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Investigations into angiogenesis in retinal diseases 
are often hindered by manual analysis pipelines that risk 
inconsistent results [1]. Typical in vivo experiments studying 
vasoproliferative eye diseases, such as the mouse model 
of oxygen-induced retinopathy, require manual labeling 
of neovascularization [2]. This process can introduce bias. 
Furthermore, in vitro assays commonly used to examine 
angiogenesis, such as migration assays that require manual 
tracking of cell movement or sprouting assays that involve 
manually marking endothelial cell sprouts [3], face similar 
issues of potential biased analysis. Concerns about the 
reproducibility of results have been raised in the scientific 
community, leading to the concept of a “reproducibility 
crisis” [4]. According to an anonymous survey, more than 
40% of researchers view poor data analysis, which can intro-
duce unconscious bias, as an important contributing factor 
to irreproducibility [4]. Improved data analysis techniques 
that minimize bias have been identified as a major tool for 
enhancing reproducibility [5].

The spheroid sprouting assay is a widely used in vitro 
assay for investigating angiogenesis [6], but its manual 
analysis pipeline makes it prone to error. Currently, images of 
sprouts extending from cell spheroids in a collagen matrix are 
manually segmented using generic software, such as ImageJ 
[7,8]. For quantification, the median cumulative sprouting 
length per spheroid (CSLPS) is typically calculated manually. 
Validated software for automated segmentation and analysis 
is not commonly available. Although the analysis of medical 
images based on artificial intelligence (AI) has been applied 
in many areas, especially for clinical images [9-11], automated 
analysis of sprouting assays using the U-Net convolutional 
artificial neural network has only recently been reported 
[12,13]. Released in 2015, U-Net is a widely used network for 
image segmentation, especially phase contrast images [14,15]. 
However, to our knowledge, an automated analysis pipeline 
for sprouting assays is not publicly available. Moreover, 
generalizing such approaches across laboratories or experi-
ments is challenging due to variations in cell morphology, 
imaging equipment, image processing, and protocols among 
laboratories [16,17]. Adapting an approach to individual labo-
ratories would require training and calibration to achieve the 
needed quality, which is time-consuming and necessitates 
significant expertise. Scientists still rely primarily on manual 
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analysis of sprouting assays due to the challenges of proper 
automated segmentation. Masking sprout segmentation is 
difficult when the intervention is strong and is therefore 
directly evident from single images, for example, following 
vascular endothelial growth factor (VEGF) treatment [18,19]. 
Curved, faint, or bifurcating sprouts and numerous short 
sprouts also complicate analysis and introduce ambiguities 
[6,12,20]. Even experienced scientists may have difficulty 
ensuring consistent quantification [21,22].

We propose an automated method to improve the objec-
tivity of manual segmentation in the spheroid sprouting assay, 
which can analyze whether studies report false-positive 
data based on systematic bias. This method could be used 
by auditors, supervisors, or journal editors to differentiate 
false positives from true positives with minimal effort. To 
achieve this, we propose training a disposable U-Net model 
on manual segmentations and using the U-Net output instead 
of the original manual segmentations. We hypothesize that 
U-Net will remove any systematic bias, provided that bias 
is present in less than every second image and that the bias 
is more or less subtle. From U-Net’s perspective, any bias 
appears as random noise, as the network is unaware of group 
assignments during training. We believe that this circular 
U-Net segmentation will be of sufficient quality, even when 
the neural network is trained on partially erroneous segmen-
tations. We evaluated this using actual sprouting data and two 
types of synthetic adversarial bias in a simulation.

METHODS

Image acquisition and processing: We obtained a training 
data set containing 1531 phase contrast images of spheroid 
sprouting assays, as well as manual segmentations. Images 
were acquired using a standard protocol [7,8,18].

Brief ly, 200,000 human umbilical vein endothelial 
cells (HUVECs, Cat#: CC-2519, Lonza, Basel, Switzerland) 
of the sixth passage cultivated in endothelial cell growth 
medium (EGM, Cat#: CC-3124, Lonza) were suspended 
in 10 ml EGM containing 0.25% carboxy-methylcellulose 
(Methylcellulose, Cat#: M0512, Sigma-Aldrich, St. Louis, 
MO). Spheroids were formed in hanging drops of a volume 
of 25 µl incubated overnight and seeded on the following day 
in 0.5 ml of a three-dimensional collagen matrix consisting 
of 44.4% collagen (Collagen 1, Rat Tail, Cat#: 354,236, 
Corning, Corning, NY), 43.9% endothelial cell growth basal 
medium (EBM, Cat#: CC-3121, Lonza), 2.25% fetal bovine 
serum (FBS, Cat#: S0615, Lot#: 0453Z, Biochrome, Berlin, 
Germany), and 0.55% carboxy-methylcellulose in 24-well 
plates. The collagen was titrated to a physiologic pH by using 

NaOH (sodium hydroxide, Cat#: P031.2, Roth, Karlsruhe, 
Germany) and buffered at the final pH by using 1 µl of a 
1M HEPES buffer (HEPES Buffer, Cat#: P05-P01100, PAN 
Biotech, Aidenbach, Germany). After the gel was solidified 
for 30 min at 37 °C and in 5% CO2, it was layered with cyto-
kines suspended in 0.1 ml EBM. Images of spheroids were 
taken the next day using an inverse microscope (Zeiss Axio 
Vert. A1, Oberkochen, Germany) and ProgPres CapturePro 
2.10.0.1 imaging software (Jenoptik Optical Systems, Jena, 
Germany). All spheroids in each well were photographed. 
Sprout length was manually measured in all images by the 
same investigator with ImageJ Fiji and its measuring tool. 
Consistent guidelines were implemented. The median CSLPS 
was calculated by summing the lengths of all the sprouts of 
each spheroid and taking the mean across the spheroids for 
each condition. A higher CSLPS indicates greater angiogenic 
potential.

ImageMagick software was used to extract labels of the 
manually annotated spheroid sprouts using a global threshold. 
The binary labels were skeletonized to enable pixel-based 
quantification. This was performed with the thinning 
operator Skeleton:3 structuring element and five iterations 
(Figure 1A).

Creation of biased segmentation: All phase contrast images 
from the spheroids were randomly assigned to either group 
1 (the control group; n = 766) or group 2 (the intervention 
group; n = 765; Figure 1A). To test our hypothesis that U-Net 
can remove adversarial bias, we generated systematic bias 
between the images of group 1 and group 2, as a biased exper-
imenter might do. In adversarial approach 1, the segmentation 
of group 2 was altered by removing one randomly selected 
sprout, resulting in a systematically biased set of images. 
This was achieved with R using the bwlabel function of the 
EBImage package (https://bioconductor.org/packages/release/
bioc/html/EBImage.html). To check for robustness against 
other kinds of bias, we also generated adversarial approach 
2, in which we shortened each sprout segmentation by several 
pixels, but again exclusively in group 2. This was achieved 
via the morphologic operators of ImageMagick. We used 
a thinning operator in conjunction with a LineEnds hit-or-
miss structuring element. In both approaches, we refer to the 
biased group as group 2b (n = 765; Figure 1A). The group 2b 
segmentation consequently comprises fewer pixels compared 
to group 2, mimicking subtle bias.

Training of U-Net: We used unmodified U-Net for all experi-
ments. Training comprised 500 epochs, with 200 iterations 
in each epoch. We used adversarially modified segmenta-
tions for training (Figure 1A). We trained both adversarial 
scenarios separately.
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Figure 1. Visualization of the methods for evaluating U-Net’s ability to remove systematic bias in a data set. A: A pipeline to train a U-Net 
model on a partially biased data set. Images were randomly assigned to group 1 or group 2. Systematic bias was induced in group 2 by 
removing one random sprout in every other image, resulting in group 2b. The U-Net model was trained on images from group 1 and group 
2b and then used to reanalyze the same images. B: The approach to assess U-Net’s ability to mitigate an adversarial bias. Images from 
group 1 and group 2b were compared to determine if there were statistically significant differences, indicating sufficient bias. The U-Net 
model was then trained on these images and used to reanalyze them. The results from the two groups were again compared to determine 
if there were statistically significant differences. C: The method for testing U-Net’s ability to detect a true positive effect. Fictitious control 
and intervention groups were generated based on an unbiased, manually annotated ground truth data set. They had a statistically significant 
true positive difference. A biased data set was then generated, and the U-Net model was trained on the data set. The U-Net model was then 
used to reanalyze the same images to determine if it could also detect a statistically significant true positive difference despite being trained 
on the biased data set.
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Inference from U-Net to calculate the CSLPS: The U-Net 
readouts were thresholded and skeletonized using image 
morphology operators from ImageMagick to enable compari-
sons with ground truth segmentation, as described above. 
The CSLPS was calculated by counting all white pixels. The 
CSLPS was compared between the groups to assess how far 
the adversarial bias was mitigated (Figure 1B).

Sensitivity of U-Net: The sensitivity of the U-Net model 
to detect differences in the CSLPS from interventions was 
evaluated by simulating several fictitious experiments. For 
this purpose, we sampled 200 images each from the total 
data set based on the ground truth segmentation (Figure 1C). 
These groups reflect fictitious controlled experiments with 
significant responses to spheroid sprouting. We sampled three 
control and intervention data sets, each with different effect 
sizes (Table 1). The first group comprised a strong interven-
tion, with the threshold set to >200 pixels for the CSLPS for 
the control group, and the threshold set to <400 pixels for the 
CSLPS for the intervention group (Figure 1C). The second 
group comprised a medium response, with a threshold of >100 
pixels for the CSLPS for the control group and a threshold 
of <500 pixels for the CSLPS for the intervention group. 
The third group comprised a weak experimental response, 
with a threshold of >50 pixels for the CSLPS for the control 
group and a threshold of <600 pixels for the CSLPS for the 
intervention group. We deliberately allowed overlap between 
the groups, as this is a key characteristic of sprouting experi-
ments with the endpoint CSLPS. The sampling constraints are 
summarized in Table 1. We applied this approach to evaluate 
the sensitivity of the U-Net models that had been trained on 
labels with two different kinds of bias.

Statistical analysis: A total of 1531 images were included in 
the data and assigned to group 1 (n = 766) or group 2 (n = 
765). Bars represent the mean, and error bars visualize the 
standard error of the mean. Unless stated otherwise, a Welch 
two-sample t test was used to evaluate the statistical signifi-
cance. The alpha level was set at 0.05.

RESULTS

We first implemented an adversarial approach, in which one 
sprout was eliminated from every second image to systemati-
cally introduce bias (adversarial approach 1). This resulted in a 
statistically significant 15.5% decrease in the CSLPS between 
the group 1 and group 2b images (a difference of 47 pixels, 
p<0.05, Figure 2A). This result demonstrated that we success-
fully introduced bias, which resulted in false-positive results. 
We then trained a U-Net model on the biased segmentations 
and used it to reanalyze the group 1 and group 2 images. The 
U-Net model substantially mitigated the bias, eliminating the 
statistically significant difference in the CSLPS (difference of 
12 pixels, p = 0.12, Figure 2A), demonstrating that U-Net was 
able to recover the adversarially deleted sprouts. Similarly, 
shortening all sprouts in every second image during adver-
sarial approach 2 resulted in a 41% decrease in the CSLPS 
that was statistically significant (difference of 114 pixels, 
p<0.05, Figure 2B), again demonstrating a high potential for 
false-positive results due to bias. Again, U-Net successfully 
mitigated this bias, eliminating the statistical significance 
(difference of 13 pixels, p = 0.0539, Figure 2B). These results 
show that U-Net can generalize across different types of bias 
as long as the bias is present in every second image of the 
training data. This approach uncovered the adversarial bias in 
both approaches and performed well in recovering the manip-
ulated labels. Nevertheless, it must be shown that U-Net also 
provides sufficiently good results, despite partially erroneous 
training data. This requires a sensitivity analysis.

Sensitivity of U-Net to detect true treatment effects: To 
evaluate the sensitivity of the U-Net models trained on 
biased data sets in detecting true treatment effects, we simu-
lated data sets with varying magnitudes of true differences 
between the control and intervention groups. Specifically, 
we generated groups of 200 random images based on ground 
truth segmentation, which had known differences in their 
CSLPSs. The thresholds for the groups are summarized in 
Table 1. We then used the U-Net model trained on the biased 
data sets to determine whether it could detect differences 
between the control and intervention groups, thus detecting 
true treatment effects.

Table 1. Thresholds for subpopulations.

Strength of intervention “Control” CSLPS [pixel] “Intervention“ CSLPS [pixel]
strong intervention (loose threshold) <400 >200
medium intervention (medium threshold) <500 >100
weak intervention (strict threshold) <600 >50
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We first evaluated the U-Net model trained on a biased 
data set, in which one random sprout was removed from every 
second image (adversarial approach 1). We simulated a large 
effect, resulting in a 199.4 pixel difference in the CSLPS 
between the control and intervention groups, which was 
statistically significant (p<0.05, Figure 3A). The U-Net model 
detected a similar large effect, yielding a 153.5 pixel differ-
ence (p<0.05, Figure 3A). For the moderate and small effect 
simulations, the U-Net model generated differences of 64.1 
and 36.6 pixels, respectively (both p<0.05), comparable to 
the 83.8 and 52.8 pixel differences in the ground truth (both 
p<0.05, Figure 3A).

Similarly, the U-Net model trained on a biased data set, 
in which all sprouts were shortened in every second image 
(adversarial approach 2), detected the simulated interventions. 
For the strong intervention, U-Net reported a 125.1 pixel 
difference (p<0.05, Figure 3B), comparable to the 195.5 pixel 
difference in the ground truth (p<0.05). For the moderate and 
weak interventions, U-Net reported 51.1 and 35.8 pixel differ-
ences (both p<0.05), comparable to the 66.2 and 44.4 pixel 
differences in the ground truth.

These results suggest that although U-Net can mitigate 
bias, the neural network remains sensitive enough to detect 
true treatment effects despite not being trained on perfect 
ground truth labels. However, the U-Net model generally 
reported a lower CSLPS when compared to the ground truth. 
Nevertheless, the relative differences between the control 
and intervention groups were comparable between the U-Net 

model and ground truth, as summarized in Table 2. In total, 
the U-Net model trained on the segmentation from adversarial 
scenario 1 was able to detect an intervention with a relative 
difference of 16.1% between the control and intervention 
groups, which had approximately the same strength as the 
induced bias (15.5%, Figure 2A). Similarly, the U-Net model 
in adversarial scenario 2 yielded similar results by detecting 
a difference of 14.3%, while the strength of the bias was 41% 
(Figure 2B).

DISCUSSION

This method substantially mitigated two kinds of simulated 
systematic biases, resembling those of inexperienced or 
fraudulent investigators, to a large extent. At the same time, 
the method proved sensitive enough to detect real experi-
mental responses robustly based on the CSLPS. Notably, no 
explicit manual input is required. Therefore, the proposed 
approach can be used in any laboratory without substantial 
up-front labor costs.

To our knowledge, this is the first time U-Net has been 
used solely to recreate the segmentation it was trained on 
to remove bias. The U-Net models were obviously unable 
to learn the artificial biases, most likely because they were 
present in only every second image. We assume that the few 
erroneous parts of the segmentation, present in only every 
second image, were overruled by most of the correct pixels. 
This aligns with the observation that U-Net can handle 
random noise in a training data set to some degree [23-25]. 

Figure 2. U-Net is able to mitigate adversarial bias. A: Evaluation of the statistical significance of the induced bias from removing one 
randomly selected sprout in all images of group 2, resulting in biased group 2b (adversarial approach 1) compared to the U-Net readout 
trained on this biased data set. B: Assessment of the difference between group 1 and group 2b after adversarial bias was induced by removing 
two pixels from every sprout of group 2, resulting in group 2b (adversarial approach 2). These results were compared to the readout from 
the U-Net model trained on this systematically biased data set.
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Figure 3. The U-Net model trained on biased data is sensitive enough to quantify the strength of interventions. A: Analysis of U-Net’s ability 
to detect true positive differences in controlled sprouting experiments with different strengths of intervention. The U-Net model was trained 
on the biased segmentation generated by removing one random sprout in group 2 (adversarial approach 1). The data comprised 200 samples 
from the data set selected based on the ground truth cumulative sprouting length per spheroid (CSLPS; manually annotated data set). The 
U-Net readout for the same images is shown (the U-Net annotated data set). B: Evaluation of the sensitivity of the U-Net model trained on 
biased segmentation generated by removing two pixels from every sprout in group 2 (adversarial approach 2). Three different strengths of 
the intervention were simulated by selecting 200 random images for the control and intervention groups based on the ground truth CSLPS 
(the manually annotated data set). The U-Net readout for the same images was then compared (the U-Net annotated data set).
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Interestingly, the present U-Net models were trained with 
imperfect sprout segmentations due to the technical limita-
tions of the manual analysis pipeline. The original ground 
truth segmentations were based on straight lines pointing 
from the sprout base to the sprout tip, even if the sprouts were 
curved to some degree. The U-Net readout, however, always 
followed the actual sprout contours (Figure 4). This empha-
sizes the robustness of U-Net against imperfect training 
segmentations. However, U-Net-based CSLPS cannot be 
used as a direct replacement for the original CSLPS because 
of this and cannot be used as a fully compatible decrease in 
replacement. Instead, the proposed method should be applied 
to assess differences between the control and intervention 
groups from the data set on which the model is trained, that 
is, to check whether the reported finding is truly positive 
or caused by biased labels. When this check is passed, the 

interpretation can be performed based on the original manual 
segmentations.

The idea of using U-Net solely to recreate training 
segmentation makes this method applicable to more angio-
genesis assay analysis pipelines, as it can work on any 
modality that yields images suitable for U-Net segmentation. 
The only requirements are that segmentation has already been 
performed, that the control-to-intervention ratio is close to 
1:1, and that sufficient images are available for training. The 
simulated experiments indicated that the proposed approach 
can reveal and even sufficiently mitigate biases of up to 
41% favoring the intervention group in a 1:1 experimental-
to-control setting. However, this may not apply in settings 
with lower control-to-intervention ratios. It also remains 
unclear whether stronger biases can be sufficiently mitigated 
using this method. However, we believe bias can be strongly 

Table 2. The performance by the U-Net to detect real intervention.

Strength of 
intervention

Data set where bias was induced by removing on 
sprout in “group 2”

Data set where bias was induced by removing 2 pixels 
per sprout in “group 2”

Ground truth 
segmentation U-Net segmentation Ground truth 

segmentation
U-Net 
segmentation

absolute ∆ 
[pixels]

relative ∆ absolute ∆ 
[pixels]

relative ∆ absolute ∆ 
[pixels]

relative ∆ absolute ∆ 
[pixels]

relative ∆

strong 
intervention 199.4 49% 153.5 43.3% 195,5 48.8% 125.1 41.3%

medium 
intervention 83.8 24.8% 64.1 21.4% 66.2 20% 51.1 19.6%

weak 
intervention 52.8 16.1% 36.6 12.9% 44.4 14.3% 35.8 14.7%

Figure 4. The U-Net model canonically segments bending sprouts, although it was trained on linear segmentation. The examples demonstrate 
U-Net’s ability to detect bending sprouts and correct for systematic bias by using only straight lines in the manual analysis.
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suspected when the difference in treatment response between 
the original CSLPS and the U-Net-based CSLPS is large.

Deep learning frameworks for scientific image segmen-
tation have proliferated lately. However, almost all new archi-
tectures are derivatives of the original U-Net neural network 
tailored for specific tasks. In this study, therefore, we used the 
original U-Net neural network because of its generality and 
proven effectiveness, especially with phase contrast images 
[14,15]. In this context, AURA-Net seems to be a promising 
alternative because it is based on a pretrained encoder in 
combination with an Attention-U-Net decoder [26]. Due to 
extensive pretraining, AURA-Net could especially help to 
work around the most relevant limitation of the proposed 
method, that is, the availability of enough labeled images to 
train a U-Net model. This was not a problem in our proof-of-
concept study, as we used images pooled from several real 
experiments in our laboratory. When small experiments do 
not yield sufficient training data to properly train a neural 
network, the recently published segment-anything model 
from Facebook research may be a novel option to objectivize 
manual readouts using few shot learning.

In summary, the proposed approach has the potential 
to automatically detect and correct for bias from manual 
segmentation in the analysis of spheroid sprouting experi-
ments. This approach could be applied in other fields of 
research with manual analyses. The proposed approach can 
increase users’ confidence that positive findings are not based 
on bias or even fraud. The method may be useful for auditors, 
supervisors, coauthors, and journal editors.
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