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Introduction: Bone defect (3 mm in murine model) is a condition when the bone tissue cannot undergo a natural 
healing process caused by severe trauma, tumor, or irradiation. A bone defect is a challenge even for experienced 
Orthopaedic surgeons. Stromal vascular fraction (SVF) is a heterogeneous cell population derived from adipose 
tissue that results from minimal manipulation of the adipose tissue itself. Several studies have elucidated the 
effect of either SVF on bone defect healing. However, to the author’s knowledge, there is no study evaluating the 
effect of SVF application on fracture healing, which was measured with osteocalcin biomarker. This study aims to 
evaluate the effect of SVF application on bone defect healing measured with osteocalcin as a biomarker of bone 
healing. 
Materials and methods: This was an animal study involving twelve Wistar strain Rattus norvegivus. They were 
divided into three groups: negative group (normal rats), positive group (rats with bone defect and treated 
without SVF application), and SVF group (rats with bone defect and treated with SVF application). After 30 days, 
the rats were sacrificed, the osteocalcin biomarkers were evaluated. This biomarker was quantified using ELISA. 
Results: Osteocalcin biomarker expressions were higher in the group treated with SVF application than those 
without using SVF. All comparisons of the SVF group and positive control group showed significant differences 
(p < 0.05). 
Conclusion: SVF application could aid the healing process in a murine model with bone defect, marked by 
increased osteocalcin levels.   

1. Introduction 

A critical bone defect is a condition where the bone is unable to heal 
itself naturally. A bone defect could happen after major trauma or tumor 
growth where most bone tissue is lost, or it could happen after irradia-
tion [1]. In humans, it is considered a bone defect when there is a loss of 
bone components 2–2.5 times the diameter of the bone involved [2], 
while other researchers define when the distance of the defect is more 
than 1 cm plus 50% or more the bone circumference [3,4]. In animal 
research objects such as rats, it is called a bone defect when there is a loss 
of bone components up to 3 mm [5]. Bone defect is a challenge for or-
thopaedics, as the condition complicates fracture and needs further 

reconstruction [6,7]. 
Stromal vascular fraction (SVF) is a heterogeneous cell population 

that can be acquired from minimally manipulated adipose tissue. It has 
been reported that SVF contains various cells like Adipose-derived 
Mesenchymal stem cells (ADMSC), hematopoietic stem cells (HSC), T 
regulatory cells (T-reg), and progenitor cells. SVF also contains growth 
factors such as Insulin-like growth factor-1 (IGF-1), transforming growth 
factor β (TGF β), and Fibroblast growth factor (FGF), which plays a role 
in cell proliferation and differentiation [8,9]. 

The healing process in bone defect goes through several phases: 
hematoma formation, inflammation, soft callus formation in cartilage, 
neovascularization, soft callus mineralization, hard callus formation, 
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and remodelling of the osteoclastic hard callus to make flat bones [10, 
11]. However, this process is not enough to cover critical sized defects in 
bones. Under the circumstances as such, an autograft is a preferred 
method to replace bone loss. During bone defect healing, several bio-
markers fluctuate dynamically to signify an ongoing bone formation, 
such as osteocalcin (OC), alkaline phosphatase (ALP) [8]. During a bone 
formation process, the levels of these biomarkers mentioned above will 
elevate, thus making them a good parameter for fracture healing with 
bone defect [12,13]. 

Osteocalcin, also known as “bone gamma-carboxy glutamic acid 
(GLA) protein (BGP)," is a noncollagenous protein of the bone matrix. 
Osteocalcin is a product of differentiated osteoblasts formed by 46–50 
amino acids according to the species. Vitamin D directly stimulates 
osteocalcin’s transcription (actually, the gene has a “vitamin D respon-
sive element”), while vitamin K regulates the carboxylation process. In 
addition, variations of growth factors, hormones, or cytokines can 
modulate osteocalcin production via signaling pathways or interact with 
transcription factors acting on the osteocalcin promoter gene. (BGLAP 
gene on chromosome 1q25-q31.) While extensively transcribed during 
differentiation from osteoblasts, this gene is generally inactivated. 
Carboxylation glaucoma is involved in the binding of calcium and hy-
droxyapatite, allowing deposition of osteocalcin in the mineralized bone 
matrix [12,14]. 

The benefit of SVF application in the medical and orthopaedics field 
have been widely observed. SVF has been used in cases of burn trauma, 
nerve injury, osteoarthritis, osteonecrosis, rheumatoid arthritis, rupture 
of Achilles tendon, and growth plate defect [15–17]. A combination of 
SVF application in bone defect therapy has been done, but there has 
been no study that measures the effect of SVF application on bone 
healing from osteocalcin biomarkers. So, in this study, the authors 
would like to observe the effect of SVF from adipose tissue in the process 
of bone defect healing, measured by osteocalcin (OC) biomarker. 

2. Methods and materials 

2.1. Study design and animal model 

This study is an experimental laboratory study with a randomized 
posttest only control group design. In this study, the parameters 
measured are the result of the authors’ intervention. 

The samples in this study are healthy male Rattus novergicus Wistar 
strain, age 12 weeks old, weighs around 250 g with no disabilities in the 
limbs, and have not been fed any chemical substances. These rats are 
divided into three groups, with four rats in each group. The groups are 
further identified as: 

(1) Negative group: normal rats without fracture and bone defect and 
SVF application, (2) positive group: murine model with critical sized 
fracture and bone defect and without SVF application, (3) SVF group: 
murine model with critical sized fracture and bone defect and with SVF 
application. These three groups will be observed for 30 days and tested 
for osteocalcin biomarker levels. The Ethics Committee of Universitas 
Brawijaya has approved all animal protocols, and all subsequent ex-
periments were carried out according to the ARRIVE guidelines and 
regulations [18]. Animals were kept in standard conditions of accredited 
vivarium, anesthesia and euthanasia were performed under ether 
anesthesia. Gentle handling, daily cage cleaning and close monitoring 
were done to minimize animal suffering. 

2.2. Study procedures 

2.2.1. The making of stromal vascular fraction from adipose tissue 
Five 12 weeks old male Wistar strain rats were sacrificed by dis-

locating their cervical. Adipose tissue was harvested from the epidid-
ymal and perirenal fat. The rats were in the supine position, and a skin 
incision was made wide and longitudinal to expose the abdomen. The 
testicles were removed, and the fat surrounding them was harvested. 

Perirenal fat was collected by cutting off the innervation from the 
retroperitoneal fat pad. 

The harvested adipose tissue was then washed with a solution of PBS 
(Phosphate-buffered saline; Sigma-Aldrich, Germany) which contains a 
mixture of 10% antibiotic-antimycotic, then mashed with a knife. It was 
then immersed in a 0.075% type IA collagenase mixture (Sigma-Aldrich) 
and PBS for 30 min at 37 ◦C. The processed tissue was then strained with 
a 100 μm mesh (Sigma-Aldrich) and centrifuged om 1200 rpm for 10 
min at 20 ◦C. The supernatant was discarded, and the resulting sus-
pension yielded a heterogeneous cell mixture with an estimate of 2 ×
106 cells for 1 g of adipose tissue [19]. 

2.2.2. Preparation procedure for animal fracture model with bone defect 
and plaster of paris application 

Murine models were acclimatized for 7 days before a bone defect was 
made in positive and intervention groups. Rats were anaesthetized with 
100 mg/kg ketamine injection and intraperitoneal 10 mg/kg xylazine 
hydrochloride before the procedure. The authors ensured rats were 
under anesthesia using a pedal reflex technique by extending the ex-
tremities and pinching the web between the toes. If murine shied away 
or twitched a muscle and made a sound, then the anesthesia was not 
enough. After that, an antibiotic injection of 20 mg/kg Cefazolin was 
administered on the right leg. The operating area was shaved and 
cleaned with chlorohezadine. The murine were placed in a prone posi-
tion on the operating area and incised for 3–4 cm. The incision deepened 
layer by layer until the bone was exposed. Osteotomy was done using a 
3 mm Kerrison, so the bone defect made was 3 mm wide. The inter-
vention was then done according to the assigned groups. Then Plaster of 
Paris was applied from the proximal femur to the ankle with a 90◦

flexion on the knee. Analgesia was given every 8 h (using IM 5 mg/kg 
Ketorolac) and an antibiotic was administered 24 h post-surgery using 
intramuscular 20 mg/kg cefazoline. Monitoring was done periodically 
for 30 days. 

2.2.3. Laboratory analysis with ELISA method 
After 30 days, murine models were harvested. The area of bone 

defect with callus formation was collected and then extracted. The levels 
of osteocalcin were assessed using the ELISA method. 

2.3. Statistical analysis 

Statistical Package for the Social Sciences (SPSS) was used for sta-
tistical analysis purpose and study data are available for access. The 
hypothetical comparative test steps are as follows: data normality test, 
variant homogeneity test, and comparative student T-test or One-way 
ANOVA test or Kruskal-Wallis test according to the normality and ho-
mogeneity test result. If ANOVA or Kruskal-Wallis test result is signifi-
cant (p < 0.05), then the next test is post hoc test. If the data collected 
was not homogenous by ANOVA, a non-parametric test with the 
Kruskall-Wallis method can be done. 

3. Results 

The osteocalcin (OC) level was measured using the One-Way ANOVA 
test because the data were normally distributed and homogenous. The 
results are depicted in Table 1. 

ANOVA test yielded p-value of 0.008, less than α = 0,05 (p < 0,05). 

Table 1 
The Comparison of Osteocalcin Level using One-Way ANOVA Test.  

Group Mean ± SD p-value 

Negative 24.7545 ± 2.8398 a 0.008 
Positive 25.157 ± 3.10199 a 
SVF 35.8458 ± 1.61377 b 

Note: Different letter signifies significant difference (p < 0.05) and vice versa. 
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Thus, it is concluded that SVF application has a significant effect on 
increasing the production of osteocalcin (OC). After that, the test con-
tinues the post hoc test (Table 2) to know how the differentiation on 
each intervention. The result is that the group that received SVF appli-
cation is significantly different (p < 0,05) compared with the group 
without SVF. 

4. Discussion 

This study was an in vivo experimental study on a rat fracture model 
with a bone defect that received interventions with SVF application. An 
in vitro study of SVF by Sananta (2020) [20] showed that the charac-
teristic phenotypes of MSC yield positive for CD44 and negative for 
CD45. This statement aligned with previous findings that if SVF contains 
MSCs. One of the prerequisite criteria that define MSC is the expression 
of a specific surface antigen, in this case is CD44, which is a specific 
characteristic of MSC. A negative finding for CD45 showed that the stem 
cell originates from adipose tissue instead of hematopoietic cells [21]. 

SVF of adipose tissue is a heterogeneous population of cells derived 
from adipose tissue obtained from minimal manipulation of the adipose 
tissue. The SVF contains a heterogeneous collection of cells and several 
components, primarily: MSCs, HSCs, Treg cells, pericytic cells, AST cells, 
complex microvascular beds (fibroblasts, white blood cells, dendritic 
cells, intra-adventitial smooth muscular-like cells), and the extracellular 
matrix. In addition, SVF also contains many growth factors, such as 
Vascular Endothelial Growth Factor (VEGF), Hepatocyte Growth Factor 
(HGF), IGF-1, TGFβ, and Basic Fibroblast Growth Factor (bFGF). 
ADMSCs contained in the stromal vascular fraction can continue to 
produce growth factors [20,21]. 

SVF will provide sufficient stem cells and growth factor content, 

especially TGF-beta and BMP-2, provided in SVF. The growth factor will 
initiate chemoattractant stem cells (mesenchymal cells) to the site of 
bone defects, then simultaneously increase the proliferation of stem cells 
and the differentiation of mesenchymal cells into osteoblasts. Where this 
osteoblast will perform its role in the bone healing process [20]. 

Osteocalcin is a 49-amino acid protein, which is produced by oste-
oblasts during bone formation. Osteocalcin is trapped in the bone matrix 
or released directly into the blood circulation. Osteocalcin was initially 
studied as a marker of bone formation, with peak levels observed in 
adolescence and decreasing along with age in both genders. This protein 
is useful in the evaluation of bone turnover and the clinical setting of 
bone loss [14]. 

In this study, there was a significant difference in the levels of 
osteocalcin after application of SVF (p = 0.008) compared to the control 
(positive) group and confirmed with post hoc test, which also shows that 
there is a significantly different effect from intervention (SVF) group to 
positive group. That implies that the SVF application will increase the 
level of osteocalcin in fractures with bone defects because osteocalcin is 
produced by osteoblasts, so an increase in osteocalcin level indicates an 
increase in osteoblasts activity at the time of bone healing. 

From this study, it can be concluded that the application of SVF could 
aid the healing process in a murine model with bone defect, marked by 
increased levels of osteocalcin as a bone formation marker. We suggest 
further study to use a combination of SVF and scaffold and use a 
different fixation such as an external fixation or an internal fixation to 
expand the study towards various modalities used in orthopaedics fields. 
Different biomarkers could also be assessed in future studies, such as 
ALP, osteopontin, type II collagen, and others, as well as from a histo-
logical standpoint. 

Ethical approval 

The Ethics Committee of Universitas Brawijaya has approved all 
animal protocols, and all subsequent experiments were carried out ac-
cording to the relevant guidelines and regulations. 

Provenance and peer review 

Not commissioned, externally peer reviewed. 

Table 2 
Post hoc testing effect of SVF application on osteocalcin levels.  

Comparison of Groups p-value Note 

Negative Positive 0.974 Not significantly different 
SVF 0.001 Significantly different 

Positive Negative 0.974 Not significantly different 
SVF 0.001 Significantly different 

SVF Negative 0.001 Significantly different 
Positive 0.001 Significantly different 

The mean expression of osteocalcin (OC) in each group is depicted in Fig. 1. 

Fig. 1. Mean expression of Osteocalcin (ng/ml) according to different intervention.  
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