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APPL1 is an effector of the small GTPase Rab5. Together,

they mediate a signal transduction pathway initiated by

ligand binding to cell surface receptors. Interaction with

Rab5 is confined to the amino (N)-terminal region of

APPL1. We report the crystal structures of human APPL1

N-terminal BAR-PH domain motif. The BAR and PH do-

mains, together with a novel linker helix, form an inte-

grated, crescent-shaped, symmetrical dimer. This BAR–PH

interaction is likely conserved in the class of BAR-PH

containing proteins. Biochemical analyses indicate two

independent Rab-binding sites located at the opposite

ends of the dimer, where the PH domain directly interacts

with Rab5 and Rab21. Besides structurally supporting the

PH domain, the BAR domain also contributes to Rab

binding through a small surface region in the vicinity of

the PH domain. In stark contrast to the helix-dominated,

Rab-binding domains previously reported, APPL1 PH do-

main employs b-strands to interact with Rab5. On the Rab5

side, both switch regions are involved in the interaction.

Thus we identified a new binding mode between PH

domains and small GTPases.
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Introduction

Endocytosis induced by ligand�receptor interaction has been

directly linked to signal transduction mediated by Rab5 and

its effector APPL1 (Adaptor protein containing PH domain

PTB domain and Leucine zipper motif; Miaczynska et al,

2004; Mao et al, 2006). The small GTPase Rab5 is a generally

acknowledged prominent regulator of vesicle trafficking en-

route from the plasma membrane to early endosomes (Li,

1996), whereas APPL1 (also called DIP13a) is identified with

signaling pathways of adiponectin, insulin, EGF, follicle

stimulating hormone receptor, neurotrophin receptor

(TrkA), oxidative stress, and DCC-mediated apoptosis (Liu

et al, 2002; Miaczynska et al, 2004; Lin et al, 2006; Mao et al,

2006; Varsano et al, 2006; Nechamen et al, 2007). Within this

milieu, APPL1 specifically binds to the GTP-bound, active

form of Rab5. In response to extracellular stimuli, Rab5

hydrolyzes its bound GTP, releasing APPL1 from an endocytic

structure, and allowing APPL1 to further interact with com-

ponents of nucleosome remodeling and histone deacetylase

complexes. The interaction with Rab5 is essential for APPL1

localization to the endosomes and is indispensable for the

functional cycle of APPL1 (Miaczynska et al, 2004).

Human APPL1, a multidomain protein 709 amino-acid (aa)

residues in length contains an amino (N)-terminal BAR

(Bin1/Amphiphysin/RVS167) domain and a PH (pleckstrin

homology) domain followed by a carboxy (C)-terminal PTB

(phosphotyrosine binding) domain (Sakamuro et al, 1996;

Liu et al, 2002; Miaczynska et al, 2004). The Rab5-binding

site is located in the N-terminal BAR-PH region (Miaczynska

et al, 2004), while the C-terminal region is found to interact

with a host of other proteins, including the adiponectin

receptor (Mao et al, 2006), Akt2/PKBb kinase (Mitsuuchi

et al, 1999), tumor suppressor DCC (Liu et al, 2002), TrkA,

and TrkA interacting protein GIPC1 (Lin et al, 2006).

Based on aa sequence analysis, BAR domains have been

identified in many proteins involved in intracellular traffick-

ing, but sequence homology is low in general among known

BAR domains (Farsad et al, 2001; Habermann, 2004). The

BAR domain typically contains three long kinked a-helices

(a1, a2, and a3) that form a well-packed, crescent-shaped,

symmetrical, six-helix bundle, side-by-side antiparallel

homodimer; a structure proposed to exert its function as a

convex membrane-curvature sensor or stabilizer. The con-

cave surface of the BAR dimer is proposed to bind preferen-

tially to a negatively charged, curved membrane largely

through electrostatic interactions. Furthermore, some BAR

domains have been found to bind to small GTPases, a class of

intracellular molecular switches (Tarricone et al, 2001;

Habermann, 2004); thus, their membrane association is

directly linked to regulation of signal transduction and traf-

ficking. However, currently available structural information
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suggests that bindings of the BAR domain to GTPases and to

membrane lipids are incompatible, because both interactions

appear to compete for the same concave surface region of the

BAR dimer (Tarricone et al, 2001). The BAR domain of APPL1

is required for Rab5 binding and membrane recruitment

(Miaczynska et al, 2004), although the mechanisms remain

to be elucidated.

The PH domain is approximately 100-residue long, and has

been identified in over 100 different eukaryotic proteins such

as kinases, isoforms of phospholipase C (PLC), GTPases, and

their regulators; most of which participate in cell signaling

and cytoskeletal regulation (Rebecchi and Scarlata, 1998).

Despite their minimal sequence homology, the three-dimen-

sional (3D) structures of PH domains are remarkably con-

served. They possess a common core consisting of seven

b-strands and a C-terminal a-helix (Rebecchi and Scarlata,

1998). Some PH domains specifically bind to phosphatidyl-

inositol phosphates, suggesting that one possible function of

this family is to anchor the host proteins to membranes. PH

domains are also suggested to bind to the Gbg complex of the

heterotrimeric G protein, protein kinase C, and small

GTPases. Nevertheless, none of these functions is absolutely

conserved. For instance, the PH domain of APPL1 alone is

insufficient for binding to the membrane (Miaczynska et al,

2004). The PH domain immediately follows the C-terminus of

the BAR domain; such a BAR-PH motif is essential for Rab5

binding. The same motif has also been found in a homolog

Rab5 effector APPL2, centaurin-b family members, GRAF2,

and oligophrenin (Habermann, 2004), but the 3D structure

organization of BAR-PH motif and its functional implication

remained elusive until now.

In order to address the functional roles of the BAR-PH

motif in APPL1 and related proteins, we have carried out

structure-function studies on human APPL1 and determined

the crystal structures of the Rab5-binding region of APPL1 as

well as the BAR domain alone. The results show that two

BAR-PH molecules form an integrated, symmetric homodi-

mer, and the PH domain has extensive intermolecular inter-

actions with the BAR domain. The BAR dimer of APPL1 has a

stronger curvature than other reported BAR structures.

Further mutagenesis analyses allowed us to identify the

binding sites on both APPL1 and Rab5. In sharp contrast to

the presumed conflict between concurrent membrane asso-

ciation and GTPase binding by the BAR dimer (Habermann,

2004), the novel binding mode of the BAR-PH dimer should

permit simultaneous interactions with both.

Results

Protein expression and crystallography

Recombinant proteins of human APPL1 N-terminal fragments

including the BAR (residues 5�265) and BAR-PH domains

(residues 5�385) were expressed in Escherichia coli, then

purified using His tag affinity chromatography. The samples

were crystallized after removing the tag with thrombin,

which generated a four-residue (Gly–Ser–His–Met) peptide

N-terminal to the native Asp5 residue.

The BAR domain crystal diffracted up to 1.8-Å resolution

on a beamline at the Argonne Advanced Photon Source

(APS) synchrotron facility. The crystal belongs to P21212

space group. Phases of the structural factors were determined

using the Se-Met-based single-wavelength anomalous

dispersion (SAD) method (Supplementary data). There is

one APPL1 BAR molecule per asymmetric unit, with B41%

solvent content. Regions of the N-terminus (up to Thr12),

Leu75�Asp79, and C-terminus (i.e., Pro260�Asp265) were

missing from the final refined model because of lack of

interpretable electron density.

The BAR-PH crystal diffracted to 2.05-Å resolution at the

synchrotron facility. The crystal also belongs to P21212 space

group. There is one APPL1 BAR-PH molecule per asymmetric

unit, with B45% solvent content. Phases of this crystal form

were calculated using a combination of molecular replace-

ment and SAD methods, and further improved with density

modification. Regions of N-terminal non-native tripeptide

(i.e., Gly–Ser–His), Gly76�Asp78, Asn288�Ser295, and

C-terminus (i.e., Ser380�Glu385) lacked interpretable electron

density and were omitted from the final refined model. Data

collection and refinement statistics are summarized in Table I.

BAR domain structure and dimerization

From the two crystal forms of APPL1 peptides, we obtained

two crystallographically independent BAR domain models. In

both cases, the APPL1 BAR domain has three long helices,

namely a1, a2, and a3. In addition, the APPL1 BAR domain

contains an extra nine-turn a-helix, a4 (Figure 1;

Supplementary Figure 1). The two models could be super-

imposed onto each other with a moderate, 1.3-Å, Ca-atom

root mean square deviation (r.m.s.d.) if flexible terminal and

loop regions (i.e., residues 5�18, 75�79, 151�153, and

255�265) were omitted. Thus, the overall structure of the

BAR domain remains the same either alone or in the context

of BAR-PH motif.

Table I Crystallography data collection and refinement statistics

(a) Data statistics BAR BAR�PH
Wavelength (Å) 0.9793 1.0000
Space group P21212 P21212
Unit cell

a (Å) 53.0 103.7
b 129.2 105.7
c 36.9 36.4

Resolution (Å) 50 (1.86)a�1.80 50 (2.12)�2.05
Rmerge (%) 8.1 (44.0) 6.7 (43.2)
Number of reflections 23 548 (1897) 23 286 (1989)
Completeness (%) 96.1 (78.5) 89.9 (78.0)
Redundancy 3.3 (3.1) 4.5 (3.2)
I/s(I) 10.2 (2.2) 16.4 (2.7)

(b) Refinement statistics
Rworking (%)/# of reflectionsb 21.2/21 703 20.5/20 882
Rfree (%)/# of reflectionsb 25.5/1200 26.8/1200
Number of non-hydrogen
atoms

Protein 1990 2943
Solvent 147 157

R.m.s.d. from ideal values
Bond length (Å)/angle (deg) 0.016/1.51 0.013/1.30

Ramachandran plot (%)c 98.3/1.7/0/0 94.7/5.3/0/0
Average B-factor (Å2)

Protein 34.1 (25.8)d 47.9 (38.3)d

Solvent 41.4 47.7

aNumbers in parentheses are the corresponding numbers for the
highest-resolution shell, unless otherwise mentioned.

bReflections of |Fobs|40.0.
cCalculated using PROCHECK. Numbers reflect the percentage of
residues in the core, allowed, generously allowed and disallowed
regions, respectively.

dWilson B-factors calculated using a 4 Å cutoff.
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In each of the two crystal forms, two BAR molecules form a

tightly packed dimer, which assumes a crescent-like shape, a

hallmark of the BAR dimer structure (Figure 1). In the BAR

dimer, the helix a1 forms an antiparallel helix bundle with its

symmetry counterpart, giving shape to the concave surface of

the crescent-like dimer. Helix a4 packs against a3 of the

symmetry mate on the convex side of the dimer, and its

C-terminus points to the tip of the crescent. Over 4400 Å2

solvent accessible surface (SAS) from each protomer is buried

in the dimer interface. The addition of each a4 helix to the

canonical BAR motif results in approximate 1900 Å2 buried

SAS on the two protomers, corresponding to over 40% of the

total buried SAS.

Although the overall folding of APPL1 BAR domain is

similar to previously reported BAR domain 3D structures

(i.e., arfaptin2, PDB file 1I4T; amphiphysin, 1URU; and en-

dophilin, 1ZWW), those structures are in general more

similar to each other than to the APPL1 BAR domain. For

instance, using 150 Ca atoms of the common helical regions,

the r.m.s.d. values between the dimer of APPL1 BAR and

1I4T, 1URU, and 1ZWW were 3.7, 3.8, and 4.4 Å, respectively,

while those among 1I4T, 1URU, and 1ZWW range between

2.4 and 2.6 Å. In addition, the APPL1 a1 and a2 helices lack

extensive patches of positively charged aa residues on the

concave surface (Figure 2); such patches are thought to be

essential for some BAR containing proteins to induce in vitro

tubule formation (Carlton et al, 2004).

The curvature of the concave face of the BAR dimer is

thought to play an important role in membrane bending and/

or curvature sensing (Habermann, 2004). We implemented a

computing algorithm to calculate the curvature radius (rC)

and found that the APPL1 BAR dimer has an rC about 55 Å

(Supplementary data; Supplementary Figure 2), significantly

smaller than the rC values of other BAR dimers (Peter et al,

2004). Thus, the APPL1 BAR dimer has the strongest curva-

ture among known BAR dimer structures.

Structure of the APPL1 PH domain

The APPL1 PH domain encompasses residues

Asn276�Leu379 and has a typical PH folding

(Supplementary Figure 3). The core structure of PH domain

consists of a pair of nearly orthogonal b-sheets of four and

three antiparallel b-strands (b1–b2–b3–b4 and b5–b6–b7;

Supplementary Figure 1). The C-terminal a-helix, aC, packs

against both b-sheets and contributes to the core of the

domain. In the PH domain, connecting loops are named

after the preceding b-strands (e.g., the loop between b1 and

b2 is called L1, etc). The canonical ligand-binding site is

composed of b1, L1, b2, L3, and L6 (exemplified in the crystal

structure of PLC-d1, PDB file 1MAI) and, roughly speaking, is

confined to a triangular area with L1, L3, and L6 as the three

vertices. Some positively charged or polar residues that have

been previously identified as critical for lipid binding in this

ligand-binding triangle are not conserved in APPL1

(Supplementary Figures 1 and 3), consistent with the fact

that APPL1 alone lacks membrane binding ability.

Packing of the BAR and PH domains

In our crystal structure of the APPL1 BAR-PH dimer, the two

PH domains are located at the opposite ends of the crescent-

shaped dimer, and each has fairly extensive contact with the

BAR domain of its symmetry mate (Figure 1). The addition of

the PH domain expands the BAR dimer in the longest

dimension from 140 to 170 Å, but hardly changes the height

of the dimer (i.e., the dimension along the two-fold axis

direction) and its curvature. Using its b1, b2, L3, and L7

regions, the PH domain contacts the BAR domain of its

symmetry mate in two places (Figures 1B, C and 3;

Supplementary Figure 3). First, the motif of D15SPxxR20

(where x stands for any aa residue) at the N-terminal of

BAR domain contacts b1, b2, and L3 regions of PH domain.

For instance, the hydroxyl group of Tyr283 in b1 forms a 2.6-Å

hydrogen bond with the backbone carbonyl oxygen of

Asp15 (Figure 3A). Second, the conserved D334xxDRRYCF342

motif in the loop L7 of the PH domain is directly in contact

with the loop connecting a2 and a3 in the BAR domain

(Figure 3B). The buried SAS from each BAR-PH molecule in

Figure 2 Electrostatic potential distribution of APPL1. Electrostatic
potentials of APPL1 BAR-PH protomer (left) and dimer (middle and
right) are mapped on their molecular surfaces. Negatively charged
regions (p�0.5 V) are colored red, positively charged regions
(Xþ 0.5 V) blue, and neutral regions gray. The right view is looking
down along the dyad axis of the dimer at the concave surface, and
the side view differs by 901. Clusters of acidic residues which are
potentially important in Rab5 binding are circled. This figure was
generated with the program CCP4mg.

Figure 1 Crystal structure of the APPL1 BAR-PH dimer. (A) The
overall structure of the dimer. The left view is along the direction of
the dyad symmetry and on the concave surface, and the right view
differs by 901. One protomer is shown in ribbon diagram, and the
other is shown in molecular surface model. Helix a1 is colored
yellow, a2 magenta, a3 green, a4 blue, and PH domain red. (B, C) A
close view of the BAR–PH interface. These images were generated
using the program PyMol.
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the dimer is about 6600 Å2. Thus, in the presence of PH

domain, the buried SAS is 50% larger than that of the dimer

formed by BAR domain alone (4400 Å2). The canonical

‘ligand’-binding triangle of the PH domain is oriented about

601 from the concave side of the BAR dimmer, so that both

the PH triangle and BAR concave surface could be brought

within the vicinity of a curved membrane simultaneously.

Nevertheless, as discussed earlier, key residues for lipid

interaction are not conserved in APPL1. The C-terminus of

PH is exposed to solvent in the dimer, consistent with the fact

that it connects to the C-terminal region including the PTB

domain.

Because of the interaction between D15SPxxR20 motif and

PH domain, the rest N-terminus peptide (residues 5�12)

clearly became ordered in the BAR-PH crystal structure, in

comparison to the BAR domain-alone crystal structure, where

residues N-terminal to Leu13 were invisible in the electron

density map. The fixed N-terminal peptide in the BAR-PH

structure has an extended backbone conformation between

Met4 (remnant from the His-tag cleavage) and Pro8, followed

by a one-turn 310 helix (Figure 3C). This region has several

important intramolecular contacts mainly with helices a1 and

a3. For instance, the Leu7 side chain inserts between the

aromatic rings of Phe26 in a1 and Phe182 in a3. Meanwhile,

the side chain of Asn186 forms two hydrogen bonds with the

backbone amide and carbonyl groups of Leu7, respectively.

All these hydrophobic and hydrogen bond interactions

appear conserved among BAR-PH containing proteins

(Supplementary Figure 1). Furthermore, the N-terminus is

surrounded by a number of regions from the dimer partner,

including the helix a4 and flexible loop connecting a1 and a2

(where residues 76�78 were mobile in the crystal structure).

For instance, Lys6’ (where the prime stands for the dimer

partner) forms a salt bridge with Asp243 in a4 between the

protomers. In addition, Ile9’ forms hydrophobic interactions

with Met247, Ile251, and Leu254 in a4 (Figure 3C).

To investigate roles of the BAR�PH interaction in solution,

a double point mutation, S16E/P17E, at the BAR�PH inter-

face was made. These residues are located in the region

N-terminal to the BAR domain and form close contacts with

b2 and L3 of the PH domain (Figure 3A). The recombinant

protein of S16E/P17E double mutant in the context of BAR-

PH was expressed predominantly in the insoluble fraction of

cell lysate; however, the same mutations behaved normal in

the BAR-only construct (data not shown). Moreover, expres-

sion of the APPL1 PH domain alone in E. coli did not produce

soluble recombinant protein. The data suggest that the dimer

interaction between PH and BAR domains is critical for the

solubility and stability of the APPL1 PH domain. Consistent

with this, our analytical ultracentrifugation (AUC) data

showed that BAR-PH protein has a higher dimerization

affinity in solution (kd¼ 0.34 nM) than BAR domain alone

(kd¼ 0.13 mM; Supplementary data).

APPL1�Rab5 interaction in solution

To study APPL1�Rab5 interaction in solution, we performed

glutathione S-transferase (GST)-mediated pull-down assays.

The APPL1 BAR-PH domain (residues 5�385) and a longer

fragment with a 40-residue extension downstream of the PH

domain, APPL1 (5�419), were each effectively pulled down

by GTP-bound GST�Rab5 fusion protein (Figure 4). The

APPL1 protein was pulled down by either WT Rab5 pre-

loaded with non-hydrolysable GTP analog (GppNHp) or

Rab5-Q79L defective in GTP hydrolysis (with or without

preloaded GTP analog), but could not be effectively pulled

down by either the WT Rab5 preloaded with GDP or Rab5-

S34N defective in GTP binding (Figure 4 and data not

shown). In contrast to the BAR-PH domain, we confirmed

Figure 3 APPL1 domain packing. (A, B), Stereoviews of two major
interacting regions between the PH and BAR domains. The PH
domain from one APPL1 protomer is colored gray, and the BAR
domain from the dimer-mate is colored yellow. Helix backbones are
shown in ribbon representation, otherwise in ropes. Side-chain
and/or main-chain atoms of selected residues are shown in stick
models. Nitrogen atoms are colored blue, oxygen red, and sulfur
green. Hydrogen bonds (o3.0 Å) are shown as dash-lines. Note that
most residues displayed are highly conserved among the known
BAR-PH containing proteins (Supplementary Figure 1). (C) Stereo-
view of interactions of the APPL1 N-terminal region. The two
protomers are colored gray and yellow, respectively. This figure was
generated with the programs Molscript and Raster3D.

Figure 4 Pull-down analysis of APPL1-Rab interaction. GST fusion
proteins of Rab5, Rab21, and Rab22 were used to pull down His-
tagged APPL1 (5�385) and (5�419) fragments in the presence of
GDP or GTP analog (GppNHp). The results were analyzed with
SDS–PAGE and anti-His Western blot.
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that APPL1 BAR domain alone (residues 5�265) cannot

directly interact with Rab5 (data not shown) (Miaczynska

et al, 2004). Furthermore, using different Rab5 truncation

variants, we demonstrated that the N-terminus (residues

1�15) and C-terminus (residues 185�215) of Rab5 are dis-

pensable for interaction with APPL1 (Figure 4).

Binding affinity between full-length Rab5-Q79L and APPL1

(5�419) was quantitatively determined in a surface plasmon

resonance (SPR) experiment. Rab5 was coupled to the SPR

biosensor chip in random orientations, and APPL1 (5�419)

was applied as the analyte at concentrations of 0.15�12 mM

(Supplementary Figure 4). The dissociation constant, kd, for

the Rab5�APPL1 interaction measured from this experi-

ment was 0.9 (70.7) mM, with kon and koff of 1.3

(70.6)� 103 M�1 s�1, and 1.2 (70.4)� 10�3 s�1, respec-

tively. This kd value is typical for an interaction between a

Rab and its effectors (Eathiraj et al, 2005).

A major Rab5-binding site in the PH domain

To identify Rab5-binding site(s) in APPL1, GST�Rab5-Q79L

(full length) was used to pull down APPL1 variants having

surface point mutations. The WT APPL1 (5�419) fragment

was used as the parental construct for the mutagenesis,

because this fragment is easily distinguishable from

GST�Rab5 by size on SDS–PAGE gels without the need for

Western blot analysis. A total of 31 point mutations were

made at 27 distinct, solvent-exposed positions (Figure 5;

Supplementary Figures 1 and 3), based on the structural

information of BAR-PH motif. Most of these point mutations

were located in the PH domain or near the BAR�PH interface,

which are the surface regions most conserved between

APPL1 and APPL2 (Supplementary Figure 5). Substitution

mutants were designed to maximize potential mutational

effects on Rab5 binding (e.g., by flipping charges or switching

between hydrophobic and hydrophilic residues) without dis-

rupting the overall structure. In addition, the flexible L1 loop

(residues 289�294) was truncated and replaced with one Gly

residue. All of these APPL1 variants, as well as the WT

construct, were expressed in E. coli, with comparable yields

from the soluble fractions (data not shown), in contrast to the

mutations at BAR�PH interface mentioned earlier. This sug-

gested that the thirty or so surface mutations had little effect

on the stability of BAR-PH dimer. Among them, seven mu-

tants, including V25D, N308D, M310K, A318D, G319R, L321D,

and D324A, either abolished or significantly reduced (i.e.,

retaining o30%) Rab5 binding compared with the WT

APPL1 (Figure 5A). In the 3D structure, most of these

residues cluster in an elongated surface area formed by b3,

L3, and b4 of the PH domain, defining a major Rab5-binding

site (Figure 5B; Supplementary Figure 3). In addition, the

effect of the V25D mutant suggests that the BAR domain also

contributes to Rab binding either directly or indirectly. On the

other hand, L1 loop seems not to be required for Rab5

binding; significance of the apparent, positive effect of the

truncation mutant (Figure 5A) remains to be studied.

We further extended these binding studies and confirmed

the above Rab5-binding site in vivo in the cell, by monitoring

Rab5-mediated APPL1 recruitment to early endosomes in the

cell via confocal microscopy. In this case, the RFP (DsRed-

monomer)�Rab5-Q79L fusion protein was expressed in

PC12 cells, targeted to the early endosomes, and recruited

effectively the coexpressed GFP (green fluorescence

protein)�APPL1 to these early endosomes (Figure 5C).

Importantly, APPL1 (5�385), that is, the BAR-PH domain,

was sufficient to target to Rab5-Q79L containing early endo-

somes (Figure 5C). In contrast, one of the Rab5-binding

defective mutants (A318D) failed to target the early endo-

somes and exhibited a diffused pattern throughout the cyto-

plasm in the cell (Figure 5C).

Interaction between small GTPase and BAR domain has

been exemplified in a complex crystal structure of Rac and

arfaptin2 before (Tarricone et al, 2001). Based on the follow-

ing observations, however, we excluded the possibility of a

Rac�arfaptin2-like binding mode for the Rab5�APPL1 inter-

action. First, the linear dimension of Rab5 is less than 50 Å,

which is significantly smaller than the distance (B60 Å)

between the putative Rab5-binding site in the PH domain

and the central region of the BAR dimmer, where Rac binds

with arfaptin2. Second, the isolated APPL1 BAR domain did

not bind to Rab5 in our pull-down assay. Third, we mutated

APPL1 Asn52, which is at the position equivalent to Rac-

binding site in arfaptin2, to either a smaller (Ala) or larger

(Arg) side-chain residue, and the mutations showed no effect

on the binding to Rab5.

APPL1 as a Rab21 effector

Rab5 subfamily contains several members, including Rab5,

Rab21, and Rab22. Among them, Rab5 and Rab22 share a

higher overall sequence identity with each other than with

Rab21 (Pereira-Leal and Seabra, 2000). This difference was

used to explain the ability of Rab5 and Rab22, but not Rab21,

to share some common effectors such as EEA1 and rabeno-

syn5 (Kauppi et al, 2002; Eathiraj et al, 2005). Therefore, we

tested APPL1 binding specificity towards other members in

the Rab5 subfamily, using GST�Rab21 (full length) and

GST�Rab22 (2�192) to pull down APPL1 (5�419).

Interestingly, APPL1 would bind to Rab21 in a GTP-depen-

dent manner (Figure 4), indicating that APPL1 is an effector

for both Rab5 and Rab21. On the other hand, we were unable

to detect any binding between APPL1 and Rab22 in the pull-

down assay (Figure 4). We could not rule out possible in vivo

interaction between them because our recombinant Rab22

might not have folded correctly in E. coli based on the

following observations: (1) the expression level of Rab22

was 10- to 20-fold lower than Rab5 and Rab21, and (2) the

GTP loading rate of Rab22 was lower too (data not shown).

Therefore, we focused our study on Rab5 and Rab21 for their

interactions with APPL1. We demonstrated that Rab21 and

Rab5 have similar but not identical binding profiles towards

APPL1 variants (Figure 5), which may be explained by their

sequence divergence. This differential binding to Rab5 and

Rab21 by APPL1 may allow in vivo analysis of the functional

roles of each Rab�APPL1 interaction, for example, by speci-

fically abolishing one interaction while retaining others.

A novel Rab effector binding mode between

Rab5 and APPL1

Next we investigated the APPL1-binding regions in Rab5.

Since residues responsible for APPL1 binding are likely to be

located in the switch I, switch II, and interswitch regions,

whose conformations change between different nucleotide

binding states, these regions became the main objects of our

investigation. In addition to relevant Rab5 mutations that we

made in previous studies, several point mutations in the Rab5
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switch I region (i.e., residues 40�53) were tested for APPL1

binding. We found that point mutations in the 42�48 region

significantly reduced APPL1 binding, while L38R, Q49A,

E50A, and I53N showed little or no detectable effect

(Figure 6A). Consistent with our previous structural studies

on Rab5–rabaptin5 interaction (Zhu et al, 2004), all muta-

Figure 5 Mutational analyses of APPL1. (A) Quantifying the Rab binding ability of APPL1 variants. The Rab5- and Rab21 binding abilities of
APPL1 variants relative to that of WTAPPL1 (5�419) were estimated based on chemiluminescence-labeled Western blot (see the Materials and
methods) and shown as the white and gray bars, respectively. Standard deviations calculated from multiple experiments were represented by
the thin lines. (B) Mutational effects on binding to Rab5 and Rab21. Distribution of point mutations is shown on the molecular surface of the
BAR-PH dimer where the two protomers are colored gray and light green, respectively. APPL1 mutations that affect binding strongly
(i.e., o30% binding comparing to WT) are colored red; otherwise, the mutants are colored blue. The position showing reversed binding property is
colored yellow. Mutation positions are selectively labeled; note that the PH domain contains residues 276�379. (C) Mutational effects on
APPL1 targeting to Rab5-positive early endosomes in the cell. RFP�Rab5-Q79L was coexpressed with GFP�APPL1 (full length, FL; BAR-PH
domain; or BAR-PH mutant) in PC12 cells as indicated, followed by confocal fluorescence microscopy. Shown are typical confocal microscopic
images indicating the RFP�Rab5-Q79L labeled early endosomes (red) and the colocalization of GFP�APPL1 or mutants (green) in the same
cells. Scale bar, 16mm.
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tions within the 38�50 region did not interfere with

Rab5�rabaptin5 binding (Figure 6A). Furthermore, with the

knowledge of crystal structures of Rab5–rabaptin5 and

Rab22–rabenosyn5 complexes, it is clear that both Rab5

effectors rabaptin5 and rabenosyn5 bind to the so called

invariant hydrophobic triad of Rab5 (i.e., Phe57, Trp74, and

Tyr89) (Merithew et al, 2001). Mutation of any of these

residues usually strongly inhibits the Rab-effector binding

(Zhu et al, 2004; Eathiraj et al, 2005). Interestingly, in our

mutagenesis analysis, the APPL1-binding was affected by

W74R and Y89R, but not by F57R point mutation in Rab5

(Figure 6). Taken together, our results indicate that APPL1

binds to Rab5 regions including the 40�48 loop and switch II,

B30 Å across. In addition, we showed that the two effectors,

APPL1 and rapaptin5, could compete for Rab5-binding (data

not shown), confirming that the binding sites of APPL1 and

rabaptin5 on the Rab5 surface overlap with each other.

To further define the Rab5�APPL1 binding mode, we

performed extensive pull-down analyses between variants

of Rab5 and APPL1, looking for reversal mutants that could

rescue the lost binding ability of others. We identified one

such pair; APPL1-N308D abolished the binding to Rab5,

while Rab5-L38R had no effect on APPL1 binding.

However, Rab5-L38R was found to bind with APPL1-

N308D, but not with the other tested APPL1 variants of

similar hydrophobic-to-charged mutations, including V25D,

A318D, and L321D (Supplementary Figure 6). This result

suggests that Rab5-L38R restores binding for APPL1-N308D

through complementary, electrostatic, yet specific interac-

tions. It further implies that the position 308 in the b3 strand

of APPL1 PH domain is in the vicinity of position 38 in the a1

helix of Rab5 in their complex.

Discussion

BAR-stabilized PH domain is essential for Rab5 binding

Since both APPL1 and APPL2 bind to Rab5, their Rab-binding

sites are likely located in a surface region that is conserved

between the two APPL proteins. There are no deletion/

insertion differences in the BAR-PH region between them

(Supplementary Figure 1), and an inspection of the APPL1

BAR-PH dimer surface indicates that the most conserved

surface region is located on the PH domain surface and the

BAR-PH junction (Supplementary Figure 5). Furthermore,

neither PH domain (Miaczynska et al, 2004) nor BAR domain

alone (data not shown) can directly bind Rab5, suggesting

that the dimer interface between PH and BAR domains plays

a critical role in Rab5 binding directly or indirectly. This

binding mode between Rab5 and APPL1 is apparently distinct

from that between Rac and arfaptin, which only requires BAR

dimerization (Tarricone et al, 2001).

To investigate further the structural basis of APPL1 and

Rab5 interaction, we have performed extensive mutagenesis

analyses. A BAR dimer breaking mutant (F210D/F211D) and

the BAR�PH interface mutant (S16E/P17E) are both insolu-

ble when expressed in E. coli (data not shown), supporting

the notion that the functional form of APPL1 BAR-PH domain

is a dimer. Importantly a series of surface point mutants are

soluble, allowing us to analyze the in vitro binding properties

between these APPL1 mutants and Rab5 (Figure 5). The

results indicate that Rab5 specifically binds to the PH domain

of APPL1 in the context of BAR-PH dimer, and this binding

may marginally extend to the neighboring BAR domain. Our

structure-functional analyses are consistent with existing

biochemical data. For example, a previously reported triple

mutation of APPL1 within the PH domain, K280E/Y283C/

G319R, disrupts Rab5 binding (Miaczynska et al, 2004). This

effect can be fully explained based on the importance of the

BAR�PH and PH�Rab5 interfaces.

Combined results from our mutagenesis pull-down experi-

ments (Figures 4–6), crystal structures of the BAR-PH domain

of APPL1 (Figure 1), and structures of GTPase domain of

human Rab5 in different nucleotide binding modes (Zhu et al,

2003, 2004) clearly explain the requirement of GTP-bound

Rab5 for APPL1 binding. Based on available information, we

have modeled the interaction between the two proteins. With

the assumption that both proteins remain rigid bodies, our

complex model satisfies constraints imposed by the mutagen-

esis pull-down results (Figure 7). Over 1200 Å2 SAS area

combined from both the APPL1 dimer and Rab5 would be

buried in their interface. In this putative Rab5�APPL1 bind-

ing mode, APPL1 interface includes L2, b3, L3, and b4

regions. Note that the L3-b4 region showed weak electron

density in the crystal structure, indicating its higher mobility

and possible adaptability in forming a complex with Rab5. On

the Rab5 side, two regions that harbor binding-defective

mutations are involved in the complex formation: the loop

42�48 and switch II (Figure 6). Furthermore, the reversal

mutation pair, Rab5-L38R and APPL1-N308D (Supplementary

Figure 6) would directly interact with each other inside the

interface of our complex model. The bound Rab5 molecules

would extend the concave surface of the APPL1 dimer, with

both the N- and C-termini of Rab5 exposed to solvent.

Considering that there are about 30 residues C-terminal to

our Rab5 model, which are necessary for membrane associa-

Figure 6 Mutational analyses of Rab5. (A) Pull-down assay on
Rab5 variants. Point mutations in switch regions were introduced
in the full-length Rab5-Q79L background of the GST fusion con-
struct. Each mutant was expressed in E. coli, purified, and equal
amounts of each Rab5 sample was used to pull down recombinant
proteins of His-tagged WT APPL1 (5�419) (top panel) and His-
tagged rabaptin5 (551�862) (bottom panel). The results were
visualized by Coomassie blue stain. (B) Molecular surface model
of Rab5 GTPase domain. Its N-terminus, switch I (SW1) and switch II
(SW2) regions are labeled. Rab5 mutations that have effects and
have no effect on binding are labeled red and blue, respectively. The
position showing reversed binding property with the APPL1 N308D
mutant is colored yellow.
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tion but excluded from the crystallography study, our model

would allow Rab5 molecules to anchor to the membrane

through the added C-terminal tails and to interact with APPL1

at both ends of the BAR-PH dimer (Figure 7). The Rab5

C-terminal tail is likely flexible, supporting that recruitment

of APPL1 to the endocytic vesicle may not require its direct

contact with the membrane. In the complex, the Rab5 mole-

cule does not block the C-terminus of the PH domain,

allowing peptide extension of the APPL1 molecule from the

BAR-PH domain.

Rab5–APPL1 interaction represents a novel Rab effector

binding mode

In contrast to the a-helix dominant Rab-binding motifs of all

other effectors of known 3D structures (Ostermeier and

Brunger, 1999; Zhu et al, 2004; Eathiraj et al, 2005; Wu

et al, 2005; Wei et al, 2006), the Rab5-binding motif of

APPL1 is mainly composed of two b-strands, b3 and b4,

and their connecting loop L3. Although the exact binding

position on the Rab protein and orientation of the effector

helices may differ among available complex structures, all

these Rab-binding domains interact with the invariant hydro-

phobic triad. However, we have identified a Rab5 mutation in

the hydrophobic triad, F57R, that does not interfere with

APPL1 binding, but abolishes the binding to another Rab5

effector, rabaptin5 (Figure 6A; Zhu et al, 2004). In contrast,

several point mutations in the switch I region of Rab5 affect

the binding of APPL1 but not rabaptin5. The 42�48 region in

Rab5 has not been previously reported to be involved in

effector binding.

GTPase binding has emerged as a major function of PH

domains in addition to lipid binding (Lemmon, 2004). For

example, PH domains in some guanine nucleotide-exchange

factors (GEF) have been shown to bind directly to their

cognate small GTPases (Rossman et al, 2002, 2003; Lu et al,

2004), and our data now show direct interaction between the

APPL1 PH domain and Rab5. So far, only two crystal struc-

tures of small GTPase�PH domain complexes are available.

One is Ran�RanBD1 (PDB file 1RRP). The interactions

between the Ran GTPase domain and RanBD1 PH core

domain is fairly minor, occurring between the switch I region

of the GTPase (equivalent to the 40’s in Rab5) and strand b2

of the PH domain. This interaction alone is unlikely to be

sufficient to form a stable complex. Indeed, Ran has a long

C-terminal peptide beside the GTPase domain, while the PH

domain of RanBD1 has an extra N-terminal peptide. These

two terminal peptides wrap around the partner proteins

forming the major interaction between Ran and RanBD1.

Such an interaction seems not to be required for Rab5 and

APPL1, because the GTPase domain of Rab5 and BAR-PH

domain of APPL1 are sufficient to mediate their interaction.

The second published small GTPase�PH complex is that of

Ral�Exo84 (PDB file 1ZC3). In this complex, the PH domain

of Exo84 uses L1, b5, and L6 to interact with the interswitch

and switch II regions of Ral forming an intermolecular

b-sheet extension mediated by the PH b5 strand and

GTPase b2 strand (Jin et al, 2005). Our mutagenesis analysis

points to a different surface region (b3, L3, and b4) of the PH

domain for Rab5 binding. Therefore, the Rab5�APPL1 inter-

action represents a new GTPase�PH binding mode.

APPL1 is a representative of BAR-PH containing proteins

Both APPL1 and APPL2 are identified as Rab5 effectors, and

their overall aa sequences are highly homologous. In parti-

cular, residues on the APPL1 BAR dimer interface, BAR�PH

interface, and the presence of the a4 helix seem well con-

served in APPL2 (Supplementary Figure 5). Therefore, APPL2

BAR-PH domain most likely forms a homodimer very similar

to that of APPL1. Furthermore, these conserved structural

features may also extend to other BAR-PH containing proteins

(Supplementary Figure 1; Habermann, 2004). For instance,

no helix breaking aa sequence appears in the middle of their

predicted a4 regions. Based on the APPL1 BAR-PH crystal

structure, we find that, in general, the PH domain is more

conserved than the BAR domain, and most of the highly

conserved positions are located closer to the BAR�PH inter-

face rather than the central region of the symmetric dimer.

For example, the two major contact regions between PH and

BAR domains (i.e., D15SPxxR20 and D334xxDRRYCF342) are

conserved at the aa sequence level among BAR-PH containing

proteins. In addition, correlated mutations are present bet-

ween these proteins at the BAR�PH interface. Thus, we

propose that all BAR-PH containing proteins share similar

3D structures in the corresponding regions and that the

BAR-PH motif may function as a general structural unit to

interact with membrane-bound proteins and other molecular

moieties.

In some BAR containing proteins, it is proposed that there

exists an amphipathic helix N-terminal to the a1 helix of BAR

domain, and they are called an N-BAR motif (Peter et al,

2004; Gallop et al, 2006). It is suggested that this extra

N-terminal region facilitates membrane binding (or bending).

A similar N-BAR structure was predicted for APPL1 and

APPL2 (Habermann, 2004), but our current APPL1 crystal

structure does not show such a structural motif. Instead, the

N-terminal region assumes an extended conformation and

packs in the groove formed between helices a1 and a3 on the

convex side of the crescent-shaped dimer (Figure 3C). Since

the N-terminal regions of the other BAR-PH containing pro-

teins (Supplementary Figure 1) share similar sequences, we

suggest that none of these proteins contains an N-BAR motif

in their 3D structure.

Figure 7 Putative complex model of the APPL1 BAR-PH dimer and
Rab5. (A) APPL1–Rab5 interaction. The two BAR-PH protomers are
shown in molecular surface models and colored gray and cyan,
respectively. Positions of APPL1 mutations are colored similarly to
Figure 5B. Overlaying APPL1, Rab5 is shown in a green backbone
trace and positioned according to the mutagenesis data; the N-and
C-termini of its GTPase domain are labeled. Rab5 mutants that
affect binding are marked with red spheres, and those having no
effect are marked with blue spheres. Positions of the reversal
mutation pair are labeled. (B) Membrane recruitment of APPL1
mediated by Rab5. The APPL1 BAR-PH protomers are colored gray
and yellow, and APPL1 C-terminal peptides are represented by
ovals. Rab5 molecules are shown in green molecular surface
models, and their membrane anchored C-terminal tails are repre-
sented by red curves.
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Lacking both the amphipathic helix N-terminal to the BAR

domain and the lipid-binding motif in the PH domain

(Supplementary Figure 1) may explain the Rab5-dependent

membrane association of APPL1. In contrast, the PH domains

of centaurin-b1/2 contain the key, basic residues for phos-

phoinositide binding (Dinitto and Lambright, 2006;

Supplementary Figure 1). If their PH domains are oriented

similarly to that in the APPL1 dimer, the canonical (i.e., L1–

L3–L6), ligand-binding triangle in their PH domains likely

contributes to direct membrane association of these proteins.

Functional implications of the BAR-PH structure

While it is suggested that Rab5�APPL1 interaction mediates a

signal transduction pathway between the plasma membrane

and the nucleus, the mechanism by which Rab5 binding

stimulates APPL1 translocation to the nucleus remains elu-

sive. The current BAR-PH structure may help to clarify the

mechanism. Interestingly, the sequence of ‘PKKKENE’ was

identified in the BAR domain of APPL2 as a potential nuclear

localization signal (Miaczynska et al, 2004). The correspond-

ing region in APPL1 is the solvent exposed loop connecting a2

and a3 at the tip of the dimer (Figure 1B) and has a fairly

conserved sequence (Supplementary Figure 1). In addition,

our preliminary data suggest that there is no detectable

binding between the BAR-PH domain and the C-terminal

region of APPL1 (data not shown), which makes it unlikely

that Rab5 may regulate APPL1 through interference with the

intramolecular interaction of the latter. It seems more prob-

able that the Rab5�APPL1 complex recruits downstream

effectors to propagate the signal transduction process.

Unlike other Rab effectors, APPL1/2 proteins function in

the signaling pathway from the so-called signaling endosome

to nucleus. Our data show that APPL1 interacts with the Rab5

protein using a novel binding mode; it remains to be proven

whether such a binding mode is essential for APPL1 function.

Whereas it has been shown that APPL1 does not bind other

Rab proteins miscellaneously (Miaczynska et al, 2004), we

demonstrate that APPL1 is also an effector of Rab21, indicat-

ing that APPL1 adopts a binding mode shared by both Rab5

and Rab21. It raises the possibility that, besides Rab5, other

members of this Rab subfamily may also be involved in the

APPL1 signaling pathway.

Materials and methods

Protein expression and purification
Constructs of human APPL1 (GenBank ID: NP_036228) (5�265) (i.e.,
the BAR domain) and APPL1 (5�385) (i.e., the BAR-PH domain) were
inserted into the vectors pET28a and pET15b (Novagen), respectively,
between NdeI and BamHI restriction sites. The N-terminal few
residues in the native sequence are hydrophobic and were deleted in
an attempt to improve the solubility. Point mutations were introduced
into the pET15b-APPL1 (5�419) parental construct using Quick-
ChangeTM site-directed mutagenesis kit (Stratagene).

His-tagged proteins of APPL1 (5�265) and APPL1 (5�385) were
expressed as soluble recombinant proteins in BL21 StarTM (DE3)
strain of E. coli (Invitrogen), and cells were harvested after
induction with 0.1 mM isopropyl-b-D-thiogalactopyranoside (IPTG)
for 8 h at 251C. The cells were lysed with lysozyme, and the lysate
supernatant was purified with His-SelectTM affinity beads (Sigma).
In both cases, the His tag was removed with thrombin. After further
purification with Resource-QTM anion-exchange chromatography
(GE Healthcare), both protein samples were concentrated
to B30 mg ml�1 in (20 mM Tris–HCl (pH 8.0) and 0.1% (v/v)
b-mercaptoethanol (bME)) and stored at �851C until needed. APPL1
(5�419) mutants were expressed similarly. Se-Met-substituted

proteins were expressed in E. coli B834 (DE3) pLysS cells (Novagen)
in minimal media supplemented with 40 mg l�1 Se-Met (Sigma) and
purified using the same procedure as the native protein.

Recombinant proteins of human Rab5a variants (GenBank ID:
NM_004162), human Rab21 (BC021901), and human Rab22a
(NM_020673) fused with an N-terminal GST were expressed in
BL21 E. coli and purified with GST-affinity chromatography. The
sample was concentrated to B20 mg ml�1 and stored in 1�
phosphate-buffered saline (PBS) with 0.1% (v/v) bME at �801C.
Recombinant protein of human rabaptin5 (551–862) (GenBank ID:
CAA62580) was expressed and purified as described previously
(Zhai et al, 2003); two additional point mutations, C719S and
C734S, were introduced to reduce aggregation.

Protein crystallization and data collection
Crystals of APPL1 (5–265) were grown at 201C with the hanging
drop vapor diffusion method. The Se-Met incorporated protein
sample diluted to 10–20 mg ml�1 was mixed 1:1 (v/v) with the
reservoir solution of 0.1 M magnesium formate and 0.1% (v/v)
bME. Crystals were transferred to a cryo-protectant solution
of (88% saturated Li2SO4, 14 mM magnesium formate, 20 mM
Tris–HCl (pH 8.0), and 0.1% (v/v) bME) by gradually changing the
drop solution in 20 min, followed by cooling in liquid nitrogen.
A data set was collected at selenium edge at sector 22 BM of the
Argonne APS facility.

Crystals of APPL1 (5–385) were also grown in hanging drops at
201C. The reservoir contained 6% (w/v) polyethylene glycol 6000
(PEG6K), 0.6 M NaCl, and 0.1% (v/v) bME. The crystals were quickly
soaked in a solution of (7.5% (w/v) PEG6K, 0.25M NaCl, and 10%
(v/v) glycerol) and flash-cooled under liquid nitrogen. Both native and
SAD data sets were collected at the APS facility. Analyzing the crystal
content by SDS–PAGE confirmed the integrity of the protein sample.
All data were processed with the program suite HKL2000.

Pull-down assay for analyzing protein–protein interactions
In the Rab5�APPL1 pull-down experiment, 30mg GST�Rab fusion
protein (52 kDa) was incubated with 60 ml of 30% slurry of GSH–
Sepharose 4B (GE Healthcare) at 221C for 30 min. Nucleotide
loading reaction was performed on the GSH beads in an exchange
buffer of (1� PBS, 2 mM DTT, 1 mM MgCl2, 4 mM EDTA, and
400mM GppNHp or GDP) at 221C for 30min. Increasing the
magnesium ion concentration to 20mM terminated the loading
reaction. Soluble fractions of cell lysate containing all His-tagged
APPL1 (5–419) variants were analyzed by SDS–PAGE to confirm their
comparable expression level and solubility. The GSH resin carrying
nucleotide-loaded GST�Rab fusion protein was incubated with B50ml
cell lysate (B200mg APPL1 variant, 50 kDa) at 221C for 30min, then
washed three times with 200ml of (1� PBS, 2mM DTT, and 4 mM
MgCl2) and resuspended in 20ml of 2� reducing SDS sample buffer.
The sample was subjected to SDS–PAGE analysis, visualized with
Coomassie blue stain. The same samples were analyzed with
chemiluminescence Western blot (GE Healthcare) and His-tag anti-
body then detected on films which were semi-quantified using the
computer software ImageJ (http://rsb.info.nih.gov/ij/) including its
default calibration. The relative band intensity of each mutant versus
WT from multiple experiments is shown in Figure 5.

Coordinate deposit
Coordinates and the structural factors of the APPL1 crystal
structures have been deposited to PDB under codes 2Q12 (BAR
domain structure) and 2Q13 (BAR-PH domain structure).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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