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Abstract: In control and monitoring of manufacturing processes, it is key to understand model
uncertainty in order to achieve the required levels of consistency, quality, and economy, among
others. In aerospace applications, models need to be very precise and able to describe the entire
dynamics of an aircraft. In addition, the complexity of modern real systems has turned deterministic
models impractical, since they cannot adequately represent the behavior of disturbances in sensors
and actuators, and tool and machine wear, to name a few. Thus, it is necessary to deal with model
uncertainties in the dynamics of the plant by incorporating a stochastic behavior. These uncertainties
could also affect the effectiveness of fault diagnosis methodologies used to increment the safety and
reliability in real-world systems. Determining suitable dynamic system models of real processes
is essential to obtain effective process control strategies and accurate fault detection and diagnosis
methodologies that deliver good performance. In this paper, a maximum likelihood estimation
algorithm for the uncertainty modeling in linear dynamic systems is developed utilizing a stochastic
embedding approach. In this approach, system uncertainties are accounted for as a stochastic error
term in a transfer function. In this paper, we model the error-model probability density function
as a finite Gaussian mixture model. For the estimation of the nominal model and the probability
density function of the parameters of the error-model, we develop an iterative algorithm based on
the Expectation-Maximization algorithm using the data from independent experiments. The benefits
of our proposal are illustrated via numerical simulations.

Keywords: expectation-maximization; gaussian mixture model; maximum likelihood; stochastic
embedding; uncertainty modeling

1. Introduction

System identification is a scientific discipline that studies techniques for modeling
and estimating dynamic systems from experimental data, i.e., a number of experiments are
performed on the system, and a model is then fitted to the measured data by estimating
the corresponding system model parameters [1,2]. Most system identification techniques
available in the literature assume that the system model that will be fitted lies in the model
set [3]. However, real processes have an arbitrary complexity and using a complex model
structure can lead to large variance estimation errors [4]. Moreover, the experimental data
is typically obtained with the presence of sensors errors and measurement noise, modeling
errors, and external disturbances that can impact on the system model accuracy; see,
e.g., Reference [5]. This scenario has been considered for sensor or actuator failure diagnosis
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and isolation in systems with structural uncertainties and noisy measurements, utilizing
residual analysis and Bayesian frameworks to develop failure detection procedures [6–9].

In Figure 1, a typical representation of a real process and measured experimental
data is shown, where ut is the input measurements, yt denotes the output measurements,
and ωt denotes a measurement noise. The real process (true system) is represented by
the interaction of three components: (i) an actuator, (ii) a plant, and (iii) a sensor. This
representation has been used to develop system identification methodologies for flight
vehicle development in order to obtain accurate models and to validate mathematical
models of the flight vehicle [10]. These system models are required, for example, to perform
fault-diagnosis and adaptive control, to analyze handling qualities specification compliance,
to develop high-fidelity aerodynamic databases for flight simulators, among others [11].
However, the quality of these results can be affected by the uncertainties incorporated by
the (unknown) dynamics that are not modeled, the instrumentation, model simplifications,
and measurement noise and sensor errors [12].

On the other hand, in Reference [13], the modeling and parameter identification in
structural health monitoring was addressed. The authors considered that the multi-sensor
data in a structural health monitoring can provide incomplete information due to multi-
sensor faults or errors and then quantified its corresponding uncertainty with a Bayesian
framework. Similarly, in Reference [14], a sensor-orientated approach for space situational
awareness and traffic management uncertainty quantification was presented, analyzing the
implications of the sensor uncertainties in the performance of this systems. A mathematical
formulation based on the least square method was developed, providing a methodology
to represent the navigation and tracking errors as an uncertainty volume that accurately
depicts the size and orientation in space situational awareness evolution.
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Figure 1. Representation of a real dynamic system with data measurements for system identification.

For these reasons, a suitable formulation of a model that incorporates uncertainties
is an important aspect to consider in system identification methods, in order to obtain
system models that represent as closely as possible the real process behavior [1,2,10]. Be-
cause of its valuable statistical properties [1–3], many identification algorithms involve
the maximum likelihood (ML) principle with particular system models, such as dynamic
systems [15–17], static systems [18], systems with quantized output data [19–22], and com-
munications [23,24], to mention a few. In particular, the ML estimators are asymptotically
unbiased. That is, when the number of measurements is not too large, the estimates can
be far from the true value. This bias is typically accounted for by the measurement noise
variance. However, there are scenarios in which the number of sampled-data is, in theory,
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large enough, and the estimates considerably change from one experiment to another,
i.e., there is an uncertainty in the system model that cannot be accounted for by the noise
measurements and a large variance.

To illustrate the stochastic embedding approach, the magnitude of the frequency
response of a linear dynamic system (assumed to be the true system) is shown in Figure 2,
where G[r](q−1) is given by

G[r](q−1) = Go(q−1) + Go(q−1)G[r]
∆ (q−1), (1)

where q−1 denotes the backward shift operator (q−1xt = xt−1), r denotes a realization of
the true system, Go(q−1) is a fixed nominal model, and G[r]

∆ (q−1) denotes the rth realization
of a relative error-model for the true system. The red-shaded region represents the area in
which possible true systems, G[r](q−1), i.e, realizations of the true system (represented by
black dotted lines), can lie. The error-model can introduce model parameter uncertainties
at low frequency range and model structure uncertainties at high frequency range [10].
This system model behavior can be encountered, for instance, in an aeroservoelastic system
model (see, e.g., References [5,25]). Aeroservoelastic systems include dynamic coupling
due to structural, control, sensor and actuator dynamics that cover both the low frequency
and high frequency range. This means that, in an ML framework, the estimates can change
considerable from one experiment to another, even if the number of measurements used
to obtain an ML estimation is large, due to the structural and parametric uncertainties
in the true system model. Hence, it is desirable that the models obtained from system
identification techniques provide a quantification of their uncertainty, i.e., considering that
the uncertainty modeling is part of the structure and estimating a nominal model with
an error-model [26–28]. This approach of uncertainty modeling can be used for robust
control design in which optimization methods can be used to obtain controllers in order to
minimize the expected variation (variance) of the true system performance from a given
desired behavior [29], or to obtain a probabilistic solution for robust control design [30,31].
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Figure 2. Magnitude of the frequency response for the linear dynamic system in Equation (1).

This alternative view of modeling error-model has been addressed in different frame-
works. In Reference [32], the set membership approach was used to deal with the problem
of uncertainty modeling in dynamic systems. The authors of Reference [32] considered the
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error-model estimation in a deterministic framework in which it is unknown-but-bounded
and obtaining a set of possible solutions. However, this method does not guarantee a
small set of solutions to properly describe the system model uncertainty. In Reference [33],
classical prediction error methods (PEM) [2] were used to obtain an estimation of the nomi-
nal model. Then, the unmodeled dynamics were estimated from the residuals dynamics
using PEM and obtaining the corresponding model error modeling (MEM). Nevertheless,
this methodology assumes that the nominal model is available. In References [26,34],
a stochastic embedding (SE) approach was used to describe the model uncertainty by
considering the model as a realization drawn from an underlying probability space, where
the parameters that define the error-model are characterized by a probability density
function (PDF). However, a flexible error-model distribution is needed to obtain a cor-
rect description of the system model uncertainty. In this approach, the uncertainty can
be quantified by using ML estimation considering the parameters of the error-model as
hidden variables [4,35] and solving the associated estimation problem with an expectation-
maximization (EM) [36] based algorithm under Gaussian assumptions for the error-model
distribution. References [4,37] also adopted a Bayesian perspective, where the parameters
that define both the nominal model and the error-model can be modeled as realizations of
random variables with certain prior distributions, and the posterior densities of the param-
eters can be estimated. There are works closely related with this framework [38,39] based
on the kernel approach for system identification. Under this Bayesian framework, it is
possible to obtain an unified system model of both the nominal model and error-model for
the system in Equation (1) if all system models are considered finite impulse response (FIR)
systems. However, this approach does not deliver the nominal model and the error-model
separately when more complex model structures are involved in the true system.

In this paper, we propose an ML identification algorithm for modeling the uncertainty
in a general class of linear dynamic systems using SE approach. That is, we aim at obtaining
an estimation of the nominal model and the red-shaded region in Figure 2. We also consider
that the error-model distribution is given by a Gaussian mixture model (GMM). GMMs
have been utilized in non-linear filtering [40–42], identification of dynamic systems with
ML framework [43,44] and a Bayesian framework [45–47]. Modeling error-model using SE
approach for FIR systems have also been used with Gaussian mixtures distributions [48].
Moreover, GMMs have been used to approximate non-Gaussian distributions in the ML
framework (see, e.g., References [17,47,49]) based on the Wiener approximation theorem
which established that any PDF with compact support can be approximated by a finite sum
of Gaussian distributions (Reference [50], Theorem 3). Combining the SE approach with
Gaussian mixture distributions provides a flexible scenario for uncertainty modeling when
the error-model distribution does not correspond to a GMM but can be approximated by
one; the latter corresponds to the Wiener approximation theorem. The contributions of this
paper can be summarized as follows:

(i) We obtain the likelihood function for a linear dynamic system modeled with SE
approach and a finite Gaussian mixture distribution. The likelihood function is
computed by marginalizing the vector of parameters of the error-model as a hid-
den variable.

(ii) We propose an EM algorithm to solve the associated ML estimation problem with GMMs,
obtaining the estimates of the vector of parameters that define the nominal model and
closed-form expressions for the GMM estimators of the error-model distribution.

The remainder of the paper is as follows: In Section 2, the system of interest for
uncertainty modeling with SE framework is stated. In Section 3, the estimation problem
for uncertainty modeling in a linear dynamic system is addressed using SE approach
with GMMs. In Section 4, an EM algorithm is presented to solve the estimation problem.
Numerical simulation examples are presented in Section 5. Finally, in Section 6, we present
our conclusions.
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2. Uncertainty Modeling for Linear Dynamic Systems Using Stochastic
Embedding Approach
2.1. System Description

The system of interest in this paper is as follows:

y[r]t = G[r](q−1)u[r]
t + H(q−1, θ)ω

[r]
t , (2)

where r = 1, ..., M denotes the r-th realization of the system, M corresponds the number of
independent experiments or batches, t = 1, ..., N denotes the t-th measurement, N is the
data length, y[r]t is the output signal, u[r]

t denotes the input signal, ω
[r]
t is a zero-mean Gaus-

sian white noise with variance σ2, and H(q−1, θ) is the noise model parametrized by θ. We
consider that the system G[r](q−1) can be described as follows (see, e.g., References [26,37]):

G[r](q−1) = Go(q−1, θ)
(

1 + G∆

(
q−1, η[r]

))
, (3)

where Go(q−1, θ) is the nominal system model parametrized by θ, and G∆

(
q−1, η[r]

)
is the

error-model parametrized by η[r]. Here, we consider that the PDF of the error-model in
Equation (2) is a finite Gaussian mixture distribution given by:

p(η[r]|γ) =
κ

∑
i=1

αiN (η[r]; µi, Γi), (4)

γ = [α1 µ1 Γ1︸ ︷︷ ︸
γ1

· · · ακ µκ Γκ︸ ︷︷ ︸
γκ

]T , (5)

where [·]T denotes the transpose operator, αi > 0, ∑κ
i=1 αi = 1, andN (η[r]; µi, Γi) represents

a Gaussian PDF with mean value µi and covariance matrix Γi. For simplicity of the
presentation, we consider that H(q−1, θ) in Equation (2) is part of the nominal model, i.e., it
is only parametrized by θ. The nominal system model in Equation (3) is given by

Go(q−1, θ) =
B(q−1, θ)

A(q−1, θ)
, (6)

where
B(q−1, θ) = b1q−1 + · · ·+ bnb q−nb, (7)

A(q−1, θ) = 1 + a1q−1 + · · ·+ ana q−na. (8)

Similarly, the noise system model in Equation (2) is given by

H(q−1, θ) =
C(q−1, θ)

D(q−1, θ)
, (9)

with
C(q−1, θ) = 1 + c1q−1 + · · ·+ cnc q−nc, (10)

D(q−1, θ) = 1 + d1q−1 + · · ·+ dnd q−nd. (11)

Notice that we use the term nominal model to refer to the system model Go(q−1, θ)

and the noise system model H(q−1, θ). We also consider that the error-model G∆

(
q−1, η[r]

)
in Equation (3) is a linear regression as follows:

G∆(q−1, η[r]) = η
[r]
0 + η

[r]
1 q−1 + · · ·+ η

[r]
n∆ q−n∆ , (12)

where η[r] ∈ Rn∆×1.
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2.2. Standing Assumptions

The problem of interest is to estimate the vector of parameters, β = [θT γT σ2]T ,
that defines the parameters of the nominal model, error-model and the noise variance.
In addition, we consider that β0 is the true vector of parameters that defines the true
model. In order to formulate the ML estimation algorithm, we introduce the following
standing assumptions:

Assumption 1. The system in Equation (2) is operating in open loop, and the input signal u[r]
t is

an exogenous deterministic signal for each r independent experiment. In addition, the data of M
independent experiments are available.

Assumption 2. The nominal model does not change from one experiment to another, whilst the
error-model G∆(q−1, η[r]) may change for each experiment, and all the realizations of η = {η[r]}M

r=1
are drawn from the same PDF parametrized by γ.

Assumption 3. The vector of parameters β0, the input signal u[r]
t , and the noise ω

[r]
t in Equa-

tion (2) satisfy regularity conditions, guaranteeing that the ML estimate βML converges (in proba-
bility or a.s.) to the true solution β0 as N → ∞.

Assumption 4. The orders na, nb, nc, nd, and n∆ of the polynomials of system in Equation (2)
and the number of components κ of the error-model distribution in Equation (4) are known.

Assumption 5. The system in Equation (2) is asymptotically stable, and its models G[r](q−1) and
H(q−1, θ) have no poles-zeros on the unit circle and have no pole-zero cancellations. The noise
system model H(q−1, θ) is also a minimum-phase system.

Assumption 2 is needed to develop an ML methodology based on the uncertainty
modeling with SE approach. Assumption 3 is necessary to develop an estimation algorithm
that holds the asymptotic properties of the ML estimator. Assumption 4 can be relaxed by
considering a dynamic system model that includes parametric uncertainties with a different
error-model structure that we assume in Equation (3). We will address this case in Section 5.
Assumption 5 is necessary to obtain an asymptotically unbiased ML estimator [51] and a
system model that is controllable [52].

3. Maximum Likelihood Estimation for Uncertainty Modeling Using GMMs

In this section, we develop an ML estimation algorithm for system in Equation (2)
to obtain both the nominal model and the error-model distribution. We consider that the
observed data Y[r] = [y[r]1 · · · y[r]N ] is a collection of measurements for each experiment. We
use capital letters to denote the vector of signals, ut or ωt for t = 1, ..., N. Then, the system
in Equation (2) can be described as follows:

Y[r] = G(θ)U[r] + Ψ[r](θ)η[r] + W [r], (13)

where Y[r], U[r], W [r] ∈ RN×1, θ ∈ Rno×1, η[r] ∈ Rn∆×1, G(θ)U[r] ∈ RN×1, Ψ[r](θ) ∈ RN×n∆ .
The term G(θ)U[r] corresponds to the output response corresponding to the nominal model
structure G(θ), Ψ[r](θ)η[r] corresponds to the output signal due to the error-model structure
in Equation (3), and W [r] ∼ N (0, σ2 IN) (Ix represents the identity with dimension given
by x). Notice that G(θ) involves the nominal model structure utilized for Go(q−1, θ) and
H(q−1, θ) in Equation (2). The term Ψ[r](θ) describes the model structure given by the
product Go(q−1, θ)G∆

(
q−1, η[r]

)
in Equation (3).

Remark 1. The system model in Equation (13) consider that the error-model structure Ψ[r](θ)η[r]

is a linear regression, and the nominal model structure G(θ) can have an arbitrary structure [37].
The fact of considering the error-model as a linear regression can provide flexibility, lower compu-
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tational complexity, and contain FIR model of arbitrary orders, Laguerre and Kautz models (see,
e.g., Reference [53]).

We define the vector of parameters to be estimated as β = [θT γTσ2]T in order to
formulate the ML estimator for the system in Equation (13):

θ = [b1 a1 c1 d1 · · · bnb ana cnc dnd ]
T , (14)

where θ is the vector of parameters of the nominal model, γ is the vector of parameters
of the error-model distribution as a GMM in Equation (4), and σ2 is the noise variance.
The corresponding ML estimation algorithm using GMMs is obtained as follows:

Lemma 1. Consider the parameters to be estimated as β = [θT γTσ2
ω ]

T using Equations (5) and (14).
Under the standing assumptions and using Equation (13), the ML estimator for the system model
in Equation (2) is given by:

β̂ML = arg max
β

`(β) s.t.
κ

∑
i=1

αi = 1, 0 ≤ αi ≤ 1, (15)

where the log-likelihood function is given by

`(β) =
M

∑
r=1

log

{
κ

∑
i=1

αiN
(

Y[r]; µ̄ir, Σ̄ir

)}
, (16)

µ̄ir = Ψ[r](θ)µi + G(θ)U[r], (17)

Σ̄ir = σ2 IN + Ψ[r](θ)Γi

[
Ψ[r](θ)

]T
. (18)

Proof. See Appendix A.

The result obtained from Lemma 1 differs from the classical ML formulation, where
the measurement data of one experiment is used to obtain one estimate of the parameters of
interest (see, e.g., References [1,2]). In contrast, from Lemma 1, the ML estimator considers
the measurements of M independent experiments to obtain one estimation of the system
model, i.e, the nominal model and error-model distribution as a GMM. Notice that µ̄ir and
Σ̄ir in Equations (17) and (18), respectively, depend on the vector of parameters β.

The optimization problem in Equation (15) is typically solved using gradient-based
methods. However, the log-likelihood function in Equation (16) contains a matrix Σ̄[r]

i with
dimension N×N that may seem cumbersome to solve for the optimization problem [37,54].
Moreover, the log-likelihood function involves a logarithm of a summation that depends of
the number of components κ of the GMM, and it may be difficult to solve when the number
of components in the GMM is high [55]. The EM algorithm [36] can provide a solution
to deal with this difficulty since combination of an EM algorithm with GMMs typically
provides closed-form estimators for the GMM parameters [56,57].

4. An EM Algorithm with GMMs for Uncertainty Modeling in Linear
Dynamic Systems

The EM algorithm is a popular tool for identifying linear and non-linear dynamic
systems in the time domain (see, e.g., References [58,59]) and frequency domain [60].
In particular, a common strategy used in the formulation of an EM algorithm with GMMs
is to consider a hidden (latent) variable, modeled as an indicator, that determines from
which GMM component an observation comes from Reference [57]. To solve the estimation
problem in Equation (15), an EM algorithm with GMMs is developed from the definition of
the likelihood function from the observed data of all experiments Y[1:M] = [Y[1], · · · , Y[M]]
and a hidden discrete random variable, ζ1:M, i.e., defining the likelihood function in



Sensors 2021, 21, 3837 8 of 21

Equation (16) using the complete data, {Y[1:M], ζ1:M}. This hidden random variable ζr is
an indicator that determines if observations Y[r] arise from the ith component of the GMM.
Hence, the EM algorithm is given by (see, e.g., References [36,57]):

Q(β, β̂(m)) = E
{

log[p(Y[1:M], ζ1:M|β)]|Y[1:M], β̂(m)
}

, (19)

β̂(m+1) = arg max
β
Q(β, β̂(m)), s.t.

κ

∑
i=1

αi = 1, 0 ≤ αi ≤ 1, (20)

where E{a|b} and p(a|b) denote the expected value and the PDF of the random variable a
given the random variable b, respectively, β̂(m) is the current estimate, p(Y, ζ1:M|β) is the
joint PDF of Y[1:M] and ζ1:M, and Q(β, β̂(m)) is the auxiliary function of the EM algorithm.
Notice that Equations (19) and (20) correspond to the E-step and M-step of the EM algorithm,
respectively [36].

In order to develop the iterative algorithm in Equations (19) and (20), we obtain the
following result. This will be used to compute Q(β, β̂(m)) in Equation (19):

Lemma 2. Consider the vector of parameters β = [θT γTσ2]T defined in Equations (5) and (14).
The joint log-PDF, log[p(Y[1:M], ζ1:M|β)], in Equation (19) is given by

log[p(Y[1:M], ζ1:M|β)] =
M

∑
r=1

κ

∑
i=1

log[p(ζr = i|β)] + log[N (Y[r]; µ̄ir, Σ̄ir)], (21)

where µ̄ir and Σ̄ir are given by Equations (17) and (18), respectively.

Proof. See Appendix B.

Based on the coordinate descent algorithm [61], we obtain a new estimate in Equation (20)
using the following steps:

(1) Fixing the vector of parameters θ at its value from the current iteration θ̂(m) to opti-
mize Equation (19) with respect to the GMM parameters γ and the noise variance σ2.

(2) Fixing the GMM parameters and the noise variance at their values from the iteration

γ̂(m+1) and σ̂2(m+1)
and to solve the optimization problem in Equation (20) to obtain

θ̂(m+1).

From Lemma 2, our proposed EM algorithm can be computed as follows:

Theorem 1. Consider the vector of parameters to be estimated β = [θT γTσ2]T defined in
Equations (5) and (14) for the system in Equation (2). Substituting Equation (21) in Equation (19),
the E-step in the EM algorithm is given by

Q(β, β̂(m)) =
M

∑
r=1

κ

∑
i=1

log
[
αiN

(
Y[r]; µ̄ir, Σ̄ir

)]
ζ̂
(m)
ir , (22)

ζ̂
(m)
ir =

α̂
(m)
i N

(
Y[r]; ˆ̄µ(m)

ir , ˆ̄Σ(m)
ir

)
∑κ

l=1 α̂
(m)
l N

(
Y[r]; ˆ̄µ(m)

lr , ˆ̄Σ(m)
lr

) , (23)

where ˆ̄µ(m)
ir and ˆ̄Σ(m)

ir are given by:

ˆ̄µ(m)
ir = Ψ[r](θ̂(m))µ̂

(m)
i + G(θ̂(m))U[r], (24)

ˆ̄Σ(m)
ir = σ̂2(m)

IN + Ψ[r](θ̂(m))Γ̂(m)
i

[
Ψ[r](θ̂(m))

]T
. (25)
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Consider the maximization problem stated in Equation (20) using Equation (22). The M-step
in the EM algorithm is carried out using the following steps:

(i) Solving Equation (20) using Equation (22) with θ = θ̂(m):

α̂i
(m+1) =

(
M

∑
r=1

ζ̂
(m)
ir

)
/M, (26)

µ̂
(m+1)
i =

(
M

∑
r=1

ˆ̃µ(m)
ir ζ̂

(m)
ir

)
/

(
M

∑
r=1

ζ̂
(m)
ir

)
, (27)

Γ̂(m+1)
i =

(
M

∑
r=1

[
( ˆ̃µ(m)

ir − µ̂
(m)
i )( ˆ̃µ(m)

ir − µ̂
(m)
i )T + ˆ̃Σ(m)

ir

]
ζ̂
(m)
ir

)
/

(
M

∑
r=1

ζ̂
(m)
ir

)
, (28)

σ̂2(m+1)
=

(
M

∑
r=1

κ

∑
i=1
R(m)

ir ζ̂
(m)
ir

)
/NM, (29)

with
P̂ (m)

ir = Γ̂(m)
i Ψ[r](θ̂(m))T

(
ˆ̄Σ(m)

ir

)−1
, (30)

ˆ̃µ(m)
ir = µ̂

(m)
i + P̂ (m)

ir

(
Y[r] − ˆ̄µ(m)

ir

)
, (31)

ˆ̃Σ(m)
ir =

(
In∆ − P̂

(m)
ir Ψ[r](θ̂(m))

)
Γ̂(m)

i , (32)

R(m)
ir =

(
Y[r] − G(θ̂(m))U[r] −Ψ[r](θ̂(m)) ˆ̃µ(m)

ir

)T
(33)(

Y[r] − G(θ̂(m))U[r] −Ψ[r](θ̂(m)) ˆ̃µ(m)
ir

)
+ tr

(
Ψ[r](θ̂(m))T ˆ̃Σ(m)

ir Ψ[r](θ̂(m))
)

,

where tr(·) denotes the trace operator.
(ii) Solving Equation (20) using Equation (22) with γ = γ̂(m+1):

θ̂(m+1) = arg min
θ

M

∑
r=1

κ

∑
i=1

ζ̂
(m)
ir Bir(θ, θ(m)), (34)

where

Bir(θ, θ(m)) =
(

Y[r] − G(θ)U[r] −Ψ[r](θ) ˆ̃µ(m+1)
ir

)T
(35)(

Y[r] − G(θ)U[r] −Ψ[r](θ) ˆ̃µ(m+1)
ir

)
+ tr

(
Ψ[r](θ)T ˆ̃Σ(m+1)

ir Ψ[r](θ)
)

.

Proof. See Appendix C.

From Theorem 1, we obtain closed-form expressions for the GMM and noise variance
estimators. They are computed from the definition of the auxiliary function Q(β, β̂(m))
using the complete log-likelihood function in Equation (21). That differs from the procedure
proposed in Reference [49], where an auxiliary function is built without explicitly defining
a hidden variable. However, the auxiliary function obtained in Reference [49] is equal to
Equation (19) and the estimators are obtained from Equations (26)–(29) and Equation (34).

Finally, our estimation algorithm is summarized in Algorithm 1.
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Algorithm 1 (EM algorithm with GMMs).

Inputs Y[1:M], U[1:M], M, κ , θ̂(0), γ̂(0) and σ̂2(0) .
Outputs θ̂, γ̂ and σ̂2.

1: m← 0
2: procedure E-STEP

3: Compute ˆ̄µ(m)
ir and ˆ̄Σ(m)

ir from Equations (24) and (25).

4: Compute ζ̂
(m)
ir from Equation (23).

5: Compute ˆ̃µ(m)
ir and ˆ̃Σ(m)

ir from Equations (31) and (32).
6: end procedure
7: procedure M-STEP

8: Estimate γ̂(m+1), σ̂2(m+1)
from Equations (26)–(29).

9: Compute Bir(θ, θ(m)) from Equation (35) using γ̂(m+1) and θ̂(m).
10: Estimate θ̂(m+1) by solving Equation (34).
11: end procedure
12: if stopping criterion is not satisfied then
13: m← m + 1, return to 2
14: else
15: θ̂ ← θ̂(m+1), γ̂← γ̂(m+1), σ̂2 ← σ̂2(m+1)

16: end if
17: End

5. Numerical Examples

In this section, we present two numerical examples with different approaches to
illustrate the benefits of our proposal for modeling both the nominal model and the
error-model in the system of Equation (2). This approach of numerical simulations is
often used when new estimation algorithms are tested in order to evaluate the estimation
performance in conditions that could reduce the safety levels or deal with problems for
which experiments cannot be planned [62,63].

In the first example, we consider a variant of the example used in Reference [37] hold-
ing all standing assumptions stated in Section 2.2. The nominal system model (Go(q−1, θ)
and H(q−1, θ)) corresponds to a Box-Jenkins model. For simplicity, we also consider that
the error-model (G∆(q−1, η[r])) corresponds to a second order FIR system in Equation (12)
with an overlapped Gaussian mixture error-model distribution. We assume that there are
not dynamic uncertainties at low frequencies, i.e., the error-model has zero static gain.
In this case, we do not establish a comparison analysis with other approaches since the
simulated data is generated using our proposed framework with SE and GMMs.

In contrast, we consider a second example to illustrate the flexibility of our proposed
algorithm for modeling the error-model for the system in Equation (2). Assumption 4 is
relaxed considering a model structure does not correspond to Equation (3). Instead, we
consider the system in Equation (2) with an output-error model structure where the system
model, G[r](q−1, θ), is given by the discrete-time model of a simple resistor-capacitor
continuous-time system model. Here, we consider that the time constant τ is given
by τ = τo(1 + δ[r]), where τo represents the time constant computed with the nominal
values of the resistor and capacitor, and δ[r] denotes the tolerance (uncertainty) with a
non-Gaussian distribution.

For both examples, the simulation setup is as follows:

(1) The data length is N = 100.
(2) The number of experiments is M = 100.
(3) The number of Monte Carlo (MC) simulation is 25.
(4) The stopping criterion is satisfied when:∥∥∥β̂(m) − β̂(m−1)

∥∥∥/
∥∥∥β̂(m)

∥∥∥ < 10−6,
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or when 2000 iterations of the EM algorithm have been reached, where ‖·‖ denotes
the general vector norm operator.

Notice that each MC simulation corresponds to an estimation obtained using the data
from M independent experiments.

On the other hand, for the numerical examples, the initialization of the estimation
algorithm is as follows: For the nominal model initialization, we estimate a system model
for each independent experiment using PEM and a sufficiently flexible (high order) struc-
ture. Then, we choose the estimated system model and the corresponding estimated noise
variance with the smallest number of parameters that better described all the previously
estimated models. For the error-model FIR transfer function, we adopt a similar approach
for different FIR filter orders (n∆). Here, we choose a sufficiently complex FIR system by
assuming the nominal model is equal to one (Go(q−1, θ) = 1). The number of Gaussian
mixture model components (κ) is defined by the user, and it is typically a large number.
Once the parameters have been estimated, it is possible to discard the Gaussian component
corresponding to small estimated weight (e.g., 1/(100κ)). Finally, for a given κ, the initial
distribution of the parameters of the error-model is chosen as follows:

(1) From all the estimated FIR models, compute the average value of the coefficient
corresponding to each tap.

(2) Evenly space the initial mean values of the n∆-dimensional GMM between the
estimated maximum and the minimum value of each tap.

(3) Set the variances of the n∆-dimensional GMM equal to a diagonal covariance matrix
with the sample variance of each tap on the diagonal.

(4) Set the mixing weight for each GMM component equal to 1/κ.

5.1. Example 1: A General System with a Gaussian Mixture Error-Model Distribution

Consider the true system G[r](q−1) in Equation (2) with a nominal system model
as follows:

Go(q−1, θ) =
b0

1q−1

1 + a0
1q−1

, H(q−1, θ) =
1 + c0

1q−1

1 + d0
1q−1

, (36)

and the error-model in Equation (12) is given by

G∆(q−1, η[r]) = η
[r]
0 + η

[r]
1 q−1, (37)

where b0
1 = 1, a0

1 = 0.5, c0
1 = 0.1, and d0

1 = 0.8. The input signal is u[r]
t ∼ N (0, σ2

u), σ2
u = 10,

and the noise source ω
[r]
t ∼ N (0, σ2), σ2 = 0.1. In this example, we focus on uncertainties

in the system model at high frequencies, i.e., η1 = −η0. We also consider that, for each ex-
periment, η[r] = [η0 η1]

T is drawn from a Gaussian mixture distribution in Equation (4) with
α1 = α2 = 0.5, Γ1 = Γ2 = 0.2, µ1 = −1, and µ2 = 1. The vector of parameters to estimate is
β = {θ, γ, σ2} with θ = {b0

1, a0
1, c0

1, d0
1} and γ = {αi, µi, Γi}κ

i=1 with κ = 2. The initial values
used for our proposed EM algorithm correspond to θ̂(0) = [1.2510 0.4523 0.0772 0.7546]T ,
σ̂2(0) = 0.0612, α̂

(0)
1 = α̂

(0)
2 = 0.5, µ̂

(0)
1 = −1.1962, µ̂

(0)
2 = 2.9673, Γ̂(0)

1 = Γ̂(0)
2 = 0.8651.

Table 1 shows the estimation results of the nominal model parameters and the noise
variance. Figure 3a shows the results of the estimation of the error-model distribution.
The blue line corresponds to the average of all the GMMs estimated. It is clear that the
estimated PDF is similar to the true PDF.
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Table 1. Nominal model parameters and noise variance estimated for Example 1.

Parameter True Value Estimated Value

b1 1 0.9994± 1.54× 10−3

a1 0.5 0.4998± 4.53× 10−4

c1 0.1 0.0997± 1.17× 10−2

d1 0.8 0.8017± 5.97× 10−3

σ2 0.1 0.1003± 1.44× 10−3

−3 −2 −1 0 1 2 3
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η
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M
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Go(q−1, θ)

Ĝ(q−1, θ)(FIR)

(b)

Figure 3. Nominal model and error-model distribution estimated for Example 1. (a) Estimated
error-model distribution. (b) Estimated nominal model Go(q−1, θ).

On the other hand, we note that the SE method does not directly provide an uncertainty
region. However, we compute M realizations of the model

Ĝo(q−1, θ̂) + Ĝo(q−1, θ̂)G∆(q−1, η[r]), (38)

with r = 1, ..., M, where Ĝo(q−1, θ̂) is the nominal model estimated and η[r] are obtained
from M different realizations using the GMM in Equation (4) with the estimated parameters
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γ̂ obtained by using our proposed SE method. In addition, we use the PEM [1,2] to estimate
the system model G[r](q−1) with a high order FIR model. We consider the measurements of
25 independent experiments, and we estimate a 10th order FIR system model, Ĝ(q−1, θ)(FIR),
for each independent experiment in order to validate the uncertainty region estimated.

Figure 3b shows the magnitude of the frequency response corresponding to the
average of all MC simulations for the estimated nominal model (blue line). The red-dashed
line corresponds to the nominal system model in Equation (36), i.e., Go(q−1, θ). The blue-
shaded region represents the area of the corresponding uncertainty region estimated of
the true system. We observe an accurate estimation of the nominal system model. We also
observe that the FIR models estimated (black-dotted lines) lie in the uncertainty region
obtained with our proposed method.

5.2. Example 2: A Resistor-Capacitor System Model with Non-Gaussian-Sum Uncertainties

Consider the system in Equation (2) as follows:

G[r](q−1, τ[r]) =
q−1
(

1− e−Ts/τ[r]
)

1−
(

e−Ts/τ[r]
)

q−1
, H(q−1) = 1, (39)

where Ts = 0.01 is the sampled period, and τ[r] = τo(1 + δ[r]) is the time constant with
τo = 10× 10−3, and δ[r] is uniformly distributed as U [−0.4, 0.4]. We consider that the
sampled period Ts is known.

For the SE method, we consider an output-error nominal model with a FIR error-model
as follows:

Go(q−1, θ) =
q−1
(

1− e−Ts/τo
)

1−
(
e−Ts/τo

)
q−1 , (40)

G∆(q−1, η[r]) = η0 − η0q−1. (41)

The distribution of the parameters η[r] of the error-model is modeled using a GMM
with γ = {αi, µi, Γi}κ

i=1, κ = 2 components. The vector of parameter to be estimated
is β = {τo, γ, σ2}. As in the previous example, the uncertainty region is obtained from
Equation (38) with r = 1, ..., M, where η[r] is obtained from M different realizations using
the GMM in Equation (4) with the estimated parameters γ̂. In addition, the initial val-
ues used for our proposed EM algorithm are given by τ̂

(0)
0 = 9× 10−3, σ̂2(0) = 0.1247,

α̂
(0)
1 = α̂

(0)
2 = 0.5, µ̂

(0)
1 = −0.0163, µ̂

(0)
2 = 0.8025, Γ̂(0)

1 = Γ̂(0)
2 = 0.1092.

For comparison purposes, we estimate the system uncertainty and the nominal model
using MEM approach [33]. The nominal model estimated, Ĝo(q−1, θ)(MEM), corresponds
to the average of all PEM estimations obtained using the original structure given in Equa-
tion (39), i.e., na = nb = 1 and nc = nd = 0, from the all independent experiments . In order
to obtain the residuals, we compute εt = yt − Ĝo(q−1, θ)(MEM)ut for each independent
experiment. The error-model, Gε(q−1, θε), is obtained from the residual data as follows:

εt = Gε(q−1, θε)ut + vt, (42)

where vt is a zero-mean Gaussian noise sequence which is assumed to be uncorrelated
with the input signal ut. Thus, we consider a 10th order FIR system model for Gε(q−1, θε)
and we use the PEM [2] to estimate the error-model parameters θε for each experiment.
The uncertainty region is computed by adding frequency by frequency the average of the
all error-model estimated to the nominal model.

Finally, we consider the measurements of 25 independent experiments and we obtain
an estimation of the system model in Equation (39), Ĝ(q−1, θ)(PEM), using PEM with
na = nb = 1 and nc = nd = 0 for each independent experiment in order to validate the
uncertainty region estimated for both SE and MEM approach.
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Figure 4a shows the magnitude of the frequency response corresponding to the
nominal model and the uncertainty region estimated using SE approach. The red-dashed
line corresponds to the system model in Equation (39) considering the time constant without
uncertainty, i.e., G(q−1, τo). The blue line corresponds to the average of all MC simulations
for the estimated nominal model. We observe an accurate estimation for the nominal
model with τ̂o = 9.7× 10−3 ± 0.17× 10−3 and noise variance σ̂2 = 0.133± 5.9× 10−3.
The blue-shaded area corresponds to the uncertainty region estimated for the true system.
Similarly, Figure 4b shows the magnitude of the frequency response corresponding to the
nominal model estimated (blue line) and the uncertainty region estimated (blue-shaded
area) from the residuals using MEM. We also observe an accurate estimation of the nominal
model with τ̂o = 10.1× 10−3 ± 2.30× 10−3 and noise variance σ̂2 = 0.099± 2.85× 10−3.
In addition, we observe in Figure 4a,b that PEM estimations, Ĝ(q−1, θ)(PEM), lie in the
uncertainty region obtained using both SE approach and MEM. However, SE method
describes better the uncertainty region than MEM method, specifically, the error-model at
low frequencies.
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Figure 4. Nominal model and uncertainty region estimated using SE and MEM for Example 2.
(a) System model estimated with SE. (b) System model estimated with MEM.

6. Conclusions

In this paper, we have addressed the uncertainty modeling problem by combining the
SE approach with GMMs. We proposed an identification algorithm using ML principle to
estimate both the nominal model and the distribution of the parameters of the error-model
as a GMM. An EM algorithm is proposed to solve the ML estimation problem providing
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closed-form expressions for the estimators of the GMM parameters and the noise variance.
In the simulation examples, we considered two scenarios: (i) identification of a system
model with a structure defined with SE approach using a nominal model and an error-
model as a FIR system with Gaussian mixture distribution, and (ii) identification of a
system model with non-Gaussian uncertainties in the parameters does not correspond to
the SE framework. For both cases, we obtained accurate estimations of the nominal system
model. Finally, our proposed method provided a good description of the uncertainty region
in the system for the simulation examples.
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Appendix A. Maximum Likelihood Formulation with SE Approach

Let us consider that Y[r] = [y[r]1 · · · y[r]N ] is a collection of measurements for each
experiment r = 1, ..., M. Then, the likelihood function, L(β), for the system model in
Equation (13) using the GMM in Equation (4) can be obtained by marginalizing the hidden
variable, [η[1] · · · η[M]], as follows:

L(β) = p(Y[1], ..., Y[M]|β) (A1)

=
M

∏
r=1

∫ ∞

−∞
p(Y[r]|η[r], β)p(η[r]|β)dη[r],

where
p(Y[r]|η[r], β) = N (Y[r];G(θ)U[r] + Ψ[r](θ)η[r], σ2 IN), (A2)

p(η[r]|β) =
κ

∑
i=1

αiN (η[r]; µi, Γi), (A3)
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with αi > 0, ∑κ
i=1 αi = 1. The log-likelihood function, `(β), is then given by

`(β) =
M

∑
r=1

log

{
κ

∑
i=1

αi

∫ ∞

−∞
p(Y[r]|η[r], β)p(η[r]|β)dη[r]

}
. (A4)

Consider the following identities:[
A B
C D

]
=

[
I 0

CA−1 I

][
A 0
0 D− CA−1B

][
I A−1B
0 I

]
, (A5)

(I + BD−1C)−1 = I − B(D + CB)−1C, (A6)

det(A)det
(

D− CA−1B
)
=det(D)det

(
A− BD−1C

)
. (A7)

From Equation (A4), we define Ki(β, η[r]) = p(Y[r]|η[r], β)p(η[r]|β). Substituting
Equations (A2) and (A3) in Ki(β, η[r]), and using the identities in Equations (A5)–(A7),
we obtain:

Ki(β, η[r]) = N (Y[r]; µ̄ir, Σ̄ir)N (η[r]; µ̃ir, Σ̃ir), (A8)

with
µ̄ir = Ψ[r](θ)µi + G(θ)U[r], (A9)

Σ̄ir = σ2 IN + Ψ[r](θ)Γi

[
Ψ[r](θ)

]T
, (A10)

Pir = Γi

[
Ψ[r](θ)

]T
(Σ̄ir)

−1, (A11)

µ̃ir = µi + Pir

(
Y[r] − µ̄ir

)
, (A12)

Σ̃ir =
(

In∆ −PirΨ[r](θ)
)

Γi. (A13)

Substituting Equation (A8) in Equation (A4), we can directly obtain the log-likelihood
function in Equation (16). Then, the ML estimator corresponds to Equation (15).

Appendix B. Computing the Complete Likelihood Function

From the likelihood function in Equation (16), we have:

p(Y[r]|β) =
κ

∑
i=1

αiN (Y[r]; µ̄ir, Σ̄ir), (A14)

where µ̄ir and Σ̄ir are given by Equations (A9) and (A10), respectively. Let consider

p(ζr = i) = αi, i = 1, ..., κ, (A15)

where ζ1:M is a discrete random variable (hidden variable) such that ζr is an indicator
that determines if the rth observation Y[r] arises from the ith component of the GMM in
Equation (A3), that is,

ζr ∈ {1, ..., κ}, r = 1, ..., M. (A16)

Then, Equation (A14) can be obtained by marginalizing the hidden variable, ζr, as fol-
lows:

p(Y[r]|β) =
κ

∑
i=1

p(Y[r]|ζr = i, β)p(ζr = i|β), (A17)

where
p(Y[r]|ζr = i, β) = N (Y[r]; µ̄ir, Σ̄ir). (A18)
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Defining the complete data set as
{

Y[1:M], ζ1:M

}
and utilizing the Bayes’ rule, the com-

plete likelihood function is obtained as follows:

p(Y[1:M], ζ1:M|β) =
M

∏
r=1

p(Y[r]|ζr, β)p(ζr|β). (A19)

The complete log-likelihood function is given by:

log
[

p(Y[1:M], ζ1:M|β)
]
=

M

∑
r=1

log[p(ζr|β)] + log[p(Y[r]|ζr, β)]. (A20)

Using Equations (A16) and (A17) in Equation (A20), we directly obtain Equation (21).

Appendix C. EM Algorithm with GMMs Formulation

Appendix C.1. Computing the Auxiliary Function Q(β, β̂(m))

Using Equation (21) in Equation (19), we have:

Q(β, β̂(m)) =
M

∑
r=1

κ

∑
i=1

E
{

log[p(ζr = i|β)]|Y[1:M], β̂(m)
}

+E
{

log[N (Y[r]; µ̄ir, Σ̄ir)]|Y[1:M], β̂(m)
}

. (A21)

Solving the expected value in Equation (A21) and using Equation (A15) into Equation (A21),
we have:

Q(β, β̂(m)) =
M

∑
r=1

κ

∑
i=1

log[αi]ζ̂
(m)
ir + log[N (Y[r]; µ̄ir, Σ̄ir)]ζ̂

(m)
ir , (A22)

where
ζ̂
(m)
ir = p(ζr = i|Y[1:M], β̂(m)). (A23)

Using the Bayes’ Theorem, Equations (A14), (A15), and (A17) to solve Equation (A23),
we obtain:

ζ̂
(m)
ir =

p(ζr = i|β̂(m))p(Y[r]|ζr = i, β̂(m))

p(Y[r]|β̂(m))
, (A24)

=
α̂
(m)
i N

(
Y[r]; ˆ̄µ(m)

ir , ˆ̄Σ(m)
ir

)
∑κ

l=1 α̂
(m)
l N

(
Y[r]; ˆ̄µ(m)

lr , ˆ̄Σ(m)
lr

) , (A25)

where ˆ̄µ(m)
ir and ˆ̄Σ(m)

ir are given by Equations (24) and (25), respectively.

Appendix C.2. Optimizing the Auxiliary Function Q(β, β̂(m))

From Equation (A8), we have the following:∫ ∞

−∞
log
[
Ki(β, η[r])

]
dη[r] = log

[
N (Y[r]; µ̄ir, Σ̄ir)

]
. (A26)

Let consider the following identity for a random variable x:

E
{
(b− Ax)T(b− Ax)

}
= (b− Ax̂)T(b− Ax̂) + tr

{
AΣAT

}
, (A27)

where x̂ = E{x}, and Σ = E
{
(x− x̂)(x− x̂)T}.
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Using Equation (A27) to compute log
[
Ki(β, η[r])

]
in Equation (A26), we obtain:

log
[
Ki(β, η[r])

]
=

N
2

log[σ2]− 1
2

log[det(Γi)]−
1

2σ2

[
(Y[r] − G(θ)U[r] −Ψ[r](θ) ˆ̃µ(m)

ir )T

(Y[r] − G(θ)U[r] −Ψ[r](θ) ˆ̃µ(m)
ir ) + tr

(
Ψ[r](θ) ˆ̃Σ(m)

ir [Ψ[r](θ)]T
)]
− 1

2

[
tr(Γ−1

i
ˆ̃Σ(m)

ir )+

( ˆ̃µ(m)
ir − µi)

TΓ−1
i ( ˆ̃µ(m)

ir − µi)
]
. (A28)

Substituting Equations (A26) and (A28) in Equation (A22), and taking the derivative
of Equation (A22) with respect to µi and equating to zero, yields:

∂Q(β, β̂(m))

∂µi
=

M

∑
r=1

( ˆ̃µ(m)
ir − µ̂

(m+1)
i )ζ̂

(m)
ir = 0. (A29)

From Equation (A29), we directly obtain Equation (27).
Then, taking the derivative of Equation (A22) with respect to Γ−1

i and equating to zero:

∂Q(β, β̂(m))

∂Γ−1
i

=
M

∑
r=1

([
( ˆ̃µ(m)

ir − µ̂
(m)
i )( ˆ̃µ(m)

ir − µ̂
(m)
i )T + ˆ̃Σ(m)

ir

]
− Γ̂(m+1)

i

)
ζ̂
(m)
ir = 0. (A30)

From Equation (A30), we can directly obtain Equation (28).
Then, taking the derivative of Equation (A22) with respect to ρ = 1/σ2 and equating

to zero yields:

1
N

M

∑
r=1

κ

∑
i=1

[
(Y[r] − G(θ̂(m))U[r] −Ψ[r](θ̂(m)) ˆ̃µ(m)

ir )T(Y[r] − G(θ̂(m))U[r] −Ψ[r](θ̂(m)) ˆ̃µ(m)
ir )+

tr
(

Ψ[r](θ̂(m)) ˆ̃Σ(m)
ir [Ψ[r](θ̂(m))]T

)]
ζ̂
(m)
ir =

M

∑
r=1

κ

∑
i=1

ρ̂(m+1) ζ̂
(m)
ir . (A31)

Using σ̂2(m+1)
= 1/ρ̂(m+1) and Equation (33) in Equation (A31), we directly obtain

Equation (29).
For the parameter αi, we define F (αi) as follows:

F (αi) =
M

∑
r=1

κ

∑
i=1

log[αi]ζ̂
(m)
ir , (A32)

subject to ∑κ
i=1 αi = 1. Then, using a Lagrange multiplier to deal with the constraint on αi,

we define:

J (αi, ν) =
M

∑
r=1

κ

∑
i=1

log[αi]ζ̂
(m)
ir + ν

(
κ

∑
i=1

αi − 1

)
. (A33)

Taking the derivative of Equation (A33) with respect to αi and ν and equating to zero,
we obtain:

∂J (αi, ν)

∂αi
=

M

∑
r=1

ζ̂
(m)
ir

α̂
(m+1)
i

− ν = 0, (A34)

∂J (αi, ν)

∂ν
=

κ

∑
i=1

αi − 1 = 0. (A35)

Then, α̂
(m+1)
i = ∑M

r=1 ζ̂
(m)
ir /ν. Taking summation over i = 1, ..., κ and using Equation (A35),

we have:
κ

∑
i=1

α̂
(m+1)
i =

κ

∑
i=1

M

∑
r=1

ζ̂
(m)
ir /ν, (A36)
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ν =
κ

∑
i=1

M

∑
r=1

ζ̂
(m)
ir . (A37)

Notice that ∑κ
i=1 ζ̂

(m)
ir = 1, and then we have ν = M. Then, we can obtain Equation (26).

Notice that 0 ≤ α̂
(m+1)
i ≤ 1 holds even though we did not explicitly consider it in

Equation (A33).
Finally, substituting Equations (A26) and (A28) in Equation (A22), we can directly

obtain Equation (35) for the parameter θ.
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