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Neuropeptide Y is widely distributed within the body and has long been implicated as a
contributor to skin disease based on the correlative clinical data. However, until recently,
there have been few empirical investigations to determine whether NPY has a
pathophysiological role in the skin. Due to appearance-altering phenotypes of atopic
dermatitis, psoriasis, and vitiligo, those suffering from these diseases often face multiple
forms of negative social attention. This often results in psychological stress, which has
been shown to exacerbate inflammatory skin diseases – creating a vicious cycle that
perpetuates disease. This has been shown to drive severe depression, which has resulted
in suicidal ideation being a comorbidity of these diseases. Herein, we review what is
currently known about the associations of NPY with skin diseases and stress. We also
review and provide educated guessing what the effects NPY can have in the skin.
Inflammatory skin diseases can affect physical appearance to have significant, negative
impacts on quality of life. No cure exists for these conditions, highlighting the need for
identification of novel proteins/neuropetides, like NPY, that can be targeted
therapeutically. This review sets the stage for future investigations into the role of NPY
in skin biology and pathology to stimulate research on therapeutic targeting NPY signaling
in order to combat inflammatory skin diseases.
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INTRODUCTION

Neuropeptide Y (NPY) is a small 36 amino acid peptide that is well recognized as a common
neuropeptide produced within the hypothalamus of the brain (1, 2). In the central nervous system, it
is mainly synthesized by neurons of the sympathetic system (2), or in different parts of the brain
including hypothalamus, hippocampus (predominantly arcuate nucleus and dentate gyrus), where
it plays important roles in the regulation of feeding behavior, storage of energy (3, 4), stress and
anxiety responses (5–7), and affecting blood pressure, nociception, and circadian rhythm (8, 9).
These actions are mediated by interaction with five, G protein-coupled, membrane-bound, NPY Y
receptors (Y1R, Y2R, Y4R, Y5R, Y6R) (2, 10–13). On the central level, NPY is part of important
neuroendocrine loops involving corticotropin releasing hormone (CRH), proopiomelanocortin
(POMC)-derived peptides, and other neuropeptide signaling systems.
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In the years since its discovery, NPY has been shown to be the
most widely distributed neuropeptide throughout multiple
tissues in a variety of organisms (2, 12, 13). There is evidence
of NPY expression in almost every tissue (2, 10, 14, 15), with its
expression and synthesis being constitutive or inducible in nearly
every type of cell (16–22). Due to its wide distribution, NPY has
pleiotropic roles throughout the body in the central biological
processes mentioned above, as well as in the periphery by
regulating cell proliferation (23, 24), immune responses
(25–27), and vasoconstriction (28–30). Despite its known
functions in several physiological and pathological processes,
the exact effects that NPY has on individual tissues remains
poorly understood. It is clear that the specific effects of NPY are
dependent on the cell type(s) and the receptor(s) involved (2, 11,
31, 32), making rote assumptions on NPY function potentially
misleading when comparing across tissues.

The skin, together with its adjacent adipose tissue that
comprises the hypodermis, represents the largest body organ
and is continuously exposed to different chemical, biological and
physical stressors (33, 34). In addition to its important barrier
functions (35), the skin has immuno- and thermoregulatory
functions (36, 37), can affect body homeostasis (38), and
communicates with the brain in a sophisticated manner
through ascending nerves and humoral signals entering
circulation (39–43). The integumental homeostasis is regulated
by a local neuroendocrine system in coordination with immune
and pigmentary systems, which uses the same neuro-mediators
and regulatory loops as those operating in the brain, endocrine
(38, 44, 45), and immune (37) systems. This system, in response
to different noxious factors, can send signals to central
coordinating centers to counteract the stressors and restore
local, or affect global, homeostasis (34, 35, 43, 46). Importantly,
the skin expresses all of the neuroendocrine elements that
interact with NPY in the brain, such as local cutaneous CRH
and POMC systems (44, 47–49).

With these complex processes in mind, it may be no surprise
that the role(s) of NPY in the skin currently remain a mystery to
scientists and dermatologists alike. There has been evidence to
suggest genetic associations of NPY with vitiligo as well as
evidence that shows differential expression of NPY in these
and other skin pathologies. These data, while merely
correlative, support the long-standing hypothesis that NPY can
have pathomechanistic roles in the skin (38). To better
understand mechanisms by which NPY contributes, or might
contribute, to skin physiology or pathology, the field would
benefit from a succinct review of the various ways in which
NPY has been associated with skin disease and how NPY can
affect the various cell populations in the skin.

In addition to NPY, the family of peptides encompassing
NPY contains two other peptides, known as PYY and PP. The
first to be discovered in this family was PP, discovered in 1968,
while NPY and PYY were isolated in 1982 (50, 51). Originally,
both hormones were discovered to have major roles in the gut-
brain axis, with NPY being expressed throughout the gut-brain
pathway, though preferentially in neurons, whereas PYY and PP
is expressed most abundantly in the lower gastrointestinal tract
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(52, 53). More recently, the expression of the NPY family of
peptides and their receptors has been described in the skin,
opening up new avenues of investigation outside of the gut-brain
axis (28, 30, 54). In addition to the many functions of NPY in the
skin described in this review, it should also be noted that
functions of PYY outside of the gut-brain axis have also been
described (55). One such function described in the skin is the
activity of both PYY and NPY as antibiotic agents, with both
PYY and NPY being shown to degrade bacterial membranes to
irreversibly inhibit bacterial proliferation (56). While the
importance of all three peptides cannot be overlooked, this
review will be focusing mainly on the presence of NPY in the
skin and its role in skin pathology. In this review, we will discuss
what is currently known about the associations of NPY with
various skin pathologies and discuss the potential mechanisms
by which NPY is involved in these disease processes.
EXPRESSION OF NPY PROTEIN IN
SKIN PATHOLOGY

In healthy human skin, NPY is detectable around the blood
vessels, nerve fibers, sweat glands, subcutaneous adipocytes, basal
epidermal cells, and cells of the hair follicle’s outer root sheath
(38, 57–63). NPY is also present at low levels in the circulation of
healthy humans (63–66). In addition to the physiological
expression pattern of NPY, several groups have shown that
NPY is elevated in the affected skin and/or circulation of
humans suffering from various skin pathologies, including
atopic dermatitis, cutaneous melanoma, psoriasis, and vitiligo.

Atopic Dermatitis (AD)
Atopic dermatitis (AD) is an inflammatory disease in which
itchy rashes appear on the skin due to various irritation-inducing
factors (67). This is a common and chronic disease with multiple
etiological influences, including those of immunological, genetic,
and psychological origins (64). There is no cure for AD, and it
can have detrimental impacts on a person’s quality of life via
inducing social stigma and negatively affecting psychological
well-being.

Generally, NPY expression has been shown to be elevated in
the lesional skin of AD patients relative to healthy volunteers. Oh
et al. found significantly more NPY-expressing cells and NPY-
like immunoreactivity (NPY-IR) in the epidermis of lesional AD
skin compared to the skin of healthy volunteers, along with a
significant association between NPY expression in lesional AD
skin and psychological stress, as well as pruritis, or itchiness (68).
Pincelli and colleagues found that the lesional skin of several AD
patients showed the presence of Langerhans cells, a specialized
dendritic cell found in the epidermis of the skin, with NPY-IR,
which was not seen in the skin of healthy volunteers (61, 69).
These studies suggest that the source of NPY in these cases may
be local to cells of the epidermis rather than nerve derived. This is
further supported by the fact that Tobin and colleagues report no
notable change in the density of NPY-expressing nerve fibers
within the dermis of lesional skin from AD patients (70).
March 2022 | Volume 13 | Article 838434
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Circulating NPY is also increased in AD patients. Salomon
and Baran found that NPY is significantly elevated in the plasma
of AD patients when compared to that of healthy volunteers
(Table 1) (66). Additionally, within AD patients, plasma NPY
levels were found to be significantly higher in those patients in
disease remission compared to patients with active disease, a
finding that the investigators hypothesized is due to a selective
uptake of NPY by active, lesional AD skin. Salomon and Baran’s
observation that NPY is significantly elevated in the plasma of
AD patients was further supported by Hodeib and colleagues,
who found that plasma NPY is significantly elevated in AD
patients with moderate and severe disease compared to patients
with mild AD and healthy volunteers (Table 1) (64). The exact
source of NPY during this disease is an important, yet still
unanswered, question. Investigators have hypothesized that the
NPY that is present in the circulation and lesional skin of AD
patients is released both centrally and locally from the skin’s
nerve endings (64, 66). As this hypothesis has yet to be evaluated,
elucidation of the source of NPY, as well as the contributions that
this peptide has in AD disease, will determine whether and how
this peptide may be targeted in the treatment of AD.

The observations of elevated levels of circulating NPY, along
with increased NPY-IR in lesional skin of AD patients, suggest
that NPY may serve a pathomechanistic role in the initiation
and/or progression of AD. A number of molecular models for
AD exist, namely the ‘outside-in’ model that is characterized by
the defective expression of fillagrin by keratinocytes leading to a
subsequent defective skin permeability barrier, and the ‘inside-
out’ model that is characterized by changes in immune cell
function, namely an overactive Th2 response associated with
increased levels of autoreactive IgEs [reviewed in (71, 72)]. While
no direct mechanistic connection between NPY and AD has been
established, NPY can regulate cells and processes that intersect
with both models for AD. For instance, NPY is a known
immunomodulatory factor and is both sufficient and necessary
to drive Th2 responses (25, 73, 74). Changes in microbial
diversity, along with increased colonization by Staphylococcus
aureus are also clearly associated with AD severity and disease
flares (75–77). NPY has been suggested to participate in shaping
the microbiota, albeit in the gut, through both direct
antimicrobial actions and indirect effects on regulating innate
and adaptive immune responses and similar connections
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between skin and its microbiota are emerging in dermatology
(78, 79). These and additional biological processes in which NPY
participates and may overlap with AD pathogenic characteristics
are highlighted in Section 4, below.

Cutaneous Melanoma
Melanoma is a form of cancer in which the pigment-producing
cells, called melanocytes, undergo malignant transformation
(80). Cutaneous melanoma affects a large segment of the
population with high incidence and mortality rates in
comparison to other cancers and is the deadliest skin
malignancy. While the major etiological factors include solar
radiation and genetic background (81–84), different hormonal
factors can affect melanomagenesis and progression of
melanoma. For example, NPY expression is associated with
cutaneous melanoma. Initial reports of NPY expression in
primary cutaneous melanomas found that NPY is lowly
expressed in melanocytic nevi and highly expressed within the
cytoplasm by many types of melanoma tumors (85). In a sample
size of 49 primary tumors, Gilaberte and colleagues also reported
high NPY expression in primary melanomas which were
associated with higher probability of metastasis, such as
vertical growth phase with low or no tumor lymphocytic
infiltration response. There was also a slight positive
correlation between NPY expression and tumor cell
proliferation. In a follow-up study, Perez Tato and colleagues
evaluated 79 primary tumors and found that superficial
spreading melanoma and lentigo maligna exhibit significantly
higher levels of NPY expression in comparison to nodular
melanoma (86). However, in contrast to Gilaberte et al. these
authors report low NPY expression associated with high
proliferation, increased metastasis, high peritumoral mast cell
density, and reduced patient survival, but no relationship between
NPY expression and intratumoral lymphocyte infiltration.

Clearly, these studies are contradictory. Gilaberte and
colleagues concluded that NPY may have a pro-tumorigenic
role in cutaneous melanoma, and thus its high expression is an
indication of poor prognosis for patients. Perez Tato and
colleagues instead concluded that high NPY expression is likely
an indication of positive clinical outcomes, which they attributed
to their larger sample size compared to the Gilaberte study. In
relationship to both studies, the source of NPY under these
TABLE 1 | The concentrations of NPY in the circulations of healthy volunteers and patients with skin pathologies.

Skin Pathology (tissue) Healthy Volunteers (pg/mL) Patients (pg/mL) Disease Classification Reference

Atopic Dermatitis (plasma) 35.51 ± 97.71 54.59 ± 39.63* Active 66
66.75 ± 39.98* Remission

11.61 ± 7.4 34.7 ± 15 Mild 64
43.9 ± 9.8* Moderate
72.9 ± 11.9* Severe

Psoriasis (serum) 455.5 ± 154 493.9 ± 183* Overall 65
Vitiligo (plasma) 130.4 ± 62.6 209.1 ± 60.5** Overall 63

177.2 ± 59.9* Local
235.2 ± 54.2** Generalized
199.3 ± 45.3** Segmental
March 2022 | Volume 13 | Art
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circumstances is unclear, however, previous gene expression
analysis detected no significant changes in NPY gene
expression levels between normal skin, benign skin nevi, and
malignant melanoma (87)[retrieved from GSE3189], suggesting
an extra-tumoral source. Interestingly, in mice injected
subcutaneously with B16-F10 mouse-derived melanoma cells,
sympathectomy to reduce sympathetic neurotransmitters (like
NPY and noradrenaline) prior to tumor initiation greatly
attenuates melanoma growth and yields smaller tumors (88).
However, in the same mice, sympathectomy also induces
upregulation of NPY in tumor tissue making it unclear as to
whether the absence of sympathetic NPY, the induction of tumor
NPY, or another sympathetic neurotransmitter contributes to
the anti-tumorigenic effect. Evaluating the mechanistic role of
NPY in cutaneous melanoma will determine whether this
peptide may contribute or prevent disease and will indicate
how this peptide could be targeted or used to combat disease
pathogenesis and/or progression.

Psoriasis
Psoriasis is a chronic, inflammatory skin disease in which
hyperproliferation of skin cells causes the formation of itchy and
scaly dry patches on the skin that was described in modern
scientific literature as early as the 1800s (89, 90). Early historical
accounts paint psoriasis as an incurable mystery, and that no
population demographic or area of the skin appears exempt from
it (89). Over a century later, our understanding of psoriasis has
changed dramatically, though we are still making new discoveries
on the mechanisms that underly psoriasis pathology, such as the
resident memory T cells remaining in the skin after psoriasis
treatment (91, 92). Like AD, psoriasis is a multi-factorial disease
that can have detrimental effects on a person’s psychological well-
being and overall quality of life. The expression of NPY in psoriatic
skin has yet to be evaluated. However, NPY levels in the serum of
patients with psoriasis are not different from those of healthy
volunteers (Table 1) (65). Despite the lack of as association
between NPY levels in circulation and disease status, decreased
NPY levels are observed in the plasma of psoriatic patients with
pruritis in comparison to those without pruritis (93), and
activation of NPY signaling intrathecally can attenuate both
mechanical and histaminergic itch in mice (94). Future studies
to determine NPY expression in psoriatic skin relative to
uninvolved skin, as well as skin from healthy volunteers, will
establish whether NPY may be involved in local psoriasis
pathology. It must be noted that this involvement may be
complex, since other neuropeptides that interact with NPY
signaling on the central level, such as CRH and POMC-derived
peptides, can affect presentation of inflammatory diseases
depending on signaling context (45, 46, 95).

Vitiligo
Vitiligo is a chronic skin disease that is characterized by
progressing skin depigmentation due to the loss or diminished
function of epidermal melanocytes. Vitiligo has multiple
etiological factors, including those of genetic, autoimmune,
neuroendocrine, and oxidative stress origins (96–99). Like other
skin diseases, NPY has been found to be elevated in the lesional
Frontiers in Endocrinology | www.frontiersin.org 4
depigmented skin, as well as in the circulation, of vitiligo patients.
Lazarova and colleagues found that in lesional and marginal
vitiliginous skin, NPY-IR is elevated when compared to the skin
of healthy volunteers. In this vitiliginous skin, NPY was found to
be localized around the blood vessels and in the dermis (60).
Furthermore, Tu and colleagues quantified the concentration of
NPY in tissue fluids isolated from lesional and uninvolved skin of
vitiligo patients (63). In general, NPY is significantly elevated in
lesional skin when compared to uninvolved skin (Table 2).
However, this difference is lost in the generalized type of vitiligo,
which was hypothesized to be because larger areas of the skin are
affected in this type of the disease.

Tu and colleagues also showed that NPY is elevated in the
plasma of vitiligo patients compared to that of healthy volunteers
(Table 1). Interestingly, they found that NPY is highest in
patients with the generalized type of vitiligo, which could also
be attributed to the larger areas of skin affected. Because this
group found that the concentration of NPY in the skin was
consistently higher than its concentration in plasma, they posited
that the NPY found in the skin is likely produced and secreted
locally from the peripheral nerve fibers in the skin, and that the
NPY in the plasma of vitiligo patients is likely spillover from
excess peptide in the skin. The role that NPY plays in vitiligo
pathology has yet to be uncovered, but Tu and colleagues
hypothesized that NPY may influence melanocyte destruction
both directly, via direct contact between melanocytes and
intraepidermal nerve endings, and indirectly, via inducing
immune cell activation and cytokine production (63). In
support of the latter and not the former ideas, Toyoda et al.
demonstrated that NPY can cause ‘degenerative changes’ in
melanocytes when supplemented in the growth media of organ
cultured human skin but does not affect melanocyte morphology
or melanin synthesis directly in cultured melanocytes (100).
Further, premature and progressive hair graying due to
melanocyte stem cell loss is observed in a mouse model of
chronic NPY overexpression, although the mechanism of why
this loss occurs is unclear (101).
GENETIC ASSOCIATIONS OF NPY WITH
SKIN PATHOLOGY

Vitiligo
Gene association studies have identified polymorphisms in the
NPY gene as a risk factor for vitiligo in multiple populations.
Laddha and colleagues have associated single nucleotide
TABLE 2 | The concentrations of NPY in skin fluids of vitiligo patients.

Disease Classification Uninvolved Skin (pg/mL) Lesional Skin (pg/mL)

Overall 270 ± 87.6 311 ± 55*
Local 230.3 ± 57.7 270.4 ± 39.1*
Generalized 356.2 ± 29.5 366.5 ± 35.9
Segmental 231.5 ± 97.3 308.2 ± 37.4*
March 2022 | Volu
NPY levels are significantly greater in affected skin of vitiligo patients compared to
unaffected skin. Information from 63. Data are shown as mean ± standard deviation.
*p < 0.05.
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polymorphisms (SNPs) in the promoter region (-399T/C;
rs16147) and second exon (+1128T/C; rs16139) of NPY with
increased susceptibility for vitiligo in Indian populations (102).
In this case, the TC haplotype (+1128 T/-399 C) is associated
with a 2.3-fold greater odds for developing vitiligo. Similarly, in
an Egyptian population, the C/C and T/C genotypes of the -399T/C
SNP are associated with a 3.75- and 4.6-fold increased odds for
disease (103). Both the -399 and +1128 SNPs also appear to have
functional consequences on NPY gene regulation. Individuals with
C/C or T/C genotypes at the -399T/C SNP exhibit elevated NPY
gene and protein expression in the anterior cingulate cortex of
human post-mortem brain (104). Those with the Leu7/Pro7 peptide
sequence (as a consequence of the +1128T/C SNP) exhibit elevated
NPY protein in plasma (105). Within neurons, the +1128T/C SNP
also increases the secretion of NPY post-translationally (100,
106).These genetic associations of NPY, along with the clinical
data that show elevated NPY in the plasma and affected skin of
some vitiligo patients (63), implicate NPY as a contributing factor to
vitiligo pathology and a potential target for therapeutic development
in patients with these mutations.

Cutaneous Melanoma
Evaluation of genomic cancer data available in cBioPortal (http://
www.cbioportal.org/) indicates that NPY is not frequently
amplified (1.12%; 5/447 patients) or mutated (1.34%; 6/447
patients) in the tumors of patients with skin cutaneous
melanoma (TGCA Research Network) (107, 108). Neither has
GWAS analysis of cutaneous melanoma detected NPY as a
susceptibility locus (109). Nevertheless, in a study in which copy
number variations of neuropeptide and receptor genes were
investigated for multiple cancers, the expression of NPY and its
receptors, Y1R, Y2R, and Y5R, were given negative prognostic Z-
scores in cutaneous melanoma (110). Having negative prognostic
scores in this study indicates that the expression of NPY and its
receptors in cutaneous melanoma is associated with favorable
survival outcomes for patients, which is in agreement with the
findings from Pérez Tato and colleagues’ clinical study of NPY
expression in primary cutaneous melanomas (86).

Atopic Dermatitis and Psoriasis
To the authors’ knowledge, no genetic associations of NPY have
yet been reported for atopic dermatitis or psoriasis.
A LINK BETWEEN STRESS AND
CUTANEOUS UPREGULATION OF NPY

In the skin diseases mentioned above, elevations in NPY protein
expression are observed locally within diseased skin. The source of
NPY in this context is unknown, however, there is strong evidence
indicating that physiological stimulation or psychological stress
can lead to cutaneous NPY release from sympathetic nerves or
NPY upregulation directly by specific skin cells.

It is well-established that NPY can be released from cutaneous
sympathetic nerves to regulate skin vasoconstriction in response
to physiological stress, thus making sympathetic nerves a logical
Frontiers in Endocrinology | www.frontiersin.org 5
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skin diseases. In human skin, NPY protein expression is, in part,
localized to a network-like mesh of adrenergic nerve fibers
surrounding arteriole beds (57, 58, 62). The stress of whole-
body cooling in humans increases cutaneous blood pressure, and
this increase can be blocked by preventing sympathetic nerve
transmitter release from nerve endings using bretylium or, more
specifically, by localized intradermal administration of BIBP-
3226, a selective antagonist for Y1R (111, 112). Interestingly,
NPY release is not observed when skin is cooled locally,
suggesting that NPY-induced cutaneous vasoconstriction is
only involved in the response to the more extreme, systemic
cold stress (113).

NPY’s participation in strong sympathetic activation is also
observed during exercise-induced stress (114). Plasma NPY
levels increase significantly after strenuous (cycling) but not
weak (handgrip) exercise, and NPY levels show a positive
association with relative perceived exertion. Notably, NPY
levels in the plasma after exercise are only one-tenth the level
required to produce slight vasoconstriction in human blood
vessels in vitro. Further, plasma NPY levels correlate closely
with increases in the sympathetic co-neurotransmitter
norepinephrine rather than the adrenomedullary hormone
adrenaline. These observations insinuate, similar to that
postulated above for vitiligo, that the primary source of plasma
NPY in response to stress is not the adrenal gland, but instead the
result of high sympathetic nerve activation localized to target
tissues that overflows into the circulation (114, 115).

Systemic elevation of NPY (as measured in plasma) in response
to extreme physical or psychological stress is very well-
documented (110, 115–119), yet the exact source(s) of NPY in
these contexts is rarely identified. Flare-ups in skin diseases are
often associated with stressful life events (69, 120–122), and in skin
diseases where both local and systemic NPY has been measured,
NPY levels are higher in skin than in plasma (Table 2) (63).
Altogether, these observations support the supposition that stress-
related sympathetic stimulation may be a direct source of local
NPY elevation observed in some skin pathologies.

In humans, NPY-IR is not limited to sympathetic nerve fibers.
As mentioned previously, NPY is detectable in the cells within
multiple sites of healthy human skin. Endogenous expression of
NPY by these cells suggests non-neuronal sources of NPY could
contribute to stress-related skin pathologies in vivo and is
intuited from non-skin studies. For example, the NPY gene is
constitutively expressed at a low level in peripheral blood
mononuclear cells and in several immune cell populations,
including monocytes, macrophages, and T and B lymphocytes,
and is upregulated upon their activation (20). Autocrine NPY
signaling promotes the ability of mouse peritoneal macrophages
to produce normal levels of proinflammatory cytokines after
activation (26, 27). Extending this example, upregulation of Npy
gene expression in subcutaneous fat depots can be induced in
mice with exposure to chronic stress in combination with a high
fat and high sugar diet through a glucocorticoid-dependent
mechanism (123). In this context, fat tissue exhibits significant
macrophage infiltration, and it appears that activated
March 2022 | Volume 13 | Article 838434
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macrophages may be the actual source of NPY in fat tissue under
the conditions of dietary obesity (22). Conversely, it has also been
shown that adipocytes derived from human subcutaneous fat can
produce NPY autonomously and can be stimulated to secrete
NPY with insulin treatment (59, 124, 125). Independent of the
source, NPY induces adipogenesis and release of the adipokines
leptin and resistin in preadipocytes in vitro and angiogenesis and
expansion of fat tissue in vivo (123).

The relevance of NPY signaling to skin disease in relationship
to adipocytes and obesity is particularly highlighted in psoriasis.
Adiposity and weight gain are risk factors associated with psoriasis
development, particularly in children (126–128). Increases in
leptin and resistin, both proinflammatory adipokines that
increase with obesity, and a reduction in adiponectin, an anti-
inflammatory adipokine that decreases with obesity, contribute to
an inflammatory skin environment [reviewed in (129)]. One key
player in this inflammation is thought to be adipose tissue
macrophages, which in human subcutaneous fat, significantly
increase in abundance in correlation with body mass index or
adipocyte size (130). Inflammatory cytokines produced by adipose
tissue macrophages, as well as dermal fibroblasts, in response to
resistin and leptin, respectively, are equivalent to those that
perpetuate the pathophysiology of psoriasis [reviewed in (129)].

Altogether, these observations support a role for locally
produced NPY in stress-mediated responses within the skin.
The future challenge is to understand how this signaling is
communicating with CRH (131), POMC (46), and other local
neuroendocrine stress response systems (131, 132) to affect
skin physiology.
POTENTIAL MECHANISM(S) OF NPY
SIGNALING IN SKIN

NPY is constitutively or inducibly expressed by many cells
throughout the body, and thus has pleiotropic roles in many
tissues due to its wide distribution. NPY exerts its actions through
interacting with its specific G protein-coupled receptors (GPCRs),
which, when bound to NPY, activate Gi/o proteins to ultimately
downregulate PKA-dependent transcription and upregulate ERK-
dependent transcription (11, 31). Four of the five known receptors
preferentially respond to NPY – Y1R, Y2R, Y4R, Y5R (11),
although Y4R has been shown to function almost exclusively in
the gastrointestinal system. Through its receptors, NPY has many
known roles, including the regulation of vasoconstriction, feeding
behavior, anxiety, cell proliferation, and immune cell activation
and recruitment. Unfortunately, the actions that NPY has
specifically in the skin are poorly understood. We can, however,
use previous reports regarding the effects that NPY has on various
cell populations to extrapolate how it may contribute to skin
physiology and pathology.

Keratinocytes Can Respond to NPY
Keratinocytes are the most abundant cell type in the skin, being
the major component of the epidermis, and contributing to the
maintenance of hair follicle structure. The main function of
keratinocytes is to protect against a variety of environmental
Frontiers in Endocrinology | www.frontiersin.org 6
assaults, including UV radiation and microbial invasion.
Although the exact effects that NPY has on keratinocytes are
not yet known, Takahashi and colleagues have shown that
keratinocytes are able to respond directly to NPY. In cultured
human keratinocytes, 100 nM NPY suppresses up to 80% of
forskolin-induced cAMP production with no effect on
proliferation (133). The effect of NPY on cAMP is lost in the
presence of glucocorticoids, which may be due to altered GPCR
activity, and is significantly reduced at the supraphysiological
concentration of 1 µM. These findings suggest that keratinocytes
express at least one NPY receptor subtype, which in mouse is
supported by single-cell gene expression data (19, 21).

NPY Induces Fibroblast Proliferation and
Collagen Production via Y1R
Fibroblasts are found in the skin’s dermis and are responsible for
generating connective tissue that provides underlying structure
for the epidermis and skin appendages, while also protecting the
skin against, and aiding in recovery after, injury. The effects that
NPY has on the skin’s fibroblasts have not yet been elucidated,
however, the effects of NPY on fibroblasts from other tissues
have been investigated and can give some insight into what may
happen in the skin.

Both adipose-derived (3T3-L1) and skin fibroblasts have been
shown to express Y1R, Y2R, and Y5R (19, 21, 134, 135). Through
Y1R, 1-10nM NPY enhances primary, rat cardiac fibroblast
proliferation by approximately 1.3-fold, which can be
magnified with the inhibition of dipeptidyl peptidase IV
(DPPIV), the enzyme that metabolizes NPY to its inactive
form (136). Additionally, 10nM NPY enhances collagen
production by cardiac fibroblasts via Y1R, which can also be
magnified with DPPIV inhibition.

Dai and colleagues showed that NPY activates the fibrogenic
response in hepatic pericytes. These pericytes express NPY and
Y1R physiologically, and treatment with TGFb induces pericyte
activation followed by their increased synthesis and secretion of
NPY (17). Moreover, treating hepatic pericytes with 10 nM NPY
induces cell proliferation and migration, indicating activation of
the fibrogenic response. This NPY-induced fibrogenic response
is initiated by Y1R, with downstream signaling events including
the phosphorylation of mammalian target of rapamycin
(mTOR), 70S6K, and 4EBP1. To determine whether NPY may
be involved in human hepatic diseases with fibrosis, Dai and
colleagues measured the amount of NPY in the serum of healthy
volunteers and patients diagnosed with fibrotic liver diseases,
such as liver cirrhosis and hepatocellular carcinoma. This
analysis revealed that not only is NPY elevated in the serum of
patients with fibrotic liver diseases by 1.67-fold, but that the
amount of NPY in serum also positively correlates with the
severity of the liver disease.

NPY Induces Proliferation and
Lipid Accumulation via Y2R
and Y5R in Adipocytes
Adipocytes, or fat cells, in the skin provide insulation, structural
support, and serve as a reservoir of fatty acids that can be used for
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energy. More recently, adipocytes are also being recognized for
their roles in the proper maintenance of overall skin and hair
follicle biology through endocrine means (137). NPY acts as a pro-
adipogenic peptide by inducing adipogenesis, or adipocyte
maturation, and inhibiting lipolysis, or the breakdown of fats
(138). However, the specific mechanisms by which NPY influences
adipose tissue in different organs is still under investigation.

Immortalized murine pre-adipocytes respond to sub-
picomolar concentrations up to 100 nM of NPY via Y1R to
result in enhanced proliferation and adipogenesis, evidenced by
increased lipid droplet size, lipid accumulation, and reduced
expression of the pre-adipocyte gene Dlk-1 (22, 123, 135).
Surprisingly, Rosmaninho-Salgado and colleagues reported
somewhat conflicting results where pre-adipocytes respond to
100 nM NPY via Y2R and Y5R by upregulating proliferation.
Additionally, it was shown that treating mature adipocytes with
1-100 nM NPY induces lipid accumulation and upregulates the
expression of mature adipocyte markers, such as C/EBPa and
PPARg, via Y2R and Y5R (135, 139).

NPY Mediates Vasoconstriction in the Skin
via Y1R and Y2R
Infusing 25-2000 pmol NPY into cutaneous veins of human skin
induces robust vasoconstriction in response to cold exposure,
although the ability of NPY to induce this effect is reduced or
completely lost with age (140, 141). Interestingly, NPY, along
with noradrenaline, is also required to prime for vasodilation in
response to skin warming (142). Similarly, injecting 30-300 pmol
of NPY into the microvasculature of mouse skin significantly
reduces blood flow in a dose-dependent manner (28). This effect
is mainly mediated by Y1R, with Y2R acting to facilitate the
actions of Y1R. It is interesting to note that Chu and colleagues
found no effects of NPY on edema formation or neutrophil
accumulation in the skin, suggesting that NPY does not mediate
microvascular permeability or neutrophil infiltration following
injury in the skin. Hoffman and colleagues found that inhibition
of DPPIV via oral administration caused elevated NPY and Y1R
expression in the ductal sweat glands, endothelial cells, and
arterial media within the skin of Cynomolgus monkeys, which
was associated with enhanced vasoconstriction in response to
NPY (143). Along with these effects, the skin of DPPIV inhibitor-
treated monkeys formed blisters, and hypertrophy of dermal
arterioles was also observed.

NPY Induces Proliferation, Migration, and
Angiogenesis via Y1R, Y2R, and Y5R in
Endothelial Cells
Endothelial cells are the cells that line blood vessels and allow
nutrients and signaling factors topermeate the skin to influence skin
physiology. Movafagh and colleagues have shown that
immortalized human endothelial cells express Y1R, Y2R, and
Y5R. Additionally, these cell lines respond to NPY by
upregulating proliferation, migration, and angiogenesis (144). In
endothelial cells derived from dermal microvasculature (SVEC4-
10’s), treatment with 10 nM and 1-10 pM NPY enhances
proliferation by approximately 2-fold over regular growth
Frontiers in Endocrinology | www.frontiersin.org 7
medium. Likewise, in endothelial cells derived from umbilical
vein (HUVECs) and SVEC4-10’s, 10nM and 1pM NPY enhances
migration by approximately 2-fold. Furthermore, treating
HUVEC’s and SVEC4-10’s with 0.01 pM-10nM NPY induces
approximately 2-fold greater capillary tube formation, which is an
early step in angiogenesis. All effects observed in response to NPY
require the activity of all three NPY receptor subtypes.

NPY Induces Proliferation via Y1R and
Y5R in Smooth Muscle Cells
Smooth muscle cells (SMCs) are involuntary muscle cells that
line the insides of organs. In the skin, SMCs control the
contraction of the arrector pili muscle, which induces
piloerection. Shigeri and Fujimoto showed that in the presence
of insulin, treating porcine aortic smooth muscle cells with 1µM
NPY for 24 hours induces approximately 1.9-fold increase in
DNA synthesis and the mobilization of intracellular Ca+2 (145).
This effect was found to be mediated by Y1R and required the
presence of insulin.

Interestingly, Pons and colleagues found that rat aortic SMCs
do not express technically-detectable levels of NPY receptors nor
NPY itself (146), however, treatment with 100 pM NPY elevated
the expression of all three NPY receptors and induced an
approximately 2.5-fold increase in DNA synthesis. These
effects on DNA synthesis were found to be mediated by Y1R
and Y5R and could be amplified by 20-35% via priming cells with
b-adrenergic activation or cAMP production. Additionally, Choi
and colleagues showed that treating murine vascular SMCs with
20-200 nM NPY increases their uptake of acetylated low-density
lipoproteins, while also increasing SMC expression of
macrophage-related genes, resulting in macrophage migration
toward SMCs (16).

NPY Has Diverse Effects on Immune Cells
NPY is a neuropeptide that is expressed in almost every tissue
throughout the central nervous system and the periphery, and its
expression can be induced by almost every type of immune cell
(20). This makes NPY an important agent of communication
between the central nervous system, peripheral tissues, and the
immune system. Being that the specific effects of NPY signaling
are context- and receptor-specific, it should be of no surprise that
NPY has diverse effects on the different immune cell populations
which can be found in the skin. Lymphocytes, granulocytes, and
monocytes are all found within the skin (37), although little is
known about how NPY influences skin immune cells specifically.
Each cell type expresses NPY receptors (25–27, 147) and thus
could all respond to NPY directly.

NPY has been shown to influence human and rodent
lymphocyte recruitment, proliferation, and activity via Y1R,
Y2R, and Y5R (25, 148, 149). In primary human T cells, 10
nM NPY can induce adhesion via Y2R-mediated activation of b1
integrins (149). 1 pm-1µM NPY can indirectly enhance human
gut lymphocyte proliferation via inducing IL-1b production by
monocytes (23, 150). In murine T cells, picomolar to nanomolar
concentrations of NPY can induce Th1 and Th2 cytokine
secretion, enhance migration, and inhibit proliferation in
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murine lymphocytes (151–153). These effects are highly
dependent on context, with the inhibitory effect of NPY
changing with age and lymphocyte stimulation (153, 154). In
human lymphocytes, NPY appears to also have a positive effect
on lymphocyte numbers, with NPY enhancing lymphocyte
proliferation in human colonic lamina propria lymphocytes
(23). NPY also has effects on the Th1/Th2 balance of immune
cells, promoting a Th2 polarization by upregulating IL-6 and IL-
10 production in immature dendritic cells, which in turn polarize
naïve T cells into Th2 cells, and increasing IL-4 production in
existing Th2 cells (73, 155). Cells exposed to NPY + LPS caused a
larger proportion of cells to produce IL-4 than cells exposed to
LPS alone (73). This NPY induction of IL-4 secretion is also
known to be independent of antigenic stimulation, which has led
to speculation that neuropeptides such as NPY provide a means
for the central nervous system to control the T cell response
(149). Y1 receptor knockout confirms the crucial role for NPY
signaling through this receptor in the production of Th2
cytokines for the local recruitment of CD4 T cells and CD11c+
antigen presenting cells in response to allergens (74). It has also
been shown that NPY can interact with G coupled protein
receptor 38, an orphan G protein receptor which is expressed
by regulatory T cells and in several areas of the murine brain.
This receptor, though dispensable for the function of regulatory
T cells, has been shown through overexpression studies to lead to
increased induction of FoxP3+ T cells in vivo (156, 157). NPY can
also affect the proliferation of the T cells indirectly through the
induction of TNF-a, as increases in NPY also cause increases in
TNF-a (150, 158). More recently, it has been shown that chronic,
systemic overexpression of NPY is sufficient to cause infiltration
of lymphocytes, including regulatory T cells into the dermis by
22 weeks of age, with 35 week old mice retaining the same
pattern of infiltration (159).

While it is unclear if there are interactions specific to resident
immune cells with NPY, we previously mentioned that
administration of NPY at 50 mg/kg increases the number of
CD4+ T cells in the blood of Lewis rats (148). These results
suggest that the mobilization of CD4+ T cells may also extend to
resident memory T cells. Resident memory T cells are a
population of T cells that help support the immunity to
pathogens previously encountered by the body. These T cells
have a different pattern of recirculation than naïve T cells, and
can remain in peripheral tissue long after the previous immune
challenge is gone (160, 161). Within the various types of memory
T cells that have been characterized, there is a population that
has been shown to preferentially migrate into the skin during
inflammation that express cutaneous lymphocyte antigen (CLA)
on the surface of the cell (162, 163). It was also demonstrated that
this population of CLA+ T cells does become resident in healthy
skin and provides immunosurveillance under normal conditions
(164). These T cells are known to express skin specific receptors
such as CCR4, CCR8, and CCR10 (165–167). There are multiple
known pathways for recruitment, such as is the interaction
between the skin chemokine CCL27 and CCR10 which is
driven by the expression of proinflammatory cytokines (166).
The majority of these cells are Th1 effector memory cells, as
Frontiers in Endocrinology | www.frontiersin.org 8
evidenced by the expression of IFN-g, IL-2, and the receptor
IFN-gRa being present on the cells while lacking ST2L and IFN-
gRb, which are expressed in Th2 cells (164, 168). However, in
addition to this, there are distinct populations of Th2 cells and
CD4+ CD25+ regulatory T cells resident in the skin as well.

Resident memory T cells are known to participate in the
induction and progression of multiple skin pathologies, making
them particularly interesting for investigation. Resident T cells
have been shown to be sufficient to cause development of
psoriasis in AGR129 mice grafted with prepsoriatic human
skin (158). In active psoriasis, there is a large amount of
infiltration by CD8+ T cells, with a large proportion of the
infiltrating cells expressing integrins, CD103 and CD49a,
which are unique to resident memory T cells (91). During
remission of psoriasis, resident memory T cells have been
shown to remain in previously affected skin and are capable of
responding to cytokine stimulation long after psoriatic legions
have resolved (91). Both skin homing T cells and resident
memory T cells have been implicated in the pathogenesis of
vitiligo. It was first shown in skin from vitiligo patients that there
was a large increase in the number of CLA+ CD8+ T cells
compared to skin from control patients (169). Further
experiments using T cell adoptive transfer models have
determined that the retention of autoantigenic resident
memory T cells is required for the long-term maintenance
of depigmentation in conjunction with constant expression of
IFN-g (170, 171). Finally, CD69+ CD103+ resident memory T
cells have been shown to be enriched in AD skin compared to
normal skin (172, 173). Studies comparing nonlesional AD
skin to lesional AD skin have shown that similar types of T
cells are found in both lesional and nonlesional skin, suggesting
that the autoantigentic resident memory T cells may persist
after remission (174). Given the association of NPY with
inflammatory skin diseases, and the effect the NPY is known to
have on T cell cytokine production and proliferation, further
investigation on specific interactions between NPY and resident
memory T cells is warranted.

NPY has also been shown to have an effect on the population
of circulating B cells (148). In Lewis rats, injection of 50 mg/kg
NPY caused an increase in the number of circulating IgM+ CD5+

CD11b+ B cells, while decreasing the number of the overall B cell
population (148). This unique population of IgM+ CD5+ CD11b+

B cells are known in mouse as B-1 cells and are a unique
subpopulation of B cells that possess unique properties in
comparison to the conventional B-2 cell and regulatory B cells.
One of these properties is the ability to produce antibodies for
self-antigens, which is selected against in other B lymphocyte
populations. This self-antigenicity serves to promote the clearing
of apoptotic tissue, with many of the B-1 produced antibodies
being specific for apoptotic cell debris, and it has been shown that
the lack of this behavior can increase the risk of autoimmune
responses due to self-reactive IgG antibodies (175, 176).

As in T and B cells, NPY can also influence NK cells, although
its exact role has yet to be determined. NPY has been shown to
have complex interactions with NK cells, with changes appearing
to be dose-dependent, age dependent, and time dependent
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(177–179). In culture, 1 pM-1nM NPY acts to suppress NK cell
activity, whereas intraventricular injection of 1nMNPY increases
NK cell number and enhances their activity in rat (180, 181). In
young mice, NPY serves to inhibit spleen leukocytes, but in aged
female mice, the effect of NPY on NK cells was shown to become
stimulatory in the cells of the thymus and axillary nodes (177).

Though many of the interactions discussed attribute NPY to
causing immune activation and increasing the risk of autoimmunity,
many of the features of NPY and its receptors likely play a role in
immune homeostasis under normal conditions.Mice deficient in the
Y1receptorwere found tohave reducedpopulationsofBcell,CD8+T
cells, and a reduced spleen size.Whereas in peripheral lymph nodes,
the T cell populationswere altered, having increased naïveCD4+ and
CD8+ T cells, but decreased effector T cells (27). Y1 deficient T cells
become hypersensitive to stimulation both in vitro and in vivo,
though the production of cytokines caused from activation is
unchanged (27). Changes to immune function in the absence of
the Y1 receptor are not limited to lymphocyte populations.
Macrophages and dendritic cells are also affected by the loss of the
Y1 receptor, with macrophages showing decreased production of
TNF and IL-12 following activation and dendritic cells showing
decreased IL-12 production, impairment to antigen uptake, and
reduced APC stimulation to T cells compared to their Y1 positive
counterparts (27).

As in lymphocytes, NPY has a variety of roles in granulocyte
adhesion and function via Y1R, Y2R, and Y5R activation. For
example, via all three NPY receptors, 1 µM and 100 pM NPY
enhances adhesion and phagocytic activity of rat peripheral
blood granulocytes, respectively (182). Via Y1R and Y5R, 10
µM NPY similarly enhances phagocytosis in human neutrophils
by stimulating reactive oxygen species production (183).
Interestingly, NPY’s effects on granulocytes are dependent on
the anatomical location and microenvironment – 1 nM NPY can
inhibit blood granulocyte function via Y1R but initiate splenic
granulocyte function via Y2R or Y5R in rats (181).

Like other immune cells, NPY also has diverse effects in
monocytes, including migration, adhesion, and function. Dendritic
cells and macrophages, including the skin’s Langerhans cells, can all
produce NPY and express NPY receptors (16, 183–185). NPY
typically plays an anti-inflammatory role in dendritic cells by
promoting the production of IL-6 and IL-10 (22). NPY can also
have a pro-inflammatory role in dendritic cells by inhibiting their
expression of co-stimulatorymolecules (74). Formacrophages, NPY
is a chemical attractant that promotes macrophage infiltration into
tissues via Y1R (151). Treating macrophages with physiological
concentrations of NPY (0.1-10 nM) induces their migration (186),
and 20 -200n M NPY upregulates the expression and activity of
matrix metalloproteinase-3 within murine bone marrow derived-
macrophages (16).

In addition to the effects that NPY can exert on immune cells,
NPY levels are in turn affected by the cytokines the immune cells
secrete. IL-1b is produced by multiple types of immune cells as
pro-IL-1b, which is then cleaved in the cytosol by caspase-1 into
the active IL-1b before being secreted by the cell (187–189). NPY
has been shown to induce the production of IL-1b by immune
cells, with this strength of this effect being dependent on age
Frontiers in Endocrinology | www.frontiersin.org 9
(150, 190). IL-1b, is a proinflammatory cytokine that has been
implicated in a number of autoimmune diseases both in the skin
and throughout the rest of the body (102, 191). Increases in IL-1b
expression and genetic variation in the IL-1b gene has been
linked to the likelihood of developing vitiligo (102). In addition,
while NPY causes an increase in the levels of IL-1b in immune
cells, it has also been found that IL-1b increases the amount of
NPY released by chromaffin cells (192). This process also
stimulates the release of catecholamines by chromaffin cells,
which have also been implicated in the skin neuroendocrine
system and pathogenesis of vitiligo (34, 38, 192, 193).

Melanocytes Do Not Directly Respond
to NPY
Melanocytes are the pigment-producing cells that are located in the
bulbofhumanandrodenthair follicles, aswell as in the epidermisof
human skin. Although NPY has been shown to be elevated in the
depigmented skinof vitiligopatients, it is not clearwhether andhow
NPY contributes to melanocyte destruction during vitiligo
pathogenesis and progression. Due to electron microscopy
findings that epidermal melanocytes are in direct contact with
intraepidermal nerve endings, it has been hypothesized that NPY
may negatively impact melanocytes directly (63). It has also been
suggested that NPY can affect melanocytes indirectly due to NPY
receptor expression bymany cell populations in the skin, including
fibroblasts, endothelial cells, and various immune cells (38, 63, 194).
Unfortunately, these postulations have yet to be empirically
evaluated in vitiliginous skin.

Toyoda and colleagues have shown that 100 nM NPY has no
direct, detrimental effects onnormal humanmelanocytes in culture
(100). Likewise, treating human whole skin explants with 100 nM
NPY for 72 hours has no effect on the number of melanocytes nor
the amount of melanin in the epidermis. However, treating skin
explants with 100 pM-1 µMNPY for 72 hours induces melanocyte
degeneration and significantly reduces the number of
melanosomes, the organelles in which melanin granules are
stored, within melanocytes. These findings suggest that
melanocytes do not respond to NPY directly, but that NPY can
negatively impact melanocytes via paracrine signaling through
other NPY receptor-expressing cell populations in the skin. In
general agreement with Toyoda’s findings, a mouse model that
exhibits local and chronic overexpression of NPY gene and protein
in skin exhibit progressive hair graying due tomelanocyte stem cell
loss (101). In this case the mechanism by which NPY mediates
melanocyte stem cell loss is unclear but a follow-up study indicates
that chronic NPY induces inflammation and other pathogenic
changes within the skin of these mice (159).

NPY as a Skin Antimicrobial Agent
Outside of skin cells themselves, it is speculated thatNPYmight also
interact with the skin microbiome. The surface of skin is a home to
millions of beneficial and commensalmicroorganisms and serves as
a barrier to pathogens (195, 196). Interestingly, NPY has broad
antimicrobial properties against several microorganisms in vitro,
including some that play pathogenic roles within the skin. For
instance, NPY is effective at inhibiting the growth of Candida
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albicans, an opportunistic fungus that is elevated in the skin of
individualswithchronicwounds (197, 198). It isnot yet clear if these
in vitro results reflect in vivo antimicrobial activity as the minimal
inhibitory concentration of NPY to inhibit cell growth of Candida
albicans is relatively high, 25 (56) or 240 mg/ml (197) NPY’s
antimicrobial properties are also not universal; Staphylococcus
aureus and Serratia marcescens, pathogenic bacteria linked to
atopic dermatitis and elevated in the skin of individuals with
primary immunodeficiency respectively, are both resistant to
NPY (75, 197, 197, 199, 200). Nevertheless, cutaneous microbial
endocrinology is a topic of growing interest and is reviewed indepth
elsewhere (79, 201, 202). HowNPYparticipates in influencing both
pathogenic and commensal microbiota, either directly or indirectly
through host immune regulation is worth further investigation.
HYPOTHESIZED ROLES FOR NPY
SIGNALING IN THE SKIN

Despite there being little evidence of the mechanisms by which
NPY can influence skin biology, we aim to extrapolate findings
from other tissues regarding how NPY can influence specific cell
populations to postulate how NPY may influence skin biology
and contribute to pathology. Tu and colleagues showed that NPY
is elevated from approximately 200 pmol in uninvolved skin to
over 300 pmol in lesional skin from vitiligo patients (Table 2)
(63). Using this elevated concentration of NPY in vitiliginous
skin, we can postulate how this level of NPY in the skin can
influence skin biology (Figure 1).
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Chu and colleagues showed that up to 300 pmol of NPY
induces vasoconstriction in murine skin, which reduces blood
flow and oxygenation within the skin (28). Prolonged elevation
of NPY to this level in the skin could result in the skin becoming
a hypoxic environment, which can have detrimental effects on
many cell populations. High concentrations of NPY have been
shown to induce proliferation and migration in human
endothelial cells (144). High concentrations of NPY also
induce fibroblast proliferation, migration, and collagen
production (17, 136), which could lead to fibrosis within the
skin. While NPY does not seem to have any direct effects on
melanocytes, Toyoda and colleagues showed that elevating NPY
in the whole skin induces melanocyte degeneration (100).

Picomolar to nanomolar concentrations of NPY promote
adipocyte proliferation and maturation, as well as lipid
accumulation (22, 123, 135, 139). With the recent advances in
our understanding of how adipocytes contribute to aspects of
skin physiology, NPY-induced dysregulation of adipocyte
biology within the skin could contribute to various aspects of
skin pathology as has been discussed by Wong and colleagues
[reviewed in (129)].

Unfortunately, presenting a generalized hypothesis about how
NPY influences the skin’s immunecells is ratherdifficult asNPYhas
varying effects on different immune cell populations. Specifically,
various concentrations of NPY have been shown to have both pro-
and anti-inflammatory effects on lymphocytes (151–153) and
monocytes (22, 74), while promoting phagocytic activity
of granulocytes (181, 182, 203). Interestingly, NPY has been
shown to promote macrophage migration and infiltration into
FIGURE 1 | Potential mechanisms of pathological NPY signaling in the skin. NPY levels could be elevated in the skin by multiple sources, including its secretion from
nerves within the skin, spillover from circulation, and secretion from different cell types in the skin. NPY could induce pathological responses in various cell types that
have been shown to express NPY receptors, including keratinocytes, fibroblasts, adipocytes, and various immune cells. These pathological responses to NPY could
contribute to different aspects of inflammatory skin diseases.
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tissues (16, 186), which is aligned with separate studies which show
that NPY upregulates proliferation of SMCs (145, 146) and their
expression of macrophage-related genes, ultimately promoting
macrophage infiltration towards the NPY-activated SMCs.

Given the clinical associations between NPY expression and
genetic mutations with the aforementioned inflammatory skin
diseases, targeting this peptide could yield improved efficacy in
combination with current therapies. For example, inhibition of
NPY signaling could mitigate vasoconstriction-induced hypoxia
within the skin (28), which is one of the hypothesized mechanisms
that contribute to melanocyte pathology during vitiligo.
Additionally, attenuation of the NPY signal in the skin could
prevent NPY-induced dysregulation of fibroblasts and adipocytes
(17, 22, 123, 135, 136, 139), melanocyte degeneration (100), as well
as immune cell activation and trafficking to the skin (16, 151–153,
182, 186), which could diminish NPY-associated pruritus
responses (200). Blocking NPY in these processes through
therapeutic intervention could be promising in the treatment of
AD, psoriasis, and vitiligo to enable improved qualities of life for
those affected. Both peptide and non-peptide based NPY receptor-
specific antagonists exist and several show potential utility in
modulating specific downstream functions of NPY to improve
other non-skin diseases like anxiety and alcoholism [reviewed in
(11)]. The existence of these antagonists provides immediate
means to further evaluate the role of NPY signaling in skin
disease and may serve as the basis for therapeutics if warranted.
DISCUSSION

The prevalence of AD in children and adults in the United States is
12.97% (204) and 7.3% (205), respectively, and approximately 1%
for individuals with vitiligo worldwide (206) Psoriasis affects up to
11% of the world’s population (207). These inflammatory skin
diseases can have a significant impact on a person’s quality of life
(205, 208, 209). Patients suffering from AD, psoriasis, and vitiligo
report that the effect of these diseases on theirphysical appearance is
a major source of psychological distress. Twenty-seven percent of
AD patients report being bullied because of their disease (210),
while psoriasis patients have been found to be significantly more
likely to become excessive drinkers and smokers (211).
Additionally, it has been shown that a majority of vitiligo patients
suffer from social anxiety due to this disease (212). The detrimental
effects that these appearance-altering skin diseases can have on
those affected has led to the finding that severe anxiety and
depression, as well as suicidal ideations, are significant
comorbidities of inflammatory skin diseases (213). To add insult
to injury, elevations in psychological stress and anxiety can also
contribute to flare-ups in these diseases (69, 121, 122). Being that
there are no cures for AD, psoriasis, or vitiligo, there is an immense
need for more efficacious treatment strategies to combat their
progression. Thus, identifying a novel contributor, like NPY, to
diseasepathogenesis orprogressionwillprovide anewandwelcome
target for clinical strategies aimed at ameliorating or reducing the
severity of these diseases in these individuals.

Herein, we review what is currently known about the
associations of NPY with these common inflammatory skin
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diseases. Along with genetic mutations that increase the
susceptibility for vitiligo, increased NPY levels have been seen
in the circulation of subsets of AD and vitiligo patients (60, 63,
64, 66). Additionally, the level of NPY has been shown to be
elevated in depigmented lesional skin of some vitiligo patients
(63). Together, these clinical findings have supported the
hypothesized contributions of NPY in skin pathology (38).
Unfortunately, there have yet to be empirical studies to
evaluate this hypothesis, which is likely due to the lack of
model with which to do so. Since we do not yet have evidence
to elucidate the mechanisms by which NPY can influence skin
pathology, we use here reports on the effects of NPY on various
cell populations from other tissues to postulate the potential
effects of NPY in the skin (see Figure 1). Additionally, it is
possible that NPY may communicate with local neuroendocrine
networks (38, 43, 46) as it does on the central level.

Despite everything that remains unknown about NPY
signaling in skin, recent, novel findings suggest that we are
closer than ever to elucidating mechanistic roles for this
broadly expressed and multifaceted protein. Anderson et al.
discovered that chronic overexpression of NPY in mouse is
sufficient to act as driving factor in skin inflammation and
follicular hypopigmentation (101, 159). Pathohistological and
transcriptomic evaluation of these mice revealed that NPY-
induced changes in skin architecture (e.g., fibrosis and
hyperkeratosis), immune cell infiltration, and gene expression
changes reminiscent of human inflammatory skin disease (159).
This is the first evidence demonstrating that NPY signaling is
capable of inducing pathological changes within the skin and
highlights an animal model in which to further investigate the
skin’s response to local elevations of NPY.

In summary, we provide here a concise review of what is
known about the genetic associations and expression patterns of
NPY in common skin diseases, the link between psychological
stress and cutaneous NPY expression, and finally, we propose
how NPY can contribute to skin biology. In the future,
understanding NPY’s contribution to initiating and/or
perpetuating skin disease, the mechanisms by which this
occurs, and the connection between NPY, stress and skin are
all topics which deserve greater attention. Encouraged by the
discoveries of Anderson et al., investigations focused on careful
monitoring of NPY expression and its source in skin disease is
warranted. NPY signaling is highly amenable to therapeutic
intervention as a number of NPY receptor antagonists already
exist (11). In individuals where NPY signaling contributes to skin
disease, NPY lends itself to being a highly druggable target that
might allow for a better quality of life for those affected.
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