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Abstract 

Understanding when host-microbiome interactions are first established is crucial for 

comprehending normal development and identifying disease prevention strategies. Furthermore, 

bacterially derived metabolites play critical roles in shaping the intestinal immune system. 

Recent studies have demonstrated that memory T cells infiltrate human intestinal tissue early in 

the second trimester, suggesting that intestinal immune education begins in utero. Our previous 

study reported a unique fetal intestinal metabolomic profile with an abundance of several 

bacterially derived metabolites and aryl hydrocarbon receptor (AHR) ligands implicated in 

mucosal immune regulation. To follow up on this work, in the current study, we demonstrate that 

a number of microbial byproducts present in fetal intestines in utero are maternally derived and 

vertically transmitted to the fetus. Notably, these bacterially derived metabolites, particularly 

short chain fatty acids and secondary bile acids, are likely biologically active and functional in 

regulating the fetal immune system and preparing the gastrointestinal tract for postnatal 

microbial encounters, as the transcripts for their various receptors and carrier proteins are 

present in second trimester intestinal tissue through single-cell transcriptomic data. 
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Introduction 

Establishing and maintaining a “healthy” intestinal microbiome is critical to the overall health of 

an individual. This is partly facilitated by bacterially derived metabolites that are important 

mediators of intestinal health and regulators of intestinal mucosal immunity. Furthermore, 

disruption in this homeostasis can lead to a myriad of diseases (1, 2). Several groups of 

metabolites have been identified that are particularly important to the gut homeostasis including 

short-chain fatty acids (SCFA), and secondary bile acids, among others (3). Understanding how 

and when the dialogue between the intestinal tract (host) and the bacterial metabolites is 

established is important to designing new strategies in preventing disease and improving health. 

There has recently been a lot of attention on the development of the microbiome over the first 

three years of life (or the first 1000 days) as being a critical window to modulate the 

development and adaptation of the immune system and overall health (4). With the detection of 

the memory T cells within the human and non-human primate fetal intestines (5-8), cord blood 

(9), and placenta (10), among other tissues, scientists are appreciating that education of the 

intestinal immune system may be ongoing in utero and the critical window of shaping the 

intestinal homeostasis potentially starts prior to delivery (11). Yet almost nothing is known about 

the antigens present in utero or the metabolites modulating the intestinal homeostasis.   

Several studies have reported that the placenta lacks a microbiome (12-16) reviewed in (17), 

and others report minimal bacterial colonization in fetal meconium (18), as well as placental and 

endometrial samples (19-24). Furthermore, research conducted by Lauder et al. (13), involving 

a large cohort, found no discernible difference between placental samples and kit samples 

(contamination introduced during DNA purification). However, pioneering work from the 

MacPherson’s group demonstrated that metabolites from the maternal intestinal microbiome 

can be detected in the murine fetal intestine and alter the development of the fetal mucosal 

immune system (25). Building on this, our previous study found a unique fetal intestinal 
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metabolomic profile with an abundance of bacterially derived metabolites and aryl hydrocarbon 

receptor (AHR) ligands implicated in mucosal immune regulation (26). 

In the current study, we hypothesized that microbial byproducts detected in fetal intestines in 

utero are primarily derived from the maternal microbiota and play a role in preparing the 

intestinal immune system for ex-utero life. To study this, we assembled a cohort of pregnancy-

matched fetal organs including the fetal intestine, the fetal meconium, the fetal placental villi, to 

the maternal decidua. We found that some of the microbial byproducts or metabolites present in 

fetal intestines in utero were maternally derived and vertically transmitted to the fetus, while 

some were found to be in a steady state. Importantly, these bacterially derived metabolites are 

likely biologically active and functional in regulating the fetal immune system and prepare the 

gastrointestinal tract for postnatal microbial encounters as we were able to detect their receptors 

and carrier proteins in single cell transcriptomic data of the human fetal small intestine. 

Results 

To investigate the source of in utero intestinal metabolome, we performed untargeted 

metabolomic analysis, including human and bacterially derived metabolites (manually curated to 

be fully bacterially derived or require partial conversion by the bacteria), using in house pipeline 

established by the Khatib lab (26) on 49 tissue samples from 24 subjects (with gestational age 

ranging from 14 weeks to 23 weeks): 8 maternal decidua samples, 11 fetal placental villi (PV) 

samples, 11 fetal gastrointestinal (GI) (fetal small intestine (SI) and large intestine (LI)) samples, 

and 19 fetal meconium samples (Table 1).   

A total of 2521 metabolites were identified in all the 49 samples (Supplementary Table S1). t-

SNE visualization based on the 2521 analyzed metabolites showed that samples of GI, 

meconium, decidua and PV were well separated, although some PV samples mixed with 

decidua samples possibly due to incomplete tissue separation. The separation indicated that 
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even though most metabolites were detected across all samples, they were differentially 

abundant based on tissue source (Figure 1A). The top 20 GI enriched metabolites had 

differential abundances between GI and the other tissue groups are shown in Figure 1B. To 

explore tissue-specific individual metabolite signatures in the decidua, PV and meconium 

groups, we performed differential metabolite abundance analysis between GI and each of the 

other groups (see details in Supplementary Table S2). We detected a large proportion of 

metabolites whose abundance differed between tissue: GI vs. decidua =326, 13% (Figure 1C); 

GI vs. meconium= 318, 13% (Figure 1D); and GI vs. PV = 324, 13% (Figure 1E). Specifically, 

among the 326 differentially abundant metabolites between GI and decidua tissue, more than 

half (195 metabolites) were enriched for in the GI tissue, two of which were bacterial metabolites 

(Coprocholic acid and Glycodeoxycholic acid, secondary bile acids). For the 131 metabolites 

significantly enriched in decidua, five were bacterial metabolites (Pyridoxine, Methylhippuricacid, 

Hippurate, 2-Hydroxyhippuric acid, and Indoxyl sulfate). In the comparison between GI and 

meconium, 164 metabolites had higher abundance in GI tissue including three bacterial 

metabolites (N-Acetyl-alpha-D-glucosamine1-phosphate, Kynurenine, and Phosphopantothenic 

acid). Interestingly, two bacterial metabolites (benzoate and Albaflavenol) were enriched for in 

meconium. At the same time, there were six xenobiotics enriched for in the meconium, 

suggesting that even maternally ingested compounds can be concentrated in the meconium. 

Comparisons between the GI and PV tissue identified 235 metabolites that were enriched for in 

the GI tissue, with two bacterial metabolites (Coprocholic acid and Glycodeoxycholic acid), four 

primary bile acids (Glycocholic acid, 7-Sulfocholic acid, Taurocholic acid and 

Taurochenodeoxycholic acid), one aromatic acid (D-(+)-Tryptophan) and two xenobiotics 

(Adaprolol and Elacytarabine). Among the 89 metabolites with higher abidance in the PV tissue, 

there were two bacterial metabolites (Methyl hippuric acid and Indoxyl sulfate), and two 

xenobiotics (Penicillin-G and a THC derivative).  
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To understand which pathways are differentially regulate in the different tissue, we conducted 

Ingenuity Pathway Analysis (IPA) (see details in Supplementary Table S3).  Of the pathways 

that were significantly altered between the decidua and GI samples, majority were more 

activated in the decidua, including: the transport of vitamins and steroid metabolism consistent 

with known functions of the placenta, while tryptophan catabolism and bile acid transport were 

more active in the GI track (Figure 2A). Very few pathways were more active in the meconium. 

Interestingly, pathways classically associate with post-natal intestinal epithelial function, were 

already enriched for prenatally including upregulation of many metabolism and transport 

pathways, prostaglandin synthesis, and neurotransmitter release (Figure 2B). Our group had 

previously discovered that human fetal intestinal cells can produce insulin and respond to 

glucose concentrations (27), in support of this, the current data identified that insulin secretion 

was upregulated in the fetal GI tract (Figure 2B).  Bile acid transport pathways were also 

upregulated in the GI samples compared to PV samples (Figure 2C).  

To understand the source of the bacterial metabolites present within the fetal intestine and 

determine if they are vertically transmitted from the maternal microbiota, we performed 

correlation analysis between the fetal intestinal tissue and the decidual tissue (maternal origin) 

and fetal intestine and the meconium (local production, Figure 3A). Among the 2521 

metabolites, we identified and selected 41 microbially derived or bacteria associated 

metabolites of interest based on a literature search, including 5 secondary bile acids, 3 short 

chain fatty acids (SCFA) and 3 aromatic lactic acids. In addition, we identified 47 xenobiotics, 

metabolites that cannot be produced in the human host, and 13 metabolites enriched for in the 

fetal tissue (Supplementary Table S4). All bacterial metabolites were present in the GI tissue, 

but the four tissues had different signatures of these metabolites (Figure 3B). To understand the 

source of the metabolites better, we used the matched tissue from one subject that had all 

tissues in the study from the same individual to perform correlation analysis. As expected, the SI 
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and LI and the decidua and PV samples that come from adjacent tissue had the highest 

correlation of all samples, validating our analysis. Interestingly, the paired fetal GI and decidua 

samples had substantially higher positive correlation than the paired GI and meconium samples 

in terms of the abundance of the 41 microbial metabolites: ����_�� � 0.88,����_�� � 0.88 while 

������_�� � 0.62, ������_�� � 0.58,������_�� � 0.66,������_�� � 0.61  (Figure 3C), suggesting that 

the microbial metabolites detected in fetal samples were more likely to be vertically transmitted 

from maternal microbiota. To determine if this positive correlation also held true for all the 

samples in the study, we performed the two correlative analysis (GI/decidua and GI/meconium) 

using all samples combined for xenobiotics (expecting the ratio of GI/decidua to be more 

positively correlated than GI/mec as these can only come from maternal circulation), fetally 

derived metabolites (expecting the ratio of GI/decidua to be less than GI/meconium as these are 

locally produced in the fetus) and of bacteria associated metabolites. As expected, there was a 

significantly higher correlation based on the 47 xenobiotics between GI samples and decidua 

samples compared to the corresponding correlation between GI samples and meconium 

samples (Figure 3D). There was also a lower correlation based on the 13 fetal derived 

metabolites between GI samples and decidua samples compared to the corresponding 

correlation between GI samples and meconium samples (Figure 3D). Consistent with data from 

Figure 3C from an individual subject, we also observed that bacterially derived metabolites had 

a higher correlation between GI samples and decidua samples compared to the corresponding 

correlation between GI samples and meconium samples (Figure 3D). 

Overall, the abundance of the 41 microbial metabolites identified in our dataset, demonstrated a 

high correlation between GI and decidua samples. To determine if there was variability by 

metabolite, we determined the abundance enrichment across the tissues for each metabolite.  

In our analysis, the primary bile acids that are produced in the fetal liver and then absorbed by 

the small intestine, as expected, were significantly enriched for in fetal meconium but deprived 
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in maternal decidua except for muricholic acid whose abundance was similar across tissues 

(Figure 4A). Upon crossing the intestinal lumen, secondary bile acids are produced by 

microbiota mediated dehydroxylation or deconjugation of the bile acids (28). We were able to 

identify five secondary bile acids present in our dataset. Lithocholic acid was enhanced for in 

the decidua, while deoxycholic acid was present in similar abundance across all the tissues. 

Surprisingly, our analysis identified three secondary bile acids: Glycodeoxycholic acid, 

Sulfolithocholic acid, and Taurodeoxycholic acid whose abundance was significantly high in 

meconium samples.  

We then determine if short chain fatty acids (SCFA), important source of nutrition for intestinal 

epithelial cells and modulators of immunity, that are usually locally produced within the intestinal 

lumen, were present in the fetal intestine.  Three SCFA were detected in our dataset, butyric 

acid and isovaleric acid were significantly reduced in the GI tissue and enhanced in the 

meconium and the PV (Figure 4B). While proprionic acid was enriched for in the GI samples 

above all other tissue (Figure 4B). 

Another important group of bacterially derived metabolites are aromatic lactic acids. 

Breastfeeding has been reported to promote Bifidobacterium species converting aromatic amino 

acids tyrosine, phenylalanine, and tryptophan into their respective aromatic lactic acids 

dihydrocaffeic acid or DHCA, ethylparaben, and 5-MIAA (5-Methoxyindoleacetate), that are 

biologically active in the intestine and associated with anti-inflammatory properties (29, 30). We 

additionally explored if these metabolites are present in fetal tissue. The three aromatic amino 

acids were similarly abundant in the decidua and the GI tract with tryptophan levels being 

reduced in the meconium (Figure 4C). All three of the aromatic lactic acids were present in fetal 

tissue, where 5-MIAA levels were lowest in the meconium and levels of DHCA and ethylparaben 

were similarly abundant between the decidua, GI and meconium samples (Figure 4C).  
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Finally, we evaluated the remaining bacterially associated metabolites present in fetal tissue. 

Nine of these microbial metabolites (Pyridoxine, N-Acetyl-alpha-D-glucosamine1-phosphate, 

alpha-L-Arabinose, Kynurenine, Methylhippuricacid, Phosphopantothenic acid, Hippurate, Butyl-

o-cresol, and 2-Hydroxyhippuric acid) were significantly enriched for in decidua samples, while 

11 microbial metabolites (Riboflavin, Pipecolic acid, 4-Hydroxyphenacyl alcohol, 4-vinylphenol 

sulfate, DMBS, Biotin, Butoxyethyl phthalate, Bis(4-ethylbenzylidene)sorbitol, Thiamine, p-

Cresol, and Indoxyl sulfate) were found in similarly abundance across all tissue samples 

(Figure 4D).  

To ensure that metabolites were identified correctly, a number of these were validated with 

known standards. These included: butyric acid, deoxycholic acid, pantetheine, p-Cresol, 

taurochenodeoxycholic acid, hippurate, benzoate, and taurocholic acid (Supplementary Figure 

S1A-B). Due to sample limitation where no additional sample was available, metabolites were 

validated by standards however the exact concentrations of the samples could not be calculated. 

Where additional samples were available, metabolites were validated by standards and exact 

concentrations were calculated. For deoxycholic acid, both methods were used. The results 

demonstrated consistent trends between the targeted and untargeted analysis among the four 

tissue groups for each metabolite except hippurate where quantitively analysis didn’t identify 

any difference in abundance between groups.  

Intestinal bile acids have been shown to alter abundance and type of mucosal regulatory T cells. 

Interestingly, T cells begin to populate the small intestine in humans early on in the second 

trimester (31), suggesting that the differential presence of various bile acids across gestational 

ages may be important in establishing/regulating mucosal immunity. Similarly, SCFA have also 

been shown to play a role in mucosal immunity, particularly T cell homeostasis (32). Here we 

explored the association between the abundance of the identified nine primary bile acids, five 

secondary bile acids, and three SCFAs with gestational age within tissue groups. Three primary 
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bile acids:  muricholic acid, 1beta-Hydroxycholic acid, and 3a,7a,12b-trihydroxy-5b-cholanic acid 

had a significant positive association with advancing gestational age in the GI tissue, indicative 

of their increased synthesis in the fetus with advancing gestational age (Table 2). In contrast, 

although most of the bile acids and SCFAs did not have any significant association with 

gestational age (Supplementary Table S5), we found that two secondary bile acids, 

deoxycholic acid and glycodeoxycholic acid, and one SCFA, proprionic acid, had a significant 

negative correlation with advancing gestational age in the fetal intestine (Table 2). The negative 

correlation suggests these compounds decrease in the GI tract with gestational age, highlighting 

that they are likely coming from maternal circulation rather than local production.  

We have recently developed a single cell atlas combining a number of datasets to build a 

comprehensive atlas of the small intestine across the human life span including in utero (33). To 

determine if bacterially derived metabolites such as SCFA and secondary bile acids that we find 

in the fetal small intestine can have an in utero biological function, we explored this atlas for 

expression of genes associated with bile acid (SLC10A2 (encoding ASBT), NR1H4 (encoding 

FXR), RXRA (encoding NR2B1), S1PR2, GPBAR1, VDR, and RORC) and SCFA (SLC5A8 

(SCFA transporter), SLC16A1 (encoding MCT1, monocarboxylate transporter), FFAR2, FFAR3, 

FABP6 (encoding iBABP), and HIF1A) transport and signaling (Figure 5 and Supplementary 

Figure S2). Expression of SLC10A2, apical sodium dependent bile acid transport carrier, 

significantly increased post-delivery, with minimal expression in utero. However, expression of a 

number of bile acid and SCFA genes was present in utero and restricted to subtypes of 

epithelial (Figure 5A and Supplementary Figure S2A) and or immune cells (Figures 5B and 

Supplementary Figure S2B) within the SI. The expression of VDR and FABP6 steadily 

increased from the first trimester through adulthood with highest levels present in adults (Figure 

5C). Nevertheless, it was still detectable in utero particularly in the second trimester with FABP6 

being expressed exclusively in the intestinal epithelial cells (IEC) within the mature absorptive 
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(mAE) subtype and VDR being expressed both in the IEC (stem cells (SCs) and mAE cells) and 

in the immune cells (cycling Mφ, Tregs, and memory CD4 cells). Several other genes (GPBAR1, 

SLC5A8, FFAR2, FFAR3, NR1H4, S1PR2, and HIF1A) had similar expression pattern across 

the lifespan except for low expression in the first trimester. FFAR2 was expressed by fetal 

enteroendocrine (EEC) and goblet cells as well as Mφ and ILC3s while FFAR3 was only 

expressed by fetal Mφ. NR1H4 was only expressed by IEC. RORC was predominantly 

expressed by fetal ILCs, and HIF1A ubiquitously expressed in all epithelia and immune cells. 

Discussion 

Defining when the host-microbial interactions are first established is critical for understanding 

normal development and identifying disease preventive strategies. Recent research has 

highlighted the importance of the first three years of life as critical for immune system 

development (4). With the recent identification of memory T cells in fetal tissues (5-10), the 

question arises weather intestinal T cell education and or host-microbiome interaction begins in 

utero, prior to delivery.  

To explore in utero immune function, we had previously sought to identify potential antigens 

recognized by fetal intestinal T cells, but detecting in the microbiome in  fetal intestines or 

meconium was unsuccessful (26). This is consistent with findings from other groups (12-16) 

who had also failed to identify microbiota in gestational tissues all suggesting that there is an 

absence of live microbiota in the fetal tissue. Building on murine studies (25), we previously 

applied the metabolomic analysis pipeline from Metabolon and provided a comprehensive report 

of the in utero human intestinal metabolome with an abundance of bacterially derived 

metabolites and aryl hydrocarbon receptor (AHR) ligands implicated in mucosal immune 

regulation (26). Building on these findings, in the current study, we hypothesized that microbial 

byproducts detected in fetal intestines in utero are primarily derived from the maternal 
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microbiota, and travel to the human fetal intestine. To test this hypothesis, we examined a 

cohort of pregnancy-matched fetal tissue including the fetal intestine, the fetal meconium, the 

fetal placental villi, and the maternal decidua. 

Consistent with our previous work, we found that the microbial metabolites were present in the 

fetal intestine and found that they were present in the fetus across all the tissues examined. 

Using our metabolomic analysis pipeline, we found that the metabolomic profile of fetal intestinal 

tissue was distinct from that of the fetal meconium, the fetal placental villi, and the maternal 

decidua, and contained bacterial metabolites. Focusing on the fetal GI tract, the top 20 most 

abundant metabolites contained a bacterially produced aromatic lactic acid, DHCA, that has 

been associated with decreasing intestinal inflammation (34-36). By Ingenuity Pathways 

Analysis (IPA) we further identified numerous pathways that were enriched for in the GI track 

compared to all other tissues that included transport of bile acids and inorganic cations, phase II 

conjugation of compounds and tryptophan catabolism. Tryptophan serves as the only precursor 

for serotonin synthesis that occurs predominantly in the intestine by EEC (37) where it plays 

many important functions including motility, secretion, and visceral sensitivity. When compared 

to meconium, additional signaling/endocrine pathways were upregulated in the fetal intestine 

including neurotransmitter release cycle, serotonin receptor signaling, arachidonic acid 

metabolism, prostaglandins and thromboxanes synthesis, and insulin secretion. We have 

previously demonstrated that EEC in the fetal small intestine produce insulin and all the 

necessary machinery for glucose sensing and insulin secretion (27). Transport of bile acids and 

inorganic cations is a known function of enterocytes and these data suggest that these 

pathways are active even in utero. This was further supported by the transcriptomics data that 

demonstrated that many of the bile acid transporters and receptors were expressed in utero. 

Phase II conjugation is a detoxifying step in drug and toxin metabolism that occur in the GI tract 

and liver, and this data similarly suggest that this process is active in the enterocytes in utero. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608888doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Interestingly, when compared to the meconium, many metabolic pathways were upregulated in 

the fetal GI tract, suggesting that fetal enterocytes are playing an active role in the absorption of 

amniotic fluid in utero. For example, glutamate metabolism is critical to the GI track, where 

glutamate has been shown to be the largest contributor to intestinal energy generation and is a 

precursor for glutathione, arginine and proline in the small intestine (38).   

Although, live fetal microbiome does not exist in utero, maternal microbiome is important to fetal 

intestinal and immune development (11). Several reports suggest that neonatal mice born to 

mothers transiently colonized with bacteria have increased xenobiotic metabolic signatures in 

their intestines compared to germ-free (GF) pups and contained traces of maternal microbiome 

metabolites in their intestines (25). Additionally, work from the Elaine Hsiao’s group 

demonstrated that the maternal intestinal microbiome promotes placental development where 

depletion of intestinal microbiome restricted placental growth, and this was partially driven by 

SCFA (39). The correlation analysis performed in this study suggested that the microbial 

metabolites detected in fetal samples were more likely to be vertically transmitted from maternal 

microbiota since the fetal GI and decidua samples had substantially higher positive correlation 

of the abundance of the microbial metabolites than the correlation between the fetal GI and 

meconium samples either from matched samples or all samples analyzed together. We also 

investigated the variability of the abundance of the various metabolites in different tissue. Our 

data show that the secondary bile acid, lithocholic acid, the aromatic lactic acid, 5-MIAA, and 

another nine microbial metabolites were significantly enriched for in the decidua samples. 

Interestingly, many microbial metabolites were found in similarly abundance across all tissue 

samples.  

Importantly, three different SCFA, butyric, isovaleric, and propionic acids, were found in fetal 

tissue with propionic acid being enriched for in the fetal GI tract. Butyric acid is an important 

energy source for enterocytes (40, 41), perhaps explaining why its levels were reduced in the GI 
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compared to other tissue. It also plays important roles in enterocyte proliferation, differentiation 

and maturation (40, 41). SCFA have been shown to have anti-inflammatory roles within the 

intestine through binding to GPR41/43 (G protein coupled receptors, FFAR3/2) (42). Both 

FFAR2 and 3 were expressed in the fetal intestine where FFAR2 was found on EEC, Goblet 

cells, Mφ and NK cells, while FFAR3 was found predominantly in Mφ. Secondary bile acids have 

also been shown to play beneficial roles in intestinal homeostasis, including regulating 

inflammation (43, 44). A number of genes associated with bile acid or SCFA transport and 

signaling were expressed in utero, especially in subtypes of epithelial and immune cells, and 

steadily increased from first trimester through adulthood. It’s intriguing to speculate that the 

maternal microbiota supports the anti-inflammatory intestinal milieu of the neonatal intestine 

required to induce tolerance in the setting of rapid microbiome acquisition in early life.  

The main limitations of this study were the relatively small sample size, and lack of other 

maternal tissues including blood and stool. Though we have samples from multiple fetal tissues 

and maternal decidua, we were unable to secure all matched samples. Thus, the conclusions 

drawn about the origin of the microbial byproducts from unmatched samples may be less robust. 

In the future, it would be informative to collect maternal fecal and blood samples matched to 

placental samples for direct correlation between the maternal intestinal microbiome and 

bacterial metabolites in the fetal tissue. 

Methods 

Sample collection 

Placental and fetal samples were obtained from the University of Pittsburgh Biospecimen Core 

from electively terminated products of conception (14–23 weeks’ gestation) with IRB approval 

and signed informed consent (IRB #18010491, University of Pittsburgh). Products of conception 

were collected from dilation and evacuation procedures with nonpharmacological, mechanical 
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dilation via Dilapan-S. No fetal subjects had reported genetic abnormalities. In respect of patient 

confidentiality and safety, limited clinical information was collected for fetal samples. All 

demographic information that could be legally and respectfully obtained is shown in Table 1. 

After receiving fetal samples, meconium was removed, and a small piece was cut with a sterile 

blade and immediately snap-frozen and stored at –80°C until processing. Samples were 

shipped on dry ice to Khatib laboratory for metabolimics analysis. 

Un-targeted metabolomics analysis 

Extraction method. Tissues (small and large intestinal samples) were weighed and dissolved 

into methanol (1:4 w/v). The samples were vortexed, homogenized, and centrifuged for 10 

minutes with 15,294g at 4°C. Then the samples were filtered into HPLC vials and injected to 

LCMS. 

LCMS analysis. The extracted solutions (5 μL) were injected into a UPLC connected to a 

photodiode array detector (Dionex Ultimate 3000), with a reverse-phase column (ZORBAX 

Eclipse Plus C18, 100*3.0 mm, 1.8 μm). The mobile phases consisted of phase A DDW with 0.1% 

formic acid and phase B acetonitrile containing 0.1% formic acid. The gradient was started with 

98% A and increased to 30% B in 4 minutes, then increased to 40% B in 1 minute and kept 

isocratic at 40% B for another 3 minutes. The gradient increased to 50% in 6 minutes, increased 

to 55% in 4 minutes, and finally increased to 95% in 5 minutes and kept isocratic for 7 minutes. 

Phase A was returned to 98% A in 3 minutes, and the column was allowed to equilibrate at 98% 

A for 3 minutes before the next injection. The flow rate was 0.4 mL/min. MS analysis was 

performed with HESI-II source connected to a Q Exactive Plus Hybrid Quadrupole-Orbitrap 

Mass Spectrometer from Thermo Fisher Scientific. ESI capillary voltage was set to 3500 V, 

capillary temperature to 300°C, gas temperature to 350°C, and gas flow to 10 mL/min. The 

mass spectra (m/z 100–1500) were acquired in negative ion mode (ESI–). 
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Blank and quality control (QC) samples were analyzed throughout the entire experimental 

procedure. Blank vials consisted of methanol. The QC samples were prepared by mixing 50 μL 

of each sample. Blank and QC samples were injected first in the sequence, after each set of 10 

samples, and at the end of the sequence, to monitor the stability and performance of the system 

and evaluate the quality of the acquired data. 

Metabolomic data acquisition using Compound Discoverer software 

Identification, quantification and statistical analysis of peak areas identified in the various 

samples were executed using Compound Discoverer software (version 3.3.0.305; Thermo 

Scientific, Waltham, MA, USA). Molecule identification, peak determination, integration of peak 

area, removal of empty peaks and scale, were conducted with MZcloud 

(https://www.mzcloud.org) and ChemSpider (https://www.chemspider.com/) software. Results 

were normalized by incorporating QC samples throughout the extraction stages to check for 

repeatability and the extraction and normalization of the deviations. QC samples were injected 

during all the stages of the run to test the stability and sensitivity of the devices and to normalize 

these deviations. 

Quantitative metabolites analysis for validation. 

Data preprocessing. The standards and samples were injected using the same LC-MS method 

reported at the un-targeted metabolomics part. Peak determination and peak area integration 

were performed with QuanBrowser (Thermo Xcalibur, version 4.1.31.9). Autointegration was 

manually inspected and corrected if necessary. Calibration curves were used for the 

quantification of each compound. Linear curves were obtained for all compounds with R2 > 0.99: 

hippuric acid 0.1–5000 ppb, benzoic acid 500–50,000 ppb, taurocholate 100–50,000 ppb, and 

deoxycholic acid 0.1–100 ppb. 
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Method validation. Method validation was performed to determine, limit of detection (LOD), limit 

of quantitation (LOQ) linearity repeatability, and recovery for each compound. 

For intraday precision, a mixture of all the metabolites standards was prepared and injected as 

QC at the beginning of the sequence, then after each 10 samples, and at the end of the 

sequence. The RSDs into QC samples were calculated for each analyte to be less than 6.6%. 

For recovery analysis, 3 samples were spiked, extracted, and injected to LCMS. The 

concentration of each analyte was calculated into the spiked and nonspiked samples, and the 

recovery was evaluated to be on average 82% for benzoic and hippuric acids, 92% for 

taurocholate, and 98% for deoxycholic acid. 

LOD and LOQ were determined by signal-to-noise ratios higher than 3 and 10, respectively. 

LOD and LOQ for hippuric acid, deoxycholic acid, and sodium taurocholate was 0.1 ppb. LOD 

and LOQ for benzoic acid was 500 ppb. 

Metabolomic data analysis 

Data preprocessing. (a) The original metabolome data matrix contained 65 samples and 18424 

compounds. The data were preprocessed according to Li, Yujia et al. (26). The blank samples, 

quality control samples and NO. 55 sample without location information were filtered out, 

resulting in 49 samples (8 decidua, 8 small intestine, 3 large intestine, 11 small intestine 

meconium, 8 large intestine meconium, and 11 PV). Compounds without names were discarded, 

and for the named compounds with isomers, the one with the largest inter-quantile range over 

the 49 samples at log-scale was kept. Next, the resulting metabolome data matrix containing 49 

samples and 2521 metabolites (no missing) were log-transformed (base 2) and normalized 

across samples by quantile normalization using the “preprocessCore” R package (45). (b) Due 

to sample limitation where no additional sample was available, metabolites were validated by 
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standards however the exact concentrations of the samples could not be calculated. This raw 

validation metabolome data matrix contained 65 samples (same as original data matrix) and 5 

compounds. After filtering out the blank samples, quality control samples, and  55 sample # 55 

that failed QC, the remaining 49 samples and 5 metabolites were log-transformed (base 2). (c) 

Where additional samples were available, metabolites were validated by standards and exact 

concentrations were calculated. This raw validation data set included the quantitative 

abundance of 4 metabolites and 55 samples. Samples with abnormal quantity or without tissue 

location information were filtered out, resulting in 48 samples remaining for Hippurate, 52 

samples for Benzoate, 48 samples for Taurocholic acid, and 50 samples for Deoxycholic acid. 

Missing values were imputed by assigning half of the minimum observed value of each 

metabolite and addition of a small random noise. (d) The pediatric data was from Li, Yujia et al. 

(26), containing 10 samples (5 large intestine and 5 small intestine) and 841 identified 

metabolites. According to Li, Yujia et al. (26), before log-transformation, missing values were 

imputed by assigning half of the minimum observed value of each metabolite and addition of a 

small random noise (Gaussian distribution with mean 0 and variance 100 and then rounded to 

the nearest integer) to the missing data to avoid the ties across samples that will impair variance 

estimation in subsequent differential analysis. 

Determination of metabolite clustering. t-SNE (R package “Rtsne” (46-48)) plots were made to 

visualize the separability of samples from different tissue locations. 

Statistical and bioinformatic analyses. (a) For differential analysis, the “limma” R package (49) 

was used to detect the differentially expressed metabolites and pathways in 3 pairwise 

comparisons: decidua versus GI (small intestine and large intestine), GI versus meconium, and 

GI versus PV. We applied “limma” R package to calculate P values and log-fold changes for 

individual metabolites, followed by Benjamini-Hochberg procedure to correct for multiple testing, 

to control false discovery rate, and to report q value. The results were visualized in volcano plots 
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using the “EnhancedVolcano” R package (50) where the significantly differentially expressed 

genes are highlighted in red with the absolute value of log fold change larger than 2.5 and q 

value smaller than 0.05. For pathway enrichment analysis, we figured out the KEGG ID of 843 

metabolites. Based on the KEGG IDs and identified differentially expressed metabolites, 

pathway enrichment analysis for each of the 3 pairwise comparisons were conducted using IPA 

software for metabolome data (QIAGEN; 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) (51). This tool 

generated q values and enrichment effect sizes (log odds ratio). (c) The correlation matrix 

provided the pairwise correlations of the 6 tissue groups (decidua, SI, LI, SI Mec, LI Mec, and 

PV) from subject “1146” based on the abundance of 41 bacterially derived metabolites and was 

visualized by the “ggcorrplot” R package (52). The boxplots compared the correlation between 

GI and decidua group, and between GI and meconium group, and each point in the boxplot is 

the abundance correlation of microbial metabolites/Xenobiotic/fetal-derived metabolites between 

one decidua sample and one GI sample (or one GI sample and one meconium sample). The 

significance levels were calculated by two sample t-test. (d) For each microbial metabolite, bile 

acid and aromatic acid, we performed one-factor ANOVA and post-hoc analysis to compare the 

difference of its abundance among the 4 tissue groups (decidua, GI, meconium, and PV). The 

results were visualized in heatmap by “pheatmap” R package (53) and boxplots generated by 

the “ggplot2” package (54). (e) To investigate the association between the abundance of 

individual metabolite with gestational age and tissue group for bile acids and SCFAs, we applied 

the linear regression model using “limma” R package, reporting the coefficient slopes and q 

values. 

Single-cell RNA-seq data analysis 

The single-cell data was from our previous published a single cell atlas of human small intestine 

throughout the human lifespan (33). The fetal epithelial cells and immune cells were clustered 
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using Scanpy (v1.9.2) package (55) as described in Gu et al (33).  Briefly, gene expression in 

each cell was normalized and log-transformed. Afterwards, highly variable genes were identified 

using the scanpy.pp.highly_variable_genes function with default parameters. In addition, the 

effects of the percentage of mitochondrial genes, percentage of ribosomal protein genes, and 

unique molecular identifier (UMI) counts were regressed out using scanpy.pp.regress_out 

function before scaling the data. Batch correction of samples was performed with bbknn (v1.5.1) 

(56). Dimensionality reduction and Leiden clustering was carried out on the remaining highly 

variable genes, and the cells were visualized using Uniform Manifold Approximation and 

Projection (UMAP) plots. Cell types were manually annotated based on known markers genes 

found in the literature. The statistical analysis of selected gene expression in each detected cell 

was performed using one-way ANOVA with Tukey's multiple comparison test to compare gene 

expression among developmental stages using GraphPad Prism 9. Differences were 

considered statistically significant at a p value <0.05. 

Data availability 

The metabolomic data is available in Github https://github.com/wenjiaking/Metabolomic-

Data/tree/main, and the single-cell RNA-seq data used in this study has been listed in 

Supplementary Table 1 (33) where the data resources can be found.  
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Tables: 

 

Table 1. Sample demographics. Demographic information for all samples used. N/A, not 

available; SI, small intestine; LI, large intestine; SI Mec, small intestine meconium; LI Mec, large 

intestine meconium; F, female; M, male. 

 

Table 2. Correlation coefficients between the abundance of individual metabolites and the 

gestational age within each tissue group. Only show the five bile acids and one SCFA 

(Propionic acid) with significant age-association. The rows are the correlation coefficient within 

each tissue group separately. The q value for the correlation coefficient shows in parathesis *P < 

0.05, **P<0.01, ***P<0.001. 

 

Figures: 

 

Figure 1. Sample separation and differential expression of individual metabolites. (A) t-

distributed stochastic neighbor embedding (t-SNE ) plot using all metabolites. (B) Heatmap 

showing normalized abundance of the top 20 expressed metabolites in the fetal GI samples (SI 

and LI), as well as their abundance in the meconium (SI Mec and LI Mec), PV, and maternal 

decidua samples. (C), (D) and (E) Volcano plots of differentially abundant metabolites between 
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the GI and decidua groups, GI and meconium groups, and GI and PV groups respectively. Top 

ten most abundant metabolites are labeled with the metabolite name.  

 

Figure 2. Pathway enrichment. (A), (B) and (C) Integrated pathway analysis for differentially 

altered pathways between GI and decidua groups, between GI and meconium groups, and 

between GI and PV groups. The length of the bar is proportional to the q value. Pathways with 

positive values on the x axis (orange bar) are those enriched for in the decidua, meconium, and 

PV respectively. Those with negative values (blue bars) are pathways enriched for in the GI 

samples. 

 

Figure 3. Correlation between tissue groups of microbial metabolites, xenobiotics, and 

fetal metabolites. (A) Schematic of how the correlation between tissue would identify the 

source of bacterial metabolites. (B) Heatmap showing normalized abundance of the 41 

microbial associated metabolites across sample types. (C) Pairwise correlation matrix of the 41 

microbial metabolites between paired tissue samples from subject 1146. (D) Boxplots visualizing 

the correlations between GI and decidua groups, and between GI and meconium groups based 

on 41 microbial metabolites, 47 xenobiotics, and 13 fetal-derived metabolites respectively from 

Supplementary Table S4. Red asterisk points represent the pairwise correlations between 

tissue samples from subject 1146. *P < 0.05, ***P<0.001. 

Figure 4. ANOVA analysis of SCFA, bile acids and aromatic acids across tissues. (A-C) 

Boxplots of individual metabolite’s abundance for primary and secondary bile acids, SCFA, and 

aromatic amino acids and aromatic acids. *P < 0.05, **P<0.01, ***P<0.001. (D) Heatmap 

showing that microbial metabolites without significant difference across tissue groups (upper 

panel) and microbial metabolites significantly enriched in decidua samples (lower panel). 
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Figure 5. Cell type specific expression of genes associated with bile acid and SCFA 

transport and signaling. Uniform Manifold Approximation and Projection (UMAP) plot 

visualization of bile acid and SCFA associated transport and signaling gene expression in fetal 

small intestine epithelial (A) and fetal immune cells (B). (C) Boxplots of selected individual gene 

expression in small intestine across developmental stages (related to Figure 1 (33)). *P < 0.05, 

**P<0.01, ***P<0.001. 

Supplementary material 

Tables 

 

Supplementary Table S1. List of the detectable metabolites and their abbreviations. 

 

Supplementary Table S2. Difference of metabolite abundance in pairwise comparisons 

between GI and the other tissue groups. 

 

Supplementary Table S3. Enriched pathways in pairwise comparisons between GI and 

the other tissue groups 

 

Supplementary Table S4. List of microbial metabolites, xenobiotics, and fetal-derived 

metabolites used in the analysis. 
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Supplementary Table S5. Correlation coefficients between the abundance of individual 

metabolites and the gestational age within each tissue group. Except the bile acids and 

SCFA in Table 2, showing all the other nine bile acids and two SCFAs. The columns are the 

correlation coefficient within each tissue group separately. The q value for the correlation 

coefficient shows in parathesis *P < 0.05, **P<0.01, ***P<0.001. 

 

Figures 

 

Supplementary Figure S1. Difference validation. Boxplots in the first row show the 

abundance difference between tissue groups for the eight metabolites in the main data set, 

while the second and third rows present the difference in validation data sets for the 

corresponding metabolites.  

 

Supplementary Figure S2. Dot plots of markers for cell type annotation. Dot plot of the 

marker genes for the annotation of fetal epithelial cells (A) and of fetal immune cells (B). Color 

represents normalized mean expression of marker genes in each cell type, and size indicates 

the proportion of cells expressing marker genes.  

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608888doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608888
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608888doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608888
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol 

Rev. 2010;90(3):859-904. 

2. Morais LH, Schreiber HLt, Mazmanian SK. The gut microbiota-brain axis in behaviour and 

brain disorders. Nat Rev Microbiol. 2021;19(4):241-55. 

3. Milshteyn A, Colosimo DA, Brady SF. Accessing Bioactive Natural Products from the 

Human Microbiome. Cell Host Microbe. 2018;23(6):725-36. 

4. Pantazi AC, Balasa AL, Mihai CM, Chisnoiu T, Lupu VV, Kassim MAK, et al. Development of 

Gut Microbiota in the First 1000 Days after Birth and Potential Interventions. Nutrients. 

2023;15(16). 

5. Stras SF, Werner L, Toothaker JM, Olaloye OO, Oldham AL, McCourt CC, et al. Maturation 

of the Human Intestinal Immune System Occurs Early in Fetal Development. Dev Cell. 

2019;51(3):357-73 e5. 

6. Halkias J, Rackaityte E, Hillman SL, Aran D, Mendoza VF, Marshall LR, et al. CD161 

contributes to prenatal immune suppression of IFNgamma-producing PLZF+ T cells. J Clin Invest. 

2019;129(9):3562-77. 

7. Schreurs R, Baumdick ME, Sagebiel AF, Kaufmann M, Mokry M, Klarenbeek PL, et al. 

Human Fetal TNF-alpha-Cytokine-Producing CD4(+) Effector Memory T Cells Promote Intestinal 

Development and Mediate Inflammation Early in Life. Immunity. 2019;50(2):462-76 e8. 

8. Li N, van Unen V, Abdelaal T, Guo N, Kasatskaya SA, Ladell K, et al. Memory CD4(+) T cells 

are generated in the human fetal intestine. Nat Immunol. 2019;20(3):301-12. 

9. Frascoli M, Coniglio L, Witt R, Jeanty C, Fleck-Derderian S, Myers DE, et al. Alloreactive 

fetal T cells promote uterine contractility in preterm labor via IFN-gamma and TNF-alpha. Sci 

Transl Med. 2018;10(438). 

10. Toothaker JM, Presicce P, Cappelletti M, Stras SF, McCourt CC, Chougnet CA, et al. 

Immune Cells in the Placental Villi Contribute to Intra-amniotic Inflammation. Front Immunol. 

2020;11:866. 

11. Koren O, Konnikova L, Brodin P, Mysorekar IU, Collado MC. The maternal gut microbiome 

in pregnancy: implications for the developing immune system. Nat Rev Gastroenterol Hepatol. 

2024;21(1):35-45. 

12. de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, et al. Human placenta has 

no microbiome but can contain potential pathogens. Nature. 2019;572(7769):329-34. 

13. Lauder AP, Roche AM, Sherrill-Mix S, Bailey A, Laughlin AL, Bittinger K, et al. Comparison 

of placenta samples with contamination controls does not provide evidence for a distinct 

placenta microbiota. Microbiome. 2016;4(1):29. 

14. Leiby JS, McCormick K, Sherrill-Mix S, Clarke EL, Kessler LR, Taylor LJ, et al. Lack of 

detection of a human placenta microbiome in samples from preterm and term deliveries. 

Microbiome. 2018;6(1):196. 

15. Theis KR, Romero R, Winters AD, Greenberg JM, Gomez-Lopez N, Alhousseini A, et al. 

Does the human placenta delivered at term have a microbiota? Results of cultivation, 

quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am J Obstet 

Gynecol. 2019;220(3):267 e1- e39. 

16. Kuperman AA, Zimmerman A, Hamadia S, Ziv O, Gurevich V, Fichtman B, et al. Deep 

microbial analysis of multiple placentas shows no evidence for a placental microbiome. BJOG. 

2020;127(2):159-69. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608888doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608888
http://creativecommons.org/licenses/by-nc-nd/4.0/


17. Kennedy KM, de Goffau MC, Perez-Munoz ME, Arrieta MC, Backhed F, Bork P, et al. 

Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature. 

2023;613(7945):639-49. 

18. Rackaityte E, Halkias J, Fukui EM, Mendoza VF, Hayzelden C, Crawford ED, et al. Viable 

bacterial colonization is highly limited in the human intestine in utero. Nat Med. 

2020;26(4):599-607. 

19. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a 

unique microbiome. Sci Transl Med. 2014;6(237):237ra65. 

20. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be 

initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 

2016;6:23129. 

21. Moreno I, Garcia-Grau I, Bau D, Perez-Villaroya D, Gonzalez-Monfort M, Vilella F, et al. 

The first glimpse of the endometrial microbiota in early pregnancy. Am J Obstet Gynecol. 

2020;222(4):296-305. 

22. Onderdonk AB, Hecht JL, McElrath TF, Delaney ML, Allred EN, Leviton A, et al. 

Colonization of second-trimester placenta parenchyma. Am J Obstet Gynecol. 2008;199(1):52 

e1- e10. 

23. Parnell LA, Briggs CM, Cao B, Delannoy-Bruno O, Schrieffer AE, Mysorekar IU. Microbial 

communities in placentas from term normal pregnancy exhibit spatially variable profiles. Sci Rep. 

2017;7(1):11200. 

24. Pelzer E, Gomez-Arango LF, Barrett HL, Nitert MD. Review: Maternal health and the 

placental microbiome. Placenta. 2017;54:30-7. 

25. Gomez de Aguero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The 

maternal microbiota drives early postnatal innate immune development. Science. 

2016;351(6279):1296-302. 

26. Li Y, Toothaker JM, Ben-Simon S, Ozeri L, Schweitzer R, McCourt BT, et al. In utero human 

intestine harbors unique metabolome, including bacterial metabolites. JCI Insight. 2020;5(21). 

27. Egozi A, Llivichuzhca-Loja D, McCourt BT, Bahar Halpern K, Farack L, An X, et al. Insulin is 

expressed by enteroendocrine cells during human fetal development. Nat Med. 

2021;27(12):2104-7. 

28. Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin 

Gastroenterol. 2014;30(3):332-8. 

29. Stewart CJ. Breastfeeding promotes bifidobacterial immunomodulatory metabolites. Nat 

Microbiol. 2021;6(11):1335-6. 

30. Laursen MF, Sakanaka M, von Burg N, Morbe U, Andersen D, Moll JM, et al. 

Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the 

infant gut. Nat Microbiol. 2021;6(11):1367-82. 

31. Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, et al. Microbial bile acid metabolites 

modulate gut RORgamma(+) regulatory T cell homeostasis. Nature. 2020;577(7790):410-5. 

32. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. The 

microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 

2013;341(6145):569-73. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608888doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608888
http://creativecommons.org/licenses/by-nc-nd/4.0/


33. Gu W, Eke C, Gonzalez Santiago E, Olaloye O, Konnikova L. Single-cell atlas of the small 

intestine throughout the human lifespan demonstrates unique features of fetal immune cells. 

Mucosal Immunol. 2024. 

34. Zieniuk B. Dihydrocaffeic Acid-Is It the Less Known but Equally Valuable Phenolic Acid? 

Biomolecules. 2023;13(5). 

35. Gutierrez-Zetina SM, Gonzalez-Manzano S, Ayuda-Duran B, Santos-Buelga C, Gonzalez-

Paramas AM. Caffeic and Dihydrocaffeic Acids Promote Longevity and Increase Stress Resistance 

in Caenorhabditis elegans by Modulating Expression of Stress-Related Genes. Molecules. 

2021;26(6). 

36. Sanchez-Medina A, Redondo-Puente M, Dupak R, Bravo-Clemente L, Goya L, Sarria B. 

Colonic Coffee Phenols Metabolites, Dihydrocaffeic, Dihydroferulic, and Hydroxyhippuric Acids 

Protect Hepatic Cells from TNF-alpha-Induced Inflammation and Oxidative Stress. Int J Mol Sci. 

2023;24(2). 

37. Roth W, Zadeh K, Vekariya R, Ge Y, Mohamadzadeh M. Tryptophan Metabolism and Gut-

Brain Homeostasis. Int J Mol Sci. 2021;22(6). 

38. Reeds PJ, Burrin DG, Stoll B, Jahoor F. Intestinal glutamate metabolism. J Nutr. 

2000;130(4S Suppl):978S-82S. 

39. Pronovost GN, Yu KB, Coley-O'Rourke EJL, Telang SS, Chen AS, Vuong HE, et al. The 

maternal microbiome promotes placental development in mice. Sci Adv. 2023;9(40):eadk1887. 

40. Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the 

gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev. 2010;23(2):366-84. 

41. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate 

formation in the human colon. FEMS Microbiol Lett. 2002;217(2):133-9. 

42. Arifuzzaman M, Collins N, Guo CJ, Artis D. Nutritional regulation of microbiota-derived 

metabolites: Implications for immunity and inflammation. Immunity. 2024;57(1):14-27. 

43. Calzadilla N, Comiskey SM, Dudeja PK, Saksena S, Gill RK, Alrefai WA. Bile acids as 

inflammatory mediators and modulators of intestinal permeability. Front Immunol. 

2022;13:1021924. 

44. Di Vincenzo F, Puca P, Lopetuso LR, Petito V, Masi L, Bartocci B, et al. Bile Acid-Related 

Regulation of Mucosal Inflammation and Intestinal Motility: From Pathogenesis to Therapeutic 

Application in IBD and Microscopic Colitis. Nutrients. 2022;14(13). 

45. Bolstad B. preprocessCore: A collection of pre-processing functions. R package version 

1.66.02024. 

46. Jesse H Krijthe LVdM. Rtsne: T-distributed stochastic neighbor embedding using Barnes-

Hut implementation. R package version 0.132015. 

47. Hinton vdMaGE. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine 

Learning Research. 2008;9:2579-605. 

48. Maaten vd. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine 

Learning Research. 2014;15:3221-45. 

49. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential 

expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 

2015;43(7):e47. 

50. Blighe K RS, Lewis M. EnhancedVolcano: Publication-ready volcano plots with enhanced 

colouring and labeling. R package version 1.22.02024. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608888doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608888
http://creativecommons.org/licenses/by-nc-nd/4.0/


51. Kramer A, Green J, Pollard J, Jr., Tugendreich S. Causal analysis approaches in Ingenuity 

Pathway Analysis. Bioinformatics. 2014;30(4):523-30. 

52. Alboukadel Kassambara IP. ggcorrplot: Visualization of a Correlation Matrix using 

'ggplot2'. 2023. 

53. Kolde R. pheatmap: Pretty Heatmaps. 2019. 

54. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York; 2016. 

55. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. 

Genome Biol. 2018;19(1):15. 

56. Polanski K, Young MD, Miao Z, Meyer KB, Teichmann SA, Park JE. BBKNN: fast batch 

alignment of single cell transcriptomes. Bioinformatics. 2020;36(3):964-5. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608888doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608888
http://creativecommons.org/licenses/by-nc-nd/4.0/


−10

0

10

−10 −5 0 5
t−SNE dimension 1

t−
SN

E 
di

m
en

si
on

 2

decidua
GI
mec
PV

A

E

CDP−diacylglycerols

7−METHYL−GPPPA

AVW
Estriol 17−sulfate

Coprocholic acid
Pregnenolonesulfate

lys−leuCort−3−glucuronide

DTXSID10926181

Butanoic acidGCDA 7−sulfate Diacetylspermine
Dopamine3−O−sulfate

NP−018459 CyclicADP−ribose
12,13(S)−EOTrE

Lichesterylic acid
ethylthiazoleD−ProlineVit D3

0

5

10

15

−10 −5 0 5 10
 Log2 fold change

 −
Lo

g 1
0 
P

NS Log2 FC adj.P.Val adj.P.Val and log2 FC

EnhancedVolcano

total = 2521 variables

metioprim

Portulacaxanthin I Glycine

D−Proline

Oxoglutarate dianion

gnemonoside E

Metominostrobin, E−

P5C pyridinedicarboxylic acid

decahydronaphthalen Alamarine

OH−pyrroline−carboxylate 2−Aminomuconate

N−Arachidonylglycine

Difenoxuron

5−OH−xyindoleacetylglycine

Lysergicacid

NP−020824

Acremoauxin A NP−014796

0

5

10

−5 0 5
 Log2 fold change

 −
Lo

g 1
0 
P

NS Log2 FC adj.P.Val adj.P.Val and log2 FC

EnhancedVolcano

total = 2521 variables

7−METHYL−GPPPA
Estriol 17−sulfate

AVW
Pregnenolonesulfate

Coprocholic acid Dopamine3−O−sulfate

CyclicADP−ribose

GMP
NP−009911GCDA 7−sulfate

Taurocholic acid Cort−3−glucuronide

Adenosylhomocysteine GPEtn(20:1/18:1)

3'−UMP

CDP−diacylglycerols

N1−Acetylspermine

TCH

Guanine

Phenylisocyanate

0

5

10

15

−10 −5 0 5
 Log2 fold change

 −
Lo

g 1
0 
P

NS Log2 FC adj.P.Val adj.P.Val and log2 FC

EnhancedVolcano

total = 2521 variables

B C DeciduaGI

MeconiumGI PVGID

1−stearoyl−sn−glycero−3−phosphoethanolamine
1−Palmitoylglycerophosphocholine

Benzene
Platelet−activating factor

1−Palmitoyl−2−hydroxy−sn−glycero−3−PE
           Tryptophan

trans−3−Indoleacrylic acid
Uridine

L−(+)−Lactic acid
Nicotinamide

Xanthine
cinitapride

D−Pipecolicacid
D−Sphingosine

4−Oxoproline
Hypoxanthine

Uric acid
DL−Malic acid

3−Methylsulfolene
                 Dihydrocaffeic acid or DHCA

GI

Mec
on

ium PV

Dec
idu

a

26
28
30
32

1−stearoyl−sn−glycero−3−phosphoethanolamine
1−Palmitoylglycerophosphocholine

Benzene
Platelet−activating factor

1−Palmitoyl−2−hydroxy−sn−glycero−3−PE
           Tryptophan

trans−3−Indoleacrylic acid
Uridine

L−(+)−Lactic acid
Nicotinamide

Xanthine
cinitapride

D−Pipecolicacid
D−Sphingosine

4−Oxoproline
Hypoxanthine

Uric acid
DL−Malic acid

3−Methylsulfolene
                 Dihydrocaffeic acid or DHCA

GI

Mec
on

ium PV

Dec
idu

a

26
28
30
32

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608888doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Transport of vitamins, nucleosides, and related molecules
Nucleotide catabolism

Class A/1 (Rhodopsin−like receptors)
Nucleotide salvage

Synthesis of Prostaglandins (PG) and Thromboxanes (TX)
G alpha (q) signalling events

Transport of bile salts and organic acids, metal ions and amine compounds
Aspartate and asparagine metabolism

Metabolism of water−soluble vitamins and cofactors
Insulin Secretion Signaling Pathway

Arachidonic acid metabolism
Incretin synthesis, secretion, and inactivation

Phenylalanine and tyrosine metabolism
Interconversion of nucleotide di− and triphosphates

Transport of inorganic cations/anions and amino acids/oligopeptides
Glutamate and glutamine metabolism

Tryptophan catabolism
G alpha (i) signalling events
G alpha (s) signalling events

Selenoamino acid metabolism
Serotonin Receptor Signaling

Integration of energy metabolism
TP53 Regulates Metabolic Genes

Visual phototransduction
Telomere Maintenance

Neurotransmitter release cycle
Sulfur amino acid metabolism

Deadenylation−dependent mRNA decay
Nicotinate metabolism

Metabolism of amine−derived hormones
Abacavir ADME

Phase II − Conjugation of compounds
Phase I − Functionalization of compounds

Purine Nucleotides De Novo Biosynthesis II
Superpathway of Citrulline Metabolism

Purine Ribonucleosides Degradation to Ribose−1−phosphate
tRNA Charging

−6 −4 −2 0 2
−log10(q value)

Pa
th
w
ay

−log10(q value) positive z−score negative z−score

Transport of bile salts and organic acids, metal ions and amine compounds
Tryptophan catabolism

Transport of inorganic cations/anions and amino acids/oligopeptides
Phase II − Conjugation of compounds

Neurotransmitter release cycle
Serotonin Receptor Signaling
G alpha (q) signalling events

Visual phototransduction
Metabolism of steroid hormones

Phase I − Functionalization of compounds
Glutamate and glutamine metabolism

Ferroptosis Signaling Pathway
Interconversion of nucleotide di− and triphosphates

Purine Ribonucleosides Degradation to Ribose−1−phosphate
Nucleotide catabolism

Transport of vitamins, nucleosides, and related molecules
tRNA Charging

Nucleotide salvage

0 2 4
−log10(q value)

Pa
th
w
ay

−log10(q value) positive z−score negative z−score

Transport of bile salts and organic acids, metal ions and amine compounds
Sphingolipid metabolism

Phase I − Functionalization of compounds
Phase II − Conjugation of compounds

Transport of inorganic cations/anions and amino acids/oligopeptides
Metabolism of steroid hormones

Tryptophan catabolism
Serotonin Receptor Signaling

Neurotransmitter release cycle
Transport of vitamins, nucleosides, and related molecules

Interconversion of nucleotide di− and triphosphates
Ferroptosis Signaling Pathway

Arachidonic acid metabolism
tRNA Charging

Nucleotide catabolism
Purine Ribonucleosides Degradation to Ribose−1−phosphate

Nucleotide salvage

−2 0 2 4
−log10(q value)

Pa
th
w
ay

−log10(q value) positive z−score negative z−score

A

B

C

0 2 4

0 246 2

0 2 42

Ingenuity Pathway Analysis: Decidua-GI

Ingenuity Pathway Analysis: Meconium-GI

Ingenuity Pathway Analysis: PV-GI

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608888doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dihydrocaffeic acid or DHCA 
Pantothenic acid

Pipecolic acid
alpha−L−Arabinose

Kynurenine
Bis(4−ethylbenzylidene)sorbitol

p−Cresol
Thiamine
Riboflavin

Pyridoxine
MTA

Propionic acid
 Hippurate

Phosphopantothenic acid
1H−Indole

5−MIAA
N−Acetyl−alpha−D−glucosamine1−phosphate

Glycodeoxycholic acid
Coprocholic acid

Phenol
Deoxycholic acid

2−(4,6−diphenyl−1,3,5−triazin−2−yl)−5−(hexyloxy)phenol
Pantetheine

Sulfolithocholic acid
4−vinylphenol sulfate

Butyric acid
Benzoate

Methylhippuricacid
DMBS

Indoxyl sulfate
Butyl−o−cresol

Taurodeoxycholic acid
2−Hydroxyhippuric acid

Butoxyethyl phthalate
Ethylparaben

Biotin
Isovaleric acid

4−Hydroxyphenacyl alcohol
Lithocholic acid

albaflavenol
2,2'−Methylenebis(6−tert−butyl−p−cresol)

GI

Mec
on

ium PV

Dec
idu

a

20

25

0.88 0.88 0.6 0.54 0.95

0.96 0.62 0.58 0.9

0.66 0.61 0.88

0.92 0.5

0.48

Decidua

SI

LI

Meconium(SI)

Meconium(LI)

SI LI

Me
co
niu
m(
SI)

Me
co
niu
m(
LI) PV

−1.0

−0.5

0.0

0.5

1.0
Corr

𝜌!"#_%& ≫ 𝜌'"#_%&

𝜌!"#_%& ≪ 𝜌'"#_%&

A

C

B



0.0

0.4

0.8

De
cid
ua
−G
I

Me
co
niu
m−
GI

C
or
re
la
tio
n

Fetal

*********************************************************************************************************************************************************************************************************************************************************************************************************

0.00

0.25

0.50

0.75

1.00

De
cid
ua
−G
I

Me
co
niu
m−
GI

C
or
re
la
tio
n

Xenobiotic

*********************************************************************************************************************************************************************************************************************************************************************************************************

0.4

0.6

0.8

1.0

De
cid
ua
−G
I

Me
co
niu
m−
GI

C
or
re
la
tio
n

BacterialD

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608888doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608888
http://creativecommons.org/licenses/by-nc-nd/4.0/


A



20

25

Dec
idu

a GI

Mec
on

ium Villi

lo
g2

 a
bu

nd
an

ce

7−Sulfocholic acid

************************************************* **************************************************************************************************

24

28

32

Dec
idu

a GI

Mec
on

ium Villi

lo
g2

 a
bu

nd
an

ce

Glycochenodeoxycholic acid

*************************************************************************************************************************************************** *****************************************************************************************************************************************************************************************************************************************************

25

30

35

Dec
idu

a GI

Mec
on

ium Villi

lo
g2

 a
bu

nd
an

ce

Glycocholic acid

************************************************* **************************************************************************************************

16

20

24

28

Dec
idu

a GI

Mec
on

ium Villi

lo
g2

 a
bu

nd
an

ce
Taurochenodeoxycholic acid



20

25

30

35

Dec
idu

a GI

Mec
on

ium Villi

lo
g2

 a
bu

nd
an

ce

Taurocholic acid

************************************************* **************************************************************************************************

15
16
17
18
19
20
21

Dec
idu

a GI

Mec
on

ium Villi

lo
g2

 a
bu

nd
an

ce

3α,7α,12β−trihydroxy−5β−cholanic acid

Primary Bile Acid

Pipecolic acid
p−Cresol
Thiamine
Bis(4−ethylbenzylidene)sorbitol
Riboflavin
Indoxyl sulfate
4−vinylphenol sulfate
DMBS
4−Hydroxyphenacyl alcohol
Biotin
Butoxyethyl phthalate
Pyridoxine
Kynurenine
alpha−L−Arabinose
Hippurate
Methylhippuricacid
Phosphopantothenic acid
N−Acetyl−alpha−D−glucosamine1−phosphate
2−Hydroxyhippuric acid
Butyl−o−cresol

20

25

30
Decidua GI Meconium

SCFA

26

28

30

Dec
idu

a GI

Mec
on

ium Villi

lo
g2

 a
bu

nd
an

ce

Dihydrocaffeic acid or DHCA 

*************************************************

18

19

20

21

Dec
idu

a GI

Mec
on

ium Villi

lo
g2

 a
bu

nd
an

ce

Ethylparaben

Aromatic Amino Acid Aromatic Lactic Acid

Secondary Bile Acid

CB

D

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608888doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608888
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

C

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608888doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Subject No. Tissue type Gestational age (weeks) Sex

1 Dec, LI Mec, SI Mec, PV 20 F

2 SI 16-17 N/A

3 SI 16 N/A

4 SI 17-18 N/A

5 SI 23 N/A

6 SI 18 N/A

7 SI 19-20 N/A

8 PV 21 N/A

9 PV 21 F

10 Dec, PV 22 F

11 SI, LI Mec, SI Mec 19 F

12 Dec, LI Mec, SI Mec, PV 23 F

13 Dec, LI Mec, SI Mec, PV 22 M

14 SI Mec 23 N/A

15 Dec, SI Mec, PV 23 N/A

16 Dec, SI, LI, LI Mec, SI Mec, PV 23 F

17 SI Mec 14 M

18 SI Mec, LI Mec 21 M

19 LI 15 N/A

20 SI Mec, PV 18 M

21 Dec, LI Mec, PV 23 F

22 LI, LI Mec 18-19 M

23 Dec, SI Mec, PV 21 N/A
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(0.43)

0.07

(0.76)
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(0.43)

0.09
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-0.29

(0.96)
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