in bioreactor
settings, which could be important in manufacturing pharma-
ceuticals or biofuels, was illustrated by programming gene
expression profiles to be dependent on inoculated cell
concentrations. Combining the acetaldehyde and L-tryptophan
intercellular communication systems allowed for complex
multicellular assemblies to be constructed. Natural signaling
systems of multicellular assemblies such as multistep informa-
tion processing cascades, feed forward-based signaling loops,
and two-way communication were mimicked simply by
implementing the same genetic building blocks in different
cellular configurations (Figure 4B). For example, two-way
communication was used in a model for angiogenesis by
controlling vascular endothelial cell permeability (Bacchus
et al, 2012).
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Prosthetic networks

Prosthetic networks are synthetic devices which will act as
molecular prosthesis that sense, monitor and score (disease-)
relevant metabolites, process off-level concentrations and
coordinate adjusted diagnostic, preventive or therapeutic
responses in a seamless, automatic and self-sufficient manner
(Weber and Fussenegger, 2012; Auslander and Fussenegger,

2013; Perkel, 2013). In contrast to the aforementioned transgene

control devices, prosthetic networks are directly linked to host

metabolism and triggered by the disease metabolite.
The potential to use prosthetic networks as therapy was

demonstrated in a pioneering example reported by Kemmer

et al (2010). Elevated levels of uric acid are associated with

pathological conditions such as tumor lysis syndrome and
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gout, so they constructed a genetic circuit for controlling uric
acid homeostasis in mice. The circuit was composed of a
modified Deinococcus radiodurans-derived protein (mUTS)
able to relieve repression of its cognate promoter (PUREX8)
upon elevated levels of uric acid. After insulation of circuit-
transgenic cells by encapsulation in immunoprotective micro-
containers (Auslander et al, 2012b) and implantation in urate
oxidase-deficient mice developing gout, the circuit autocon-
nected to peripheral circulation, sensed the pathologically
high levels of uric acid in the bloodstream of the animals,
activated the expression of a secretion-engineered version
(smUox) of the clinically licensed Aspergillus flavus urate
oxidase (Rasburicase) driven by PUREX8, and thereby reduced
the levels of uric acid to subpathological levels (Figure 5A)
(Kemmer et al, 2010).

Prosthetic networks have also been developed as a tool for
artificial insemination (Kemmer et al, 2011). This was achieved
by rewiring the luteinizing hormone receptor (LHR) to activate
a CREB1, enabling transgene expression when the receptor
was stimulated by the luteinizing hormone binding to it. The
stimulation of LHR triggered a classic G protein-coupled
receptor response, which increased levels of intracellular
cAMP, and triggered CREB1 binding to a synthetic promoter
(PCRE) controlling expression of a secretion-engineered cellu-
lase. Co-encapsulation of sperm and cells containing this
circuit into cellulose-based capsules were implanted in the
uterus of cows. At ovulation, elevated levels of luteinizing
hormone were produced, which resulted in the rupture of
the implants when the secreted cellulase degrades the
cellulose-based capsule, and ultimately resulted in successful
fertilization (Figure 5B) (Kemmer et al, 2011).

Conclusion

Starting from the basic construction of transcriptional gene
regulation systems, and utilizing native bacterial gene switches
that respond to antibiotics, synthetic biology circuits today
include novel circuits based on the transcriptional, translational
or post-translational regulation (Auslander and Fussenegger,
2013). These complex circuits are designed for use in therapy,
as they are engineered to respond to metabolites of the human
body, to native cell-signaling pathways and to disease or cell-
specific markers and thus target specific disease states (Wei
et al, 2012). This development is by no means coincidental, as
researchers have worked to find synthetic biology solutions for
real clinical issues (Dean et al, 2009; Ruder et al, 2011; Folcher
and Fussenegger, 2012; Weber and Fussenegger, 2012).

Yet, can synthetic biology deliver what it promises outside
the laboratory as well? To achieve these ambitious goals, it is
crucially important to solidify the advances that have been
made in standardized genetic circuit design, and to create still
more robust and complex circuits, as these in turn will ensure
safe and reliable usage (Endy, 2005; Gardner, 2013). Capitaliz-
ing on the most recent technological advances in synthetic
biology, time has now come that these designer devices be
implemented and validated in clinical settings. Therefore, the
designer cells will have to traverse the same clinical phases
and likely meet with similar technical challenges as gene- and
cell-based therapies. However, with over two decades of
records in gene-based treatment strategies, clinical implemen-
tation of synthetic biology devices may be more straightfor-
ward (de Amorim, 2009; Laurencot and Ruppel, 2009;
Deplazes-Zemp and Biller-Andorno, 2012; Philp et al, 2013).
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allowing for the activation of PCRE-driven transgene expression of cellulase via a cAMP-responsive element binding protein 1 (CREB1). Engineered cells are co-
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elevated levels of luteinizing hormone results in capsule degradation and sperm release (Kemmer et al, 2011).
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In just a few years, optogenetics has become of marked
importance for synthetic biology (Knopfel et al, 2010; Chow
and Boyden, 2011). If applied in clinical settings, then
the regulation of crucial therapeutic proteins in response to
light could be a reality for patients. This would provide an
optimal solution to biopharmaceutical production, as such
therapy could be used to induce protein production at a
specific cell density without the addition of chemical inducers
(Ye et al, 2011). While most mammalian light circuits are
controlled by blue light, red light systems could prove to be
highly influential, as red light penetrates tissue more
efficiently than blue light does (Muller et al, 2013a). However,
the clinical utility of light-controlled circuits is limited by
their chromophores. For example, the red light-controlled
circuit requires phytochromobilin, which is not only
difficult to produce and to administer but also unlikely
to become clinically licensed due to side effects caused by
this plant-derived co-factor. Also, light-controlled devices
assembled from human components are preferred to eliminate
the risk of immune responses and other undesired site
effects. With its all-human design and the ubiquitous co-factor
vitamin A, the blue light-responsive melanopsin-derived
optogenetic device meets the high standard clinical compat-
ibility (Ye et al, 2011) (Figure 1B). The development of
multichromatic control circuits will further broaden the
biomedical utility of light-controlled circuits and enable
more accuracy in the implementation of the circuits (Muller
et al, 2013b).

With the introduction of synthetic intracellular commu-
nication systems, synthetic biologists have not only found an
innovative way to tackle the current processing limitations of
single cells, but have also found a solution to design the
circuits of the future which likely continue to increase in
complexity and thus require more components (Perkel, 2013).
As intercellular communication allows for spatial separation
of the cell populations, it could hold great promise for
biomedical applications such as advanced tissue engineering.
Implementation of multiple and interconnected cell
implants in vivo could allow for remote control of differing
functions, very much like the natural regulatory processes
in the body. The application of engineered intercellular
communication systems for therapeutic purposes is not only
restricted to mammalian cell design (Anderson et al, 2006;
Duan and March, 2010; Wu et al, 2013). With their cell density-
dependent transgene expression responses, intercellular com-
munication systems represent a powerful asset for synthetic
biology (Mitchell et al, 2011; Miller et al, 2012; Shong et al,
2012).

Increased complexity, reliability and accuracy of genetic
circuit devices in combination with incorporating newly
developed technologies will ensure synthetic biology’s place
among the biological engineering disciplines of the 21st
century. This century is likely to mark mammalian synthetic
biology’s advance from a ‘proof of concept’ discipline to a tool
commonly used in clinical medical practice.
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