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ABSTRACT

Background: The treatment of acute kidney injury (AKI), a common disease in dogs, is 
limited. Therefore, an effective method to prevent AKI in veterinary clinics is particularly 
crucial.
Objectives: Hydrogen sulfide (H2S) is the third gaseous signal molecule involved in various 
physiological functions of the body. The present study investigated the effect of H2S on 
cisplatin-induced AKI and the involved mechanisms in dogs.
Methods: Cisplatin-injected dogs developed AKI symptoms as indicated by renal dysfunction 
and pathological changes. In the H2S-treated group, 50 mM sodium hydrosulfide (NaHS) 
solution was injected at 1 mg/kg/h for 30 min before cisplatin injection. After 72 h, tissue 
and blood samples were collected immediately. We performed biochemical tests, optical 
microscopy studies, analysis with test kits, quantitative reverse-transcription polymerase 
chain reaction, and western blot analysis.
Results: The study results demonstrated that cisplatin injection increased necroptosis and 
regulated the corresponding protein expression of receptor interacting protein kinase (RIPK) 
1, RIPK3, and poly ADP-ribose polymerase 1; furthermore, it activated the expressions of 
inflammatory factors, including tumor necrosis factor-alpha, nuclear factor kappa B, and 
interleukin-1β, in canine kidney tissues. Moreover, cisplatin triggered oxidative stress and 
affected energy metabolism. Conversely, an injection of NaHS solution considerably reduced 
the aforementioned changes.
Conclusions: In conclusion, H2S protects the kidney from cisplatin-induced AKI through the 
mitigation of necroptosis and inflammation. These findings provide new and valuable clues for 
the treatment of canine AKI and are of great significance for AKI prevention in veterinary clinics.
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INTRODUCTION

Acute kidney injury (AKI), an independent risk factor for mortality, is a clinical syndrome 
characterized by a rapid decline of renal function in humans. As one of the most common 
complications in hospitalized patients, AKI increases the risk of death by 10–15 times and 
has a mortality rate of 50%, which accounts for approximately 2 million deaths per year 

Received: Mar 10, 2022
Revised: Jun 8, 2022
Accepted: Jul 13, 2022
Published online: Aug 8, 2022

*Corresponding author: 
Yun Liu
College of Veterinary Medicine and Heilingjiang 
Key Laboratory for Laboratory Animals and 
Comparative Medicine, Northeast Agricultural 
University, 59 Mucai Street, Harbin 150030, P. 
R. China.
Email: liuyunneau@outlook.com 
https://orcid.org/0000-0002-4989-5525

Shuang Wang  1, XingYao Liu  1, Yun Liu  1,2,*

1College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
2�Heilingjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural 
University, Harbin 150030, P. R. China

Hydrogen sulfide protects from 
acute kidney injury via attenuating 
inflammation activated by necroptosis 
in dogs

Original Article

© 2022 The Korean Society of Veterinary Science

This is an Open Access article distributed under the 

terms of the Creative Commons Attribution Non-

Commercial License (https://creativecommons.org/

licenses/by-nc/4.0) which permits unrestricted non-

commercial use, distribution, and reproduction in any 

medium, provided the original work is properly cited.

https://orcid.org/0000-0002-1640-0418
https://orcid.org/0000-0002-4332-1977
https://orcid.org/0000-0002-4989-5525
http://crossmark.crossref.org/dialog/?doi=10.4142/jvs.22064&domain=pdf&date_stamp=2022-08-08
http://www.ncbi.nlm.nih.gov/pubmed/29588419
http://www.ncbi.nlm.nih.gov/pubmed/29588419


ORCID iDs
Shuang Wang 
https://orcid.org/0000-0002-1640-0418
XingYao Liu 
https://orcid.org/0000-0002-4332-1977
Yun Liu 
https://orcid.org/0000-0002-4989-5525

Author Contributions
Conceptualization: Wang S; Data curation: 
Wang S; Formal analysis: Liu X; Funding 
acquisition: Liu Y; Investigation: Liu X; 
Methodology: Liu X; Project administration: Liu 
Y; Supervision: Liu Y; Writing - original draft: 
Wang S; Writing - review & editing: Liu Y.

Conflict of Interest
The authors declare no conflicts of interest.

Funding
This work was supported by National Natural 
Resources Foundation of China, Grant No. 
31872527 and 32172931.

2/14https://vetsci.org

worldwide [1,2]. In dogs, acute kidney injury is a common disease reported in veterinary 
clinics, and effective prevention and timely treatment of this disease can prevent substantial 
kidney damage. A survey revealed that 19% of the AKI reported are induced by drug 
nephrotoxicity in humans [3]. Dialysis is crucial for the removal of toxic byproducts of drug 
metabolism. In addition, a report stated that the mortality rate of AKI is 47%–61% in dogs 
[4]. Therefore, the development of an effective method to prevent canine AKI is crucial.

Necroptosis is one of the cell death modes in AKI; it is a type of programmed cell death 
mediated by receptor interacting protein kinase (RIPK) signaling [5]. RIPK1 is a key factor 
in necroptosis initiation; it combines with tumor necrosis factor receptor (TNFR) 1, TNFR1-
associated death domain (TRADD) protein, and TNFR-associated factor (TRAF)-2 through 
the death domain to form complex I, which can induce necroptosis through the formation of 
the RIPK1/RIPK3/mixed lineage kinase domain-like necrosome in the absence of caspase-8 
(Cas8) [6,7]. In recent years, many studies have revealed that necroptosis is associated 
with inflammation. For instance, Welz et al. [8] demonstrated that RIPK3 gene deficiency 
prevented inflammation and cell death in both the small intestine and colon of mice. 
Murakami et al. [9] revealed that programmed necrosis promoted inflammation through the 
regulation of the release of intracellular damage-associated molecular patterns in mice with 
retinal degeneration. Additionally, RIPK3 can activate glutamate-ammonia ligase, thereby 
increasing glutamate decomposition, and mitochondrial glutamate catabolism leads to local 
free ammonia accumulation and increases reactive oxygen species (ROS) expression [9,10]. 
Thus, necroptosis may be associated with oxidative stress.

Hydrogen sulfide (H2S) is the third endogenous gaseous signal molecule after nitric oxide 
and carbon monoxide, which plays a crucial role in various tissues in both health and disease 
[11]. H2S was initially identified as a harmful exogenous gas with a pungent smell that can 
damage various tissues and organs of the body [12]. In 1996, Abe and Kimura [13] discovered 
that H2S can be produced by a series of enzymatic reactions in mammals; since then, the 
physiological function of H2S has been gradually identified. In general, H2S is synthesized 
from L-cysteine by three enzymes: cystathionine-β-synthase, cystathionine-β-lyase (CSE), 
and 3-mercaptopyruvate sulfurtransferase [14]. These three enzymes are widely distributed 
in the cardio-cerebrovascular system, liver, and kidney, as well as in the cells of other tissues. 
Several studies have reported that H2S plays a crucial role in inflammation. For example, 
H2S can induce neutrophil apoptosis to reduce inflammation [15]. H2S administration to 
rats with colitis downregulates the expression of proinflammation cytokine tumor necrosis 
factor-alpha (TNF-α), whereas the inhibition of H2S synthesis in healthy rats induces 
inflammation in the small intestine and colon [16]. Furthermore, Chen et al. [17] showed that 
exogenous administration of sodium hydrosulfide (NaHS) can alleviate airway inflammation. 
In addition, some recent reports have highlighted that H2S has significant antioxidant 
properties, which can upregulate the expression of key antioxidant enzymes and remove ROS 
[18,19]. King et al. [20] reported that after CSE knockout, the oxidative stress level in mice 
with myocardial infarction increased and myocardial injury aggravated, both of which were 
alleviated by exogenous H2S.

Alleviation and prevention of AKI pathogenesis are of great significance in the veterinary 
field. In this study, we developed a canine AKI model with cisplatin, examined whether H2S 
attenuates cisplatin nephrotoxicity, and explored the mechanism by which H2S protects the 
kidney from cisplatin nephrotoxicity. To our knowledge, studies on cisplatin-induced AKI 
have focused on mice, and few reports are available regarding AKI in dogs and the effect of 
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H2S on AKI. This study revealed a possibility of H2S alleviating cisplatin-induced AKI in dogs, 
which will provide more possibilities for clinically reducing the side effects of drugs.

MATERIALS AND METHODS

Preparation of animals
All procedures used in this experiment were approved by the Institutional Animal Care and 
Use Committee of Northeast Agricultural University (SRM-11). In total, 24 adult male beagles 
(8–12 kg) were divided randomly into three groups: control group (C), hydrogen sulfide 
+ cisplatin group (H+cis), and cisplatin group (cis) (n = 8 per group, six were used for the 
experiments, and the remaining two were on standby for any unexpected condition). The 
laboratory staff cleaned the kennel regularly to ensure a healthy environment; the kennel 
temperature was controlled at 18°C–26°C. All dogs had access to standard food and water 
ad libitum during the study. Dogs in the cis group were injected with 5 mg/kg body weight 
cisplatin [21], and dogs in the C group were injected with an equal volume of saline. In the 
H+cis group, dogs were injected with 50 mM NaHS solution (1 mg/kg/h) 30 min before 
cisplatin injection (5 mg/kg). Dogs were anesthetized 72 h after the cisplatin injection. 
Blood and a small part of the left kidney tissues were quickly collected. Blood samples were 
collected for blood urea nitrogen (Bun) and serum creatinine (Scr) measurement. A portion 
of the collected kidney tissue was quickly removed and fixed in 10% phosphate-buffered 
formalin for hematoxylin and eosin (H&E) staining; the remaining tissue was quickly 
removed and frozen in liquid nitrogen and then stored at −80°C.

Serum analysis
The Bun and Scr levels of the tissues were evaluated using a UniCel DxC800 Synchron 
chemistry system (Beckman, USA). The renal injury model was considered to be established 
when the Bun and Scr levels of the cis group increased by twice as much as those of the C group.

Histopathological examination
The canine left kidney tissues were rapidly fixed in 10% formaldehyde for at least 24 h and 
then embedded in paraffin for microscopic examination. From the prepared paraffin blocks, 
5-µm-thick sections were obtained and stained with H&E for light microscopic observation.

Detection of antioxidant levels
The kidney tissues were homogenized in physiological saline (1:10 w/v) with a glass Teflon 
homogenizer (Heidolph SO1 10R2RO). The homogenate was centrifuged at 700 × g for 
30 min at 4°C to obtain the supernatant to measure the activities of superoxide (SOD) and 
catalase (CAT) as well as malondialdehyde (MDA) levels by using detection kits (Nanjing 
Jiancheng Bioengineering Institute, China) according to the manufacturer’s protocols.

Detection of ATPase
The activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, and Ca2+-ATPase were determined 
by using 10% tissue homogenates with appropriate assay kits (Nanjing Jiancheng 
Bioengineering Institute) according to the manufacturer’s protocol. Inorganic phosphorus 
produced during the conversion of adenosine triphosphate to adenosine diphosphate was 
quantified using the molybdenum blue spectrophotometric method at 660 nm and expressed 
as U/mg.prot. When one type of ATPase was tested, the inhibitors of the other types of 
ATPase were added to depress the hydrolysis of phosphate radicals.
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Quantitative reverse-transcription polymerase chain reaction (qPCR) 
analysis
Total RNA from canine kidney tissues was extracted using TRIzol reagent according to the 
manufacturer’s protocol. The concentration and purity of the total RNA were determined 
spectrophotometrically at 260/280 nm (Gene Quant 1300/100; General Electric Company, 
USA). qPCR was performed on a Light Cycler 480 System (Roche, Switzerland) after reverse 
transcription by using the fast qPCR kit (RR047A; Takara, Japan). All of the primers (Table 1) 
were designed using Premier Software (PREMIER Biosoft International, USA) for qPCR. The 
relative messenger RNA (mRNA) level was calculated according to the method of 2–ΔΔCt, and 
gene-specific efficiencies were normalized to the mean mRNA expressions of glyceraldehyde 
3-phosphate dehydrogenase (GAPDH).

Immunohistochemistry staining
The kidney sections were treated with 0.01 M sodium citrate buffer (pH 6.0) by using a 
microwave-based antigen retrieval technique for 20 min at 95°C, followed by 3% H2O2 for 10 
min to block endogenous peroxidase activity. Subsequently, they were incubated with RIPK1 
(1:500; Bioss, China) and RIPK3 (1:500; Bioss) antibodies for 24 h at 4°C and secondary 
antibodies for 30 min at 37°C. After staining the slides with 3,3'-diaminobenzidine, they were 
observed under a microscope.

Western blot analysis
The protein samples were separated using 8%, 10%, and 12% sodium dodecyl sulfate–
polyacrylamide gel electrophoresis and were transferred to polyvinylidene difluoride 
membranes (Cat# ISEQ. 00010, LOT# R6PA4145H; Merck Millipore, USA). The membranes 
were blocked with 5% skim milk for 3 h at 37°C and were incubated for 14 h at 4°C with 
the following diluted primary antibodies: pyruvate kinase (PK; 1:1,000; Wanlei, China), 
uncoupling protein 1 (UCP1; 1:1,500; Wanlei), succinate dehydrogenase (SDH; 1:500; Bioss), 
pyruvate dehydrogenase complex (PDHX; 1:500; Affinity, USA), lactate dehydrogenase (LDH; 
1:1,000; Wanlei), poly ADP-ribose polymerase 1 (PARP1; 1:500; Proteintech, China), Cas8 
(1:1,000; CST, USA), nuclear factor kappa B (NF-κB; 1:500; Wanlei), interleukin-1β (IL-1β; 
1:1,000; Wanlei), and TNF-α (1:500; Wanlei). After washing thrice for 15 min each with 
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Table 1. mRNAs primer sequences
Gene Forward 5’ to 3’ Reverse 5’ to 3’
PK GACCGGCGGGCTACCTGAG GCTGCTGCTGCTGGAAGAAGG
UCP1 AGAGGCAGGTGGGCTTCGC GCTGCTCCTCCCGTCATTACAC
SDH GGCGAGTCTCTGGAGGCTGAG GGCTGGTCCTGGAGAAATGCTG
PDHX CCTGGAGGCTGGGCTGTGAC GCCGCTGCGTGCTGTGAAG
LDH CGCTGCTGGCTACAACCTCAC GCTGCCTGGACACTGGGAAAC
RIPK1 AGTGCCGGAGACCAACCTACTG GGCTGAACTCATTCCACCAACCTC
RIPK3 TGGTGTCTGGAGTGGAGAGCTATG CTGCTGTGCGGTCTGAACTGTC
PARP1 GGCTCTGATGACAGCAGCAAGG TTCCTGATGGTCTCGGCTTCCTC
Cas8 TGGCTCTGATGGGCAGGAAGC GGGCTTGCCTGCAAGGGAAG
NF-κB CCTCTCGCTGCCCCTCTCATC AGGTCTCCACGCCGCTGTC
TAK1 GCCATCATCCGCAACCTCATCC AGCAGTCCACAGCCCTCATCC
TAB2 GGAAGCAGGACTCTAACGCACAG GCCTTGAGGAACTTGAGCTGGTG
TAB3 GTTGTGGCTGCTACTCCGAACTAC ATGGTTGTTGAGGTGGCTGTGAAG
IL-1β TGTGAAGTGCTGCTGCCAAGAC ACAGAGCTGGTGGGAGACTTGC
TNF-α GGCGTGGAGCTGACAGACAAC GACGGCGAAGCGGCTGATG
GAPDH CAAGGCTGTGGGCAAGGTCATC TTCTCCAGGCGGCAGGTCAG
mRNA, messenger RNA; PK, pyruvate kinase; UCP, uncoupling protein; SDH, succinate dehydrogenase; PDHX, pyruvate dehydrogenase complex; LDH, lactate 
dehydrogenase; RIPK, receptor interacting protein kinase; PARP, poly ADP-ribose polymerase; Cas8, caspase-8; NF-κB, nuclear factor kappa B; TAK, transforming 
growth factor-β activated kinase; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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phosphate-buffered saline with Tween 20, the membranes were incubated for 2 h at 37°C 
with peroxidase-conjugated secondary antibodies against rabbit IgG (Cat# sc-2357, RRID: 
AB_628497; Santa Cruz Biotechnology, Argentina). After washing three times by PBST for 15 
min each again, the bound antibodies were visualized through chemiluminescence by using 
the ECL-plus reagent (GE Healthcare, UK). The GAPDH content was analyzed as the loading 
control by using a rabbit polyclonal antibody.

Statistical analysis
Statistical analyses of all data were performed using GraphPad Prism (version 8.0; GraphPad 
Software Inc., USA). Significant values (p < 0.05) were obtained through a one-way analysis of 
variance. All data displayed normal distribution and passed the test for equal variance. The data 
are expressed as the mean ±SD, and the differences were considered to be significant if p < 0.05.

RESULTS

H2S attenuates cisplatin-induced renal injury in dogs
As shown in Supplementary Fig. 1, after injection of NaHS solution, the levels of Bun and 
Scr in dogs were not significantly different from those in the control group, indicating that 
injection of NaHS solution had no effect on the kidneys of dogs. Besides, the content of 
Bun and Scr increased significantly after cisplatin treatment (p < 0.01), whereas H2S had the 
opposite effect (Fig. 1A and B) In addition, we observed canine kidney tissues stained with 
H&E in the C, H+cis, and cis groups. Histopathological changes in renal tissues are presented 
in Fig. 1C. The kidney tissues in the C group displayed normal morphologies. However, some 
features indicating renal pathological damage were observed in the cis group; after cisplatin 
administration, the canine kidney tissue showed degeneration of renal tubular epithelial 
cells (blue arrow) and amyloidosis (yellow arrow). In addition, numerous inflammatory cells 
infiltrated the kidney tissue (red arrow). As expected, in the H+cis group, renal pathological 
damage was relieved, but some changes remained compared with the C group, including a 
small amount of inflammatory cell infiltration (red arrow).

Antioxidant capacity in canine kidney tissues
The results of antioxidant activity of canine kidney tissues were as follows. Compared with 
the C group, the activities of SOD and CAT in the cis group significantly decreased (p < 0.01); 
however, after the addition of H2S, the aforementioned antioxidant enzyme activities were 
restored (Fig. 2A and B). In addition, no significant difference was observed between the C 
and H+cis groups in terms of MDA levels (p > 0.05), whereas MDA levels were upregulated in 
the cis group compared with the C and H+cis groups (p < 0.01; Fig. 2C).

ATPase activities in canine kidney tissues
All ATPase activities weakened significantly after cisplatin treatment (p < 0.01; Fig. 3). 
Notably, the Ca2+-ATPase activity in the cis group decreased the most by approximately 31.5% 
(Fig. 3C). Furthermore, compared with the cis group, the activities of Ca2+-Mg2+-ATPase and 
Ca2+-ATPase increased significantly (p < 0.05; Fig. 3B and C), and Na+-K+-ATPase activity 
increased nonsignificantly (p > 0.05) (Fig. 3A) in the H+cis group.

Expression levels of energy metabolism–related genes in canine kidney
The expression levels of PK, UCP1, SDH, PDHX, and LDH markedly decreased (p < 0.01) after 
cisplatin treatment (Fig. 4). Moreover, the expression of all energy metabolism–related genes in 
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the H+cis group increased significantly compared with that in the cis group (p < 0.01; Fig. 4A-F). 
Among them, the relative expression of PK and the protein expression of LDH in the H+cis group 
was slightly higher than that in the C group (Fig. 4A and C).

Relative expressions of necroptosis-related genes in canine kidney tissues
The effect of cisplatin on the relative expression of necroptosis-related genes and the role of 
H2S in canine kidney tissues are shown in Fig. 5. Cisplatin treatment significantly increased 
the mRNA and protein levels of necrosis genes, including RIPK1 and RIPK3, whereas 
H2S pretreatment markedly reduced the levels of RIPK1 and RIPK3 (p < 0.01) (Fig. 5A-D). 
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Moreover, the mRNA and protein expression of PARP1 in the cis group was significantly 
higher than that in the C and H+cis groups (p < 0.01; Fig. 5E and G). Compared with the 
C and H+cis groups, the mRNA and protein expressions of Cas8 in the cis group were 
significantly decreased (p < 0.01; Fig. 5F and G). Furthermore, the mRNA expressions of 
transforming growth factor-β activated kinase (TAK) 1, TAK1-binding protein (TAB) 2, and 
TAB3 in the cis group were enhanced significantly compared with those in the C group (p < 
0.01), whereas after H2S treatment, their mRNA expression levels decreased significantly (p < 
0.01; Fig. 5H-J).

Level of inflammatory response in canine kidney tissues
Compared with the C group, the mRNA and protein expressions of NF-κB, IL-1β, and 
TNF-α in the cis group increased significantly (p < 0.01; Fig. 6). Among them, NF-κB 
mRNA expression increased the most in the cis group, which was approximately 2.5 times 
higher than that in the C group (Fig. 6A). After H2S pretreatment, the mRNA and protein 
expressions of NF-κB, IL-1β, and TNF-α decreased. As expected, compared with the cis 
group, the protein expression of TNF-α in the H+cis group decreased the least, and no 
significant difference was observed between the two groups (p > 0.05; Fig. 6C).

DISCUSSION

AKI is the acute decline of renal function in a short time due to various reasons. Dialysis 
and kidney transplantation are effective AKI treatments, but they are difficult to apply in 
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veterinary clinics because of their high cost. Therefore, effective methods for AKI prevention 
are of great significance in the field of veterinary medicine. In the present study, we 
demonstrated that H2S protected against cisplatin-induced canine kidney injury through the 
inhibition of necroptosis, inflammation, and oxidative stress. Moreover, our study confirmed 
that cisplatin reduces energy metabolism in canine kidney tissues, whereas H2S improves this 
situation (Fig. 7).

Necroptosis is a type of programmed necrosis which is of central pathophysiological relevance 
in various diseases such as myocardial infarction [22], atherosclerosis [23], and ischemia-
reperfusion injury [24]. TNFR regulation is the classic pathway of necroptosis, during which 
two complexes are formed. Complex I is mainly composed of TRADD, RIPK1, TRAF2, and 
TRAF5. If RIPK1 is ubiquitinated, it binds to TAK1, TAB2, and TAB3 and further activates NF-
κB to inhibit cell death [25]. Conversely, if RIPK1 is deubiquitinated, it forms complex II with 
RIPK3, TRADD, and Cas8, which can initiate necroptosis under conditions of Cas8 inactivation 
[26]. Studies have shown that necroptosis is involved in various pathological conditions of the 
kidney. Newton et al. [27] demonstrated that RIPK3 deficiency can improve kidney ischemia-
reperfusion injury in mice. Xu et al. [28] revealed that knocking out mice necroptosis key genes 
RIPK1 and RIPK3 can attenuate the damage caused by cisplatin to the kidney, which indicates 
that necroptosis is one of the main mechanisms of cisplatin-induced AKI. Therefore, inhibiting 
the expression of key necrosis factors (such as RIPK1 and RIPK3) may alleviate cisplatin 
nephrotoxicity. In this regard, we evaluated the renoprotective effect of H2S and found that it 
can weaken the expression of RIPK1, RIPK3, and PARP1, and simultaneously, it can enhance 
Cas8 activity. Thus, H2S can relieve cisplatin-induced necroptosis of the canine kidney.
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AKI often manifests as an inflammation of the kidney tissue [29]. TNF-α is a pro-inflammatory 
factor mainly produced by macrophages, which can induce substances such as IL and interferon 
to cause inflammation [30]. Moreover, TNF-α can activate the NF-κB pathway, thereby inducing 
the production and release of pro-inflammatory factors IL-1 and IL-6. Gong et al. [31] 
demonstrated that the protein expressions of TNF-α and IL-6 in rat kidneys were significantly 
upregulated on the third day after cisplatin injection into rats. Furthermore, studies have 
demonstrated that necroptosis plays a crucial role in inflammation and is involved in multiple 
inflammatory diseases. Vince et al. [32] illustrated that the activation of RIPK3 can generate 
bioactive IL-1β, which is a potent inflammatory cytokine. Welz et al. [8] suggested that the 
inhibition of RIPK3-induced necrosis can prevent the inflammation of intestinal epithelial 
cells in mice. Moreover, several studies have indicated that necroptosis induced by RIPK3 
promotes the production of some cytokines and inflammatory factors, thereby inducing 
inflammation [33,34]. Studies have demonstrated that RIPK1 triggered a second wave of 
cell death in AKI, whereas RIPK1 potentially regulated inflammation in a way unrelated to 
cell death [35,36]. In the present study, optical microscopy observation revealed that H2S 
alleviates the pathological damage to the canine kidney caused by cisplatin. Further detection 
at the molecular level showed that H2S reduced the expression of pro-inflammatory factors 
(including IL-1β, NF-κB, and TNF-α).

Studies have indicated that cisplatin can cause renal oxidative stress and induce damage 
kidney; in detail, the content of MDA increased, and the activity of glutathione (GSH) 
decreased [37]. Furthermore, Waly et al. [38] showed that cisplatin induced oxidative stress in 
human kidney (HEK 293) cells through the reduction of the activities of SOD, GSH, and CAT. 
Additionally, Zhang et al. [39] demonstrated that RIPK3 mediates oxidative stress, which 
can induce necroptotic cell death and inflammation. In this setting, extenuating oxidative 
stress-induced necroptosis through H2S seems to be effective against renal inflammation. 
In this study, we found that H2S restored the activity of antioxidant enzymes (including SOD 
and CAT) and decreased the total content of MDA, which suggested that H2S could increase 
antioxidant capacity in cisplatin-induced canine AKI.

Additionally, many other crucial factors transmit and execute necrotic signals. A recent 
study indicated that glycolytic pyruvate played a novel anti-necroptotic role in ischemic 
stress of mice gut [40]. Another report revealed that ATPase activities were inhibited, 
and several energy metabolism–related gene expressions decreased during necroptosis 
[41], which suggested that energy metabolism is related to necroptosis. Furthermore, 
Yang et al. [42] observed an imbalance of energy metabolism in canine kidney tissues in a 
lipopolysaccharide-induced canine septic AKI. Here, we detected the expression of energy 
metabolism–related genes (including PK, SDH, UCP1, PDHX, and LDH) and the activities 
of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, and Ca2+-ATPase. Our results showed that cisplatin 
reduced the level of canine kidney energy metabolism, and H2S can mitigate this condition.

In summary, we successfully established a cisplatin-induced kidney injury model in dogs and 
demonstrated that H2S has a powerful protective effect on cisplatin-induced AKI through the 
enhancement of the antioxidant capacity and energy metabolism level, as well as the reduction 
of cell necroptosis and inflammation. These findings provide new and valuable clues for the 
treatment of canine AKI and are of great significance for AKI prevention in veterinary clinics. 
Simultaneously, our study enriched the understanding of the H2S effect on necroptosis and 
inflammation, which may provide new insights into the physiological role of H2S.
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SUPPLEMENTARY MATERIAL

Supplementary Fig. 1
Scr and Bun levels in dogs. In the pre-test, 12 adult healthy beagles were randomly divided 
into four groups: C group, H group, H+cis group and cis group. Blood samples were taken 
72 h after cisplatin injection to test the levels of Scr and Bun. Results showed that there 
was no significant difference in Scr and Bun between H group and corresponding C group, 
indicating that the injection of NaHS solution had no effect on canine kidney. Therefore, in 
order to respect and protect the experimental animals, the hydrogen sulfide group was not 
set in our formal experiment.

Click here to view
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