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ABSTRACT: COVID-19 caused by a novel coronavirus (SARS-
CoV-2) has been spreading all over the world since the end of
2019, and no specific drug has been developed yet. 3C-like
protease (3CLpro) acts as an important part of the replication of
novel coronavirus and is a promising target for the development of
anticoronavirus drugs. In this paper, eight machine learning models
were constructed using naiv̈e Bayesian (NB) and recursive
partitioning (RP) algorithms for 3CLpro on the basis of optimized
two-dimensional (2D) molecular descriptors (MDs) combined
with ECFP_4, ECFP_6, and MACCS molecular fingerprints. The
optimal models were selected according to the results of 5-fold
cross verification, test set verification, and external test set verification. A total of 5766 natural compounds from the internal natural
product database were predicted, among which 369 chemical components were predicted to be active compounds by the optimal
models and the EstPGood values were more than 0.6, as predicted by the NB (MD + ECFP_6) model. Through ADMET analysis,
31 compounds were selected for further biological activity determination by the fluorescence resonance energy transfer (FRET)
method and cytopathic effect (CPE) detection. The results indicated that (+)-shikonin, shikonin, scutellarein, and 5,3′,4′-
trihydroxyflavone showed certain activity in inhibiting SARS-CoV-2 3CLpro with the half-maximal inhibitory concentration (IC50)
values ranging from 4.38 to 87.76 μM. In the CPE assay, 5,3′,4′-trihydroxyflavone showed a certain antiviral effect with an IC50 value
of 8.22 μM. The binding mechanism of 5,3′,4′-trihydroxyflavone with SARS-CoV-2 3CLpro was further revealed through CDOCKER
analysis. In this study, 3CLpro prediction models were constructed based on machine learning algorithms for the prediction of active
compounds, and the activity of potential inhibitors was determined by the FRET method and CPE assay, which provide important
information for further discovery and development of antinovel coronavirus drugs.

1. INTRODUCTION

At present, coronavirus disease 19 (COVID-19) caused by a
novel coronavirus (SARS-CoV-2) is still circulating worldwide
and highly contagious mutant strains have emerged. As known
from the World Health Organization (WHO), the number of
confirmed cases of COVID-19 worldwide had exceeded 247
million as of November 4, 2021, and the cumulative death toll
had exceeded 5.0 million.1 The rapid spread of the virus and
rising infectivity have driven the global acceleration of
interventions. Currently, related vaccines have been introduced
into the market, and people in many countries have been
vaccinated,2 but the related adverse reactions and effective
duration still need further clinical confirmation. Although there
has been rapid progress in the research and development of
vaccines, no specific therapeutic drug has been developed
against this virus. The main strategies of drug treatment
include drug repositioning, broad-spectrum screening of
antiviral drugs, and discovery of new targeted drugs. However,
drugs that showed certain activity in the initial stage, such as
chloroquine and remdesivir, could not significantly reduce the

clinical mortality in COVID-19 patients with the progression
of clinical trials.3,4 Therefore, screening all potential and
available drugs aimed at the effective targets of SARS-CoV-2 is
still necessary to control and alleviate the epidemic.
After entering the host cell, novel coronavirus replicates and

synthesizes a large amount of genetic material and related
proteins in the cell, and then, the mature virus particles are
assembled in the cytoplasm and released outside the cell.5 3C-
like protease (3CLpro), also known as Mpro, is an essential
enzyme for the replication of coronavirus, which exerts a
crucial part in cutting polymers and may interfere with the
host’s innate antiviral immune response. The replication and
proliferation of coronavirus can be effectively interfered with
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by inhibiting the activity of 3CLpro.6 3CLpro is highly conserved
in different coronaviruses, so drugs targeting 3CLpro can
significantly reduce mutation-mediated drug resistance and
show broad-spectrum antiviral activity.7 Finding or designing
3CLpro inhibitors is a potential therapeutic strategy for
COVID-19.
In recent years, as a method for computer-aided drug design

and high-throughput screening, computer virtual screening
technology has played an important role in drug discovery and

development. The most common methods are molecular
docking, pharmacophore modeling, and machine learning.
Compared with the traditional screening process, the machine
learning approach is simple, easy, and low cost, which can
greatly reduce the research time. At present, there have been
compelling studies focusing on potential drugs against
COVID-19 through computer virtual screening technology
based on the 3CLpro structure. Early in the outbreak of
COVID-19, the structural sequence of 3CLpro was analyzed to

Figure 1. Specific scheme for the establishment of 3CLpro inhibitor prediction models, FRET activity detection, the CPE assay, and CDOCKER
analysis.
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construct its 3D homologous model, which was used to screen
a database of medicinal plants containing 32297 potential
antiviral plant chemical constituents, and nine potential anti-
SARS-CoV-2 compounds were found.8 Gyebi et al. detected
four potential nontoxic, drug-usable plant-derived 3CLpro

inhibitors by screening 62 African plant-derived alkaloids and
100 terpenoids using molecular docking technique.9 There
have been 168 virtual screening studies for 3CLpro, but the
accuracy of the screening models is limited, and most of the
prediction results from models have not been verified by
experiments.10 In this paper, machine learning models were
established first by naiv̈e Bayesian (NB) and recursive
partitioning (RP) algorithms for 3CLpro to predict 5766
natural chemical components in the natural molecular database
established by our laboratory. The predicted compounds were
further screened by ADMET analysis, and then, the activity of
screened drugs was determined by the fluorescence resonance
energy transfer (FRET) method and the cytopathic effect
(CPE) assay. Finally, the action mechanism of potential
inhibitors was analyzed by molecular docking. The overall
process is shown in Figure 1. In summary, this paper provides
important information for further discovery and development
of antinovel coronavirus drugs.

2. MATERIALS AND METHODS
2.1. Data Aggregation and Processing. The active

ligands against 3CLpro were collected in the BindingDB
database (http://www.bindingdb.org). After removing the
repetitive structures, a total of 149 active compounds
(inhibitors) were obtained, and then, these active ligands
were used to generate inactive compounds (decoys) in the
DUD-E database (http://dude.docking.org). Based on the
proportion of 3:1, inactive compounds and active compounds
were stochastically grouped into a training set including 112
active compounds and 337 inactive compounds and a test set
including 37 active compounds and 113 inactive compounds in
DS 2018 (Discovery Studio version 2018, San Diego, CA).
3CLpro inhibitors reported from the related literature were
collected to form an external test set containing 40 active
compounds and 120 inactive compounds. The symbols 1 and
−1 were used to mark the activity of the active compounds and
inactive compounds, respectively, in all data sets. Hydro-
genation, deprotonation, and energy optimization were
performed for all compounds before the molecular descriptors
(MDs) were calculated.
2.2. Calculation and Optimization of Molecular

Descriptors. Molecular descriptors (MDs) are employed to
measure the molecular weight, atomic number, lipid−water
partition coefficient, molecular polarity surface area, and other
parameters. In this study, 348 molecular descriptors of the
compounds in the training set were calculated by DS 2018
software, comprising 8 AlogP molecular descriptors, 35
molecular property descriptors, 43 topological molecular
descriptors, 7 surface area and volume descriptors, 92
molecular property number descriptors, and 163 estate keys.
The Pearson correlation coefficients were calculated to
quantify the degree of correlation between 348 molecular
descriptors and the activity of compounds. First, the molecular
descriptor was removed when the frequency of the descriptor
value was more than 50%. Then, the molecular descriptor was
excluded if its Pearson correlation coefficient11 with activity
was less than 0.1. Meanwhile, of the two molecular descriptors
with a correlation coefficient of more than 0.9, the one with a

lower correlation coefficient with activity was discarded.
Eventually, the reserved molecular descriptors were carried
out by stepwise linear regression, in which the molecular
descriptors were screened to construct the classification
models.

2.3. Molecular Fingerprints. Molecular fingerprints
characterize the molecular structure of compounds by a series
of molecular fragments. In the present study, the SciTegic
extended connection fingerprint ECFP was used, and to ensure
that the molecular fragment size described by the molecular
fingerprint was kept in the appropriate range, we used the
molecular fingerprint with a diameter of 4 or 6, that is,
ECFP_4 and ECFP_6, which were calculated in DS 2018
software.12 Another MACCS molecular fingerprint using the
MDL structure library containing 166 seed structures was
calculated with PaDEL Descriptor software.13

2.4. Spatial Distribution Prediction of Compounds.
The spatial distribution diversity of compounds in the training
set and test set greatly affects the predictive ability of the
machine classification learning model. In general, when
compounds in the training set have a wider chemical spatial
distribution, the established classification model will also have
higher prediction precision and stronger generalization.
Conversely, when the spatial distribution in the training set
is narrow, the model application will be limited to a great
extent. In this study, principal component analysis (PCA) and
Tanimoto analysis14 were used to investigate the chemical
spatial distribution characteristics of compounds in all data
sets.

2.5. Naiv̈e Bayesian Classification Model and Re-
cursive Partitioning Model. The NB algorithm and RP
algorithm were adopted to establish classification models by
learning the mapping relationship between molecular descrip-
tors and their activity, which can predict the activity of
uncertain active compounds. The NB algorithm is a
probability-based algorithm developed by British mathema-
tician Bayes.15 The NB model was established in DS 2018
software to study how to separate inhibitors from decoys based
on the compound information in the training set. The RP
algorithm can classify analytical samples layer by layer
according to a series of rules by simulating the human learning
process.16 The outcome of the RP model can be directly
shown by the graph of a bifurcated decision tree, so the RP
model is also called the decision tree model, which was also
built in DS 2018 software. The minimum number of samples
per node, the maximum number of nodes for each descriptor,
and the maximum depth of the decision tree were respectively
set to 10, 20, and 20. Each model was established using the
training set, and 5-fold cross verification in the training set was
carried out in the process of building each model.

2.6. Evaluation of Model. The prediction ability of each
model was assessed by 5-fold cross verification in the training
set and validation in the test set and external test set. The
specific assessment indicators of the predictive ability included
sensitivity (SE), specific (SP), overall accuracy (Q), and
Matthews correlation coefficient (MCC).17 They were
calculated by Formulas 1−4.

=
+

SE
TP

TP FN (1)

=
+

SP
TN

TN FP (2)
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= +
+ + +

Q
TP TN

TP TN FP FN (3)

=
× − ×

+ + + +

MCC
TP TN FN FP

(TP FN)(TP FP)(TN FN)(TN FP)
(4)

True positive (TP) indicates the number of active compounds
predicted to be positive. True negative (TN) indicates the
number of inactive compounds predicted to be negative. False
positive (FP) indicates the number of inactive compounds
predicted to be positive. False negative (FN) indicates the
number of active compounds predicted to be negative. The
value of MCC is between 1 and 1, where a high MCC value
represents the good prediction ability of the model.
The receiver operating characteristic (ROC) curve is a curve

drawn with SE as the ordinate and the false positive rate (1-
SP) as the abscissa. The area under curve (AUC) is also an
important evaluation index of predictive ability.18 A higher
AUC value indicates better prediction ability of the model.
2.7. FRET Detection of SARS-CoV-2 3CLpro Activity.

2.7.1. Reagents. Thirty-one predicted compounds were
obtained from the Institute of Materia Medica of the Chinese
Academy of Medical Sciences (Beijing, China). Dimethyl
sulfoxide (DMSO), acquired from Sigma-Aldrich Company
(St. Louis), was used to dissolve all compounds, and all
prepared solutions were stored at −20 °C. The 2019-nCoV
Mpro/3CLpro inhibitor screening kit was purchased from
Beyotime Institute of Biotechnology (Shanghai, China).
2.7.2. FRET Detection of SARS-CoV-2 3CLpro Activity. The

amino acid sequence of 3CLpro in the 2019-nCoV Mpro/3CLpro

inhibitor screening kit is the same as that of natural novel
coronavirus 3CLpro. The FRET method19 was used to detect
the activity of 3CLpro in this kit (Figure 2). The fluorescent
donor (Edans) and fluorescent receptor (Dabcyl) were
connected to both ends of the natural substrate of 2019-
nCoV 3CLpro, and the fluorescence of Edans could be detected
when the two groups were separated by cutting substrate. The
reaction was carried out in a 96-well black plate. First, 93 μL of

3CLpro assay reagent and 5 μL of compounds were added
successively to each sample well, and DMSO was used to
replace the compound in the model well, and 93 μL of assay
buffer and 5 μL of DMSO were added to the control well. The
96-well plate was oscillated for 1 min to fully mix the reaction
solution, and then, 2 μL of substrate was quickly added to each
well and fully mixed. The 96-well plate was incubated at 37 °C
in black for 15−20 min. The fluorescence was determined by a
multifunction enzyme labeling reader (SpectraMaxM5, Molec-
ular Devices) with a 340 nm excitation wavelength and 490 nm
emission wavelength. The inhibition rate of the detected
compounds was calculated by formula (5). IC50 values (n = 3)
were calculated by a nonlinear regression model (log-
[inhibitor] vs normalized response-variable slope) in Graph-
Pad Prism 7 (GraphPad Software, San Diego, CA).

= − −

×

inhibition rate (%)

(RFU RFU )/(RFU RFU )

100%

enzyme sample enzyme control

(5)

2.8. CPE Inhibition Assay. VeroE6 cells were provided by
the virus room of the State Key Laboratory of Respiratory
Diseases (SKLRD), Guangzhou Institute of Respiratory
Health. SARS-CoV-2 (GenBank accession no. MT123290.1,
TCID50 = 10−6.5/100 μL) was obtained from the BSL-3
Laboratory of Guangzhou Customs Technology Center
(Laboratory of Highly Pathogenic Microbiology of SKLRD).
VeroE6 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) mixed with 10% fetal bovine serum (FBS),
100 μg/mL penicillin, and 100 μg/mL streptomycin.
VeroE6 cells were incubated in 96-well plates (1 × 104 cells/

well) and cultured at 37 °C in a humidified incubator supplied
with 5% CO2. Control groups of the cell and solvent, virus
group, and drug administration group were set up. After 24 h,
cells were exposed to SARS-CoV-2 (100 50% tissue culture
infective doses [TCID50]) for 2 h, washed, and cultured in
different concentrations of compounds or fresh culture
medium for 3 days. CPE was observed under a light
microscope. IC50 values (n = 3) were calculated by the
Reed−Muench method and GraphPad Prism 7. All of the
above experiments were carried out in a BSL-3 laboratory.

2.9. Molecular Docking. In general, molecular docking is
often used in structure-based virtual screening models to study
the possible binding modes between ligands and proteins in
protein complexes. Based on the CHARMm molecular force
field, CDOCKER20 in DS 2018 first randomly searches the
conformations of small molecules using the molecular
dynamics method and then optimizes each structure in the
active site region of the receptor by simulated annealing to
produce more accurate docking results. To ensure the
reliability of molecular docking, we selected the crystal
structure of the protein−ligand complex with a resolution of
less than 2.5 Å to establish a molecular docking model. The
crystal complex structure of SARS-CoV-2 3CLpro and its active
ligand N3 with a resolution of 2.16 Å was downloaded from
the Protein Data Bank (PDB ID: 6LU7). The SARS-CoV-2
3CLpro crystal complex structure was pretreated in DS 2018.
The active pocket of the protein−ligand docking was defined,
and then, the ligand in the SARS-CoV-2 3CLpro structure was
cut out and docked back to the intended active site. After
docking, the molecular conformations generated by docking
were compared with the original molecular conformation ofFigure 2. Detection principle of FRET for SARS-CoV-2 3CLpro.
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the ligand in the protein crystal structure, and the related root-
mean-square deviations (RMSDs) were calculated. There were
ten conformations, and more than half of the RMSDs were less
than 2. The docking method was considered suitable for the
studied system. On this basis, the compounds with potential
anti-3CLpro activity were analyzed and verified.

3. RESULTS
3.1. Optimization of Molecular Descriptors. Through

the calculation and optimization of the molecular descriptors

of the training set, 12 Discovery Studio two-dimensional
molecular descriptors (DS_2D_MD) including AlogP98,
Es_Count_aasC, Es_Sum_ssCH2, Es_Sum_dO, logD, QE-
D_ALOGP, QED_PSA, SAscore, Num_Rings, Num_Rings6,
Num_SingleBonds, and Molecular_FractionalPolarSASA were
selected for the establishment of the classification models.
3.2. Chemical Spatial Diversity Analysis. PCAs of the

compounds in the data sets were carried out according to the
reserved 12 molecular descriptors, and the results are
presented in Figure 3. The PC1 values of the compounds in
the training set, test set, and external test set ranged from −6 to
6, the PC2 values ranged from −6 to 4, and the PC3 values
were between −5 and 4, indicating that the chemical spatial
distributions of the compounds in the three data sets were
wide enough and could overlap well.

Tanimoto similarity analysis is another method commonly
used to evaluate the spatial distribution of compounds in data
sets. The smaller the Tanimoto similarity coefficient, the
greater the diversity of compounds. We calculated the
Tanimoto similarity coefficients of the chemical compounds
in the training set, test set, and external test set based on the
molecular fingerprint ECFP-6. As shown in Table 1, the
Tanimoto similarity coefficients of the compounds in the three
data sets were 0.105, 0.111, and 0.101, respectively, indicating
that the compounds in the three data sets had good chemical
structure diversity.

3.3. Validation of Classification Models. Based on the
NB and RP algorithms, eight classification models (NB-1−NB-
4 and RP-1−RP-4) were constructed using optimized 2D
molecular descriptors combined with ECFP_4, ECFP_6, and
MACCS molecular fingerprints. Table 2 shows the results for
5-fold cross verification and test set verification. The NB-1 and
RP-1 models established only by 12 kinds of DS_2D_MD
performed poorly. In the internal 5-fold cross verification of
the two models, the values of MCC were 0.595 and 0.758,
respectively, and in the test set verification, the values of MCC
were 0.507 and 0.760, respectively. The classification models
established by the combination of different molecular finger-
prints and DS_2D_MD (NB-2−NB-4, RP-2−RP-4) were

Figure 3. Chemical space analysis of the training set (A), test set (B), and external test set (C) by principal component analysis (PCA).

Table 1. Detailed Statistical Description of the Entire Data
Set

data set
inhibitors
(active)

decoys
(inactive) total

Tanimoto
coefficient

training set 112 337 449 0.105
test set 37 113 150 0.111
external test
set

40 120 160 0.101

Table 2. Performance of the Eight Models for the Training Set and Test Set Using Different Combinations of Molecular
Descriptors

training set test set

model descriptors number of descriptors Q MCC AUC Q MCC AUC

NB-1 DS_2D_MD 12 0.835 0.595 0.859 0.753 0.507 0.854
NB-2 MD + ECFP_4 13 0.982 0.953 0.991 0.980 0.946 0.999
NB-3 MD + ECFP_6 13 0.996 0.988 0.992 0.980 0.946 0.999
NB-4 MD + MACCS 13 0.871 0.718 0.940 0.893 0.756 0.969
RP-1 DS_2D_MD 12 0.891 0.758 0.968 0.900 0.760 0.926
RP-2 MD + ECFP_4 13 0.924 0.826 0.981 0.987 0.964 0.997
RP-3 MD + ECFP_6 13 0.924 0.826 0.981 0.987 0.964 0.997
RP-4 MD + MACCS 13 0.927 0.830 0.978 0.953 0.873 0.995

Table 3. Performance of the Five Models for the External
Test Set Using Different Combinations of Molecular
Descriptors

model descriptors
number of
descriptors Q MCC AUC

NB-2 MD + ECFP_4 13 0.906 0.745 0.985
NB-3 MD + ECFP_6 13 0.906 0.745 0.984
RP-2 MD + ECFP_4 13 0.944 0.847 0.969
RP-3 MD + ECFP_6 13 0.944 0.847 0.969
RP-4 MD + MACCS 13 0.944 0.984 0.996
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significantly improved in terms of Q values and MCC values
compared with the models established by molecular
descriptors alone (NB-1 and RP-1), that is, the introduction
of molecular fingerprints improved the prediction ability of the
classification models to a great extent.
The NB models with molecular fingerprints ECFP_4 (NB-

2) and ECFP_6 (NB-3) performed better. The MCC values of
the two models in the internal 5-fold cross verification were
0.953 and 0.988, respectively, and the MCC values in the test

set verification were both 0.946. The performance of the RP
model with MACCS molecular fingerprint (RP-4) was better
than that of the RP models with molecular fingerprints
ECFP_4 (RP-2) and ECFP_6 (RP-3) in internal 5-fold cross
verification, but the MCC value of RP-4 in test set verification
was slightly lower than that of RP-2 and RP-3.
In addition, to further investigate the predictive ability of the

models, 40 compounds with potential 3CLpro inhibitory
activity were collected from the recently published literature

Figure 4. Examples of the top 15 good (A) and bad (B) fragments for 3CLpro inhibition as estimated by the NB-3 model. The Bayesian score
(Score) is given for each fragment.
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and combined with 120 decoys to form an external test set.
The performances of NB-2, NB-3, RP-2, RP-3, and RP-4 were
better in internal 5-fold cross verification and test set
verification, so an external test set was carried out to further
validate the above models, and the results are shown in Table
3. The NB models in external test set verification were higher
in Q values and AUC values but lower in MCC values. The RP
model with the MACCS molecular fingerprint had a higher Q
value, MCC value, and AUC value in the external test set
verification. Considering the results of internal 5-fold cross
verification, test set verification, and external test set
verification, five models, including NB-2, NB-3, RP-2, RP-3,
and RP-4, were used to comprehensively predict the natural
product molecular database of our laboratory.
3.4. Dominant and Inferior Structural Fragments

Analysis. The introduction of fingerprints into the NB model
provides information on the dominant and inferior structural
fragments that play a crucial part in active compounds. Fifteen
dominant fragments and fifteen inferior fragments were
obtained by analyzing the Bayesian scores of structural

fragments from the NB-3 (MD + ECFP_6) model, which
provided a reference for the rational design of 3CLpro

inhibitors. As shown in Figure 4, most of the 15 dominant
fragments contained amide bonds, and most of the 15 inferior
fragments contained sulfonyl and nitrogen negative ions, which
suggested that the existence of amide bonds was beneficial to
inhibiting the activity of 3CLpro, while the existence of sulfonyl
and nitrogen negative ions was not conducive to the inhibition
of 3CLpro activity.

3.5. Prediction Results for Compounds. A total of 5766
natural chemical components in the database of our laboratory
were predicted, among which 347 compounds were identified
as active compounds by five models, and the EstPGood values
of 347 compounds were more than 0.6 in the NB-3 (MD +
ECFP_6) model. Further ADME analysis was carried out to
remove the chemical compounds that fit any of the listed
conditions: (1) the solubility was no more than 8, (2)
CYP2D6 enzyme inhibition activity was true, (3) the
absorption availability was greater than or equal to 2. There
were 202 compounds left. The distribution of ADME
parameters is given in Figure 5. After that, toxicity prediction
analysis was carried out to eliminate the compounds with
toxicity possibilities greater than 0.7. Finally, 139 compounds
were retained, and 31 compounds (Supporting Information
Table S1) were selected for further in vitro activity detection.

3.6. FRET Detection of SARS-CoV-2 3CLpro. Taking
ebselen as a reference compound, the inhibitory activity of 31
compounds on SARS-CoV-2 3CLpro was detected using the
FRET technique. As shown in Table 4 and Figure 6, the IC50
value of ebselen detected was 0.76 μM (Figure 6A), which was
similar to that previously reported (IC50 = 0.67 μM). Among
the 31 compounds, (+)-shikonin and shikonin had strong
activity against SARS-CoV-2 3CLpro, and the IC50 values were
4.38 μM and 4.50 μM, respectively. The IC50 value of

Figure 5. Distribution of ADME parameters of about 202 compounds.

Table 4. Inhibitory Activity of (+)-Shikonin, Shikonin,
Scutellarein, 5,3′,4′-Trihydroxyflavone, and Ebselen against
SARS-CoV-2 3CLpro and 5,3′,4′-Trihydroxyflavone against
SARS-CoV-2 in VeroE6 Cellsa

3CLpro FRET assay
SARS-CoV-2
VeroE6 cells

compounds IC50 (μM) IC50 (μM) TC50 (μM) SI

(+)-shikonin 4.38 >100 ND
shikonin 4.50 >100 ND
scutellarein 19.92 >100 >175
5,3′,4′-trihydroxyflavone 87.76 8.217 131.66 16
ebselen 0.76 ND ND

aND, not determined.
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scutellarein was 19.92 μM, and the IC50 value of 5,3′,4′-
trihydroxyflavone was 87.76 μM. Overall, the four compounds
showed definite SARS-CoV-2 3CLpro inhibitory activity
(Figure 6B−E).
3.7. Cytopathic Effect Assay in VeroE6 Cells. On the

basis of 3CLpro inhibitory activity detection of the compounds,
the active compounds were further tested for cellular-level
activity inhibiting SARS-CoV-2, which was estimated through
the CPE of VeroE6 cells under viral infection. It was reported
that (+)-shikonin and shikonin could not inhibit the
replication of SARS-CoV-2,21 and then, the antiviral effect of
scutellarein and 5,3′,4′-trihydroxyflavone was evaluated against
SARS-CoV-2 in VeroE6 cells. According to the results of the
CPE assay, 5,3′,4′-trihydroxyflavone showed certain antiviral
effects (Figure 6F, IC50 = 8.22 μM). The median toxic
concentration (TC50) value of 5,3′,4′-trihydroxyflavone in the
absence of viral infection was 131.66 μM, and the selection
index (SI) was 16 (Table 4). The antiviral activity and
cytotoxicity of 5,3′,4′-trihydroxyflavone showed a good
tendency to separate, suggesting that 5,3′,4′-trihydroxyflavone
may be a promising candidate for further research to help
develop more potent 3CLpro inhibitors against SARS-CoV-2.
3.8. Verification of Molecular Docking. Furthermore,

the binding modes of 5,3′,4′-trihydroxyflavone, scutellarein,
and shikonin with SARS-CoV-2 3CLpro were revealed by
CDOCKER (Figure 7). The original ligand N3 of SARS-CoV-
2 3CLpro could form seven hydrogen bonds with amino acid
residues of Glu166, His163, Gly143, Thr190, Gln189, His164,
and Phe140 and carbon−hydrogen bonds with amino acid
residues of Gln189, His164, Glu166, Met165, and His172.
What is more, the potential interactions also included pi−alkyl
interactions with Ala191 and Pro168 and alkyl interactions
with Leu167, Met49, His41, and Met165. 5,3′,4′-Trihydroxy-
flavone could form hydrogen bonds similar to N3 with His163,
Phe140, and Glu166. In addition, 5,3′,4′-Trihydroxyflavone
could form another hydrogen bond with Ser144, pi−alkyl
interaction with Met165, and pi−pi T-shaped interaction with
His41. Scutellarein could form hydrogen bonds, pi−alkyl

bonds, and pi−pi T-shaped interaction similar to 5,3′,4′-
trihydroxyflavone with His163, Phe140, Glu166, Met165, and
His41. However, scutellarein also could form carbon−hydro-
gen bonds and pi−sulfur interaction with Arg188 and Cys145,
respectively. Shikonin could interact with His163 to form
hydrogen bonds similar to N3, with Gln189 to form carbon−
hydrogen bonda; with Met49, His41, and Met165 to form alkyl
interactions; and with Cys145 to form pi−sulfur interactions.

4. DISCUSSION AND CONCLUSIONS
To date, the spread of the novel coronavirus has disrupted the
normal life order of many countries around the world and has
laid a heaven burden on the country’s economic development.
At present, related vaccines against the virus have been
introduced into the market, and people in many countries have
been vaccinated, but the adverse reactions and effective
duration after vaccination still need further clinical con-
firmation. Although relevant drugs are also under urgent
development, there are still no specific drugs in the market, so
screening and identifying all potential and available drugs are
still important for controlling and alleviating the epidemic.
3CLpro is an enzyme necessary for coronavirus replication that
can cleave polymers to produce nonstructural proteins and
may also interfere with the host’s innate antiviral immune
response. 3CLpro is highly conserved in different coronaviruses
and has no homologous protein in humans. Inhibiting the
activity of this enzyme can effectively interfere with virus
replication and proliferation and reduce mutation-mediated
drug resistance.
In this study, NB and RP algorithms were used to establish

classification models for 3CLpro. First, active compounds and
inactive compounds of 3CLpro were collected, and molecular
descriptors were optimized by correlation evaluation and
stepwise linear regression. Then, eight classification models
were established based on the optimized molecular descriptors
combined with ECFP_4, ECFP_6, and MACCS molecular
fingerprints. According to the results of 5-fold cross
verification, test set verification and external test set

Figure 6. Inhibitory curves and IC50 values for the reference compound ebselen (A) and (+)-shikonin (B), shikonin (C), scutellarein (D), and
5,3′,4′-trihydroxyflavone (E) against SARS-CoV-2 3CLpro and 5,3′,4′-trihydroxyflavone against SARS-CoV-2 in VeroE6 cells (F).
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verification, the optimal models were selected. Through the
prediction of the natural product molecular database collected
and integrated by our previous work, 139 chemical

components were predicted to be positive and had good
ADMET parameters. Thirty-one compounds were further
tested in vitro by the FRET method, among which

Figure 7. Receptor−ligand interactions of N3 (A, B), 5,3′,4′-trihydroxyflavone (C, D), scutellarein (E, F), and shikonin (G, H) with the active site
of SARS-CoV-2 3CLpro.
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(+)-shikonin, shikonin, scutellarein, and 5,3′,4′-trihydroxy-
flavone showed certain activity inhibiting SARS-CoV-2 3CLpro.
In the CPE assay, 5,3′,4′-trihydroxyflavone showed an antiviral
effect. Also, the possible binding modes of 5,3′,4′-trihydroxy-
flavone, scutellarein, and shikonin with SARS-CoV-2 3CLpro

were analyzed through CDOCKER in DS 2018.
Shikonin, a purple-red tea quinone natural pigment extracted

from the root of the natural plant Zongfu, possesses anticancer,
anti-inflammatory, and antibacterial functions and is mainly
used in the treatment of acute icteric or nonicteric hepatitis
and chronic hepatitis. It has been reported that shikonin can
effectively inhibit the activity of SARS-CoV-2 3CLpro in FRET
analysis,22 which is consistent with the result of our study.
Scutellarein, a flavonoid mainly existing in Erigeron karvinskia-
nus, owns anti-inflammation functions, relieves pain, dispels
wind and dampness, and so on. Studies have shown that it has
certain inhibitory activity against coronavirus.23 We further
verified its activity in inhibiting SARS-CoV-2 3CLpro by virtual
screening and FRET analysis. However, shikonin and
scutellarein did not show the activity of inhibiting SARS-
CoV-2 in the CPE assay. There was no related report on
5,3′,4′-trihydroxyflavone having inhibitory activity on SARS-
CoV-2 3CLpro and SARS-CoV-2. We first found that 5,3′,4′-
trihydroxyflavone had certain inhibitory effects on SARS-CoV-
2 3CLpro with FRET detection and SARS-CoV-2 in the CPE
assay.
Based on the above analysis, NB and RP virtual screening

models were established for the first time to predict the active
natural products against 3CLpro. The inhibitory activity of
5,3′,4′-trihydroxyflavone on SARS-CoV-2 3CLpro in FRET
detection and SARS-CoV-2 in the CPE assay was reported
first. The binding modes of 5,3′,4′-trihydroxyflavone with
SARS-CoV-2 3CLpro were explained and verified by molecular
docking. This study lays a foundation for further in vivo and
clinical research and speeds up the discovery of new drugs
against novel coronavirus.
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