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SUMMARY
The proteome provides unique insights into disease biology beyond the genome and transcriptome. A lack of
large proteomic datasets has restricted the identification of new cancer biomarkers. Here, proteomes of 949
cancer cell lines across 28 tissue types are analyzed bymass spectrometry. Deploying aworkflow to quantify
8,498 proteins, these data capture evidence of cell-type and post-transcriptional modifications. Integrating
multi-omics, drug response, and CRISPR-Cas9 gene essentiality screens with a deep learning-based pipe-
line reveals thousands of protein biomarkers of cancer vulnerabilities that are not significant at the transcript
level. The power of the proteome to predict drug response is very similar to that of the transcriptome.
Further, random downsampling to only 1,500 proteins has limited impact on predictive power, consistent
with protein networks being highly connected and co-regulated. This pan-cancer proteomic map (ProCan-
DepMapSanger) is a comprehensive resource available at https://cellmodelpassports.sanger.ac.uk.
INTRODUCTION

Precision medicine relies on the identification of specific molec-

ular alterations that can stratify patients and guide the choice of

effective therapeutic options.Cancer vulnerabilities, such as syn-

thetic lethalities, can be systematically studied using functional

genetic and small molecule screens. To circumvent the limita-

tions of using patient tissue samples for this type of approach,

biomarkers of cancer vulnerabilities have been analyzed using

cancer cell lines, together with deep molecular characterization,

functional genetic and pharmacological screens (Ghandi et al.,

2019; Iorio et al., 2016; Tsherniak et al., 2017; Frejno et al.,

2020; Behan et al., 2019). The direct measurement of proteins

provides insights into the dynamic molecular behavior of cells

and can improve our understanding of genotype-to-phenotype

relationships (Liu et al., 2016). Despite the development of

precision oncology therapeutics, the complexity of cancer and

the inability of genomics to accurately predict the proteome

indicate that genomics alone is often insufficient to inform and

guide the clinical care of many patients. Measurement of the

proteome has the potential to expand our understanding of can-

cer phenotypes and to improve diagnosis and treatment choices.
Cancer Cell 40, 835–849, A
This is an open access article und
Technological and methodological advances have enabled

the standardized quantification of thousands of proteins across

dozens to hundreds of cell lines (Gholami et al., 2013; Lawrence

et al., 2015; Coscia et al., 2016; Roumeliotis et al., 2017; Nusinow

et al., 2020) and the profiling of clinical samples derived from

minute tissue biopsies (Zhang et al., 2014; Edwards et al.,

2015; Pozniak et al., 2016; Zhang et al., 2016; Mertins

et al., 2016; Frejno et al., 2017; Vasaikar et al., 2019;

Clark et al., 2019; Tully 2020). Using a data-independent

acquisition (DIA)-mass spectrometry (MS) approach (Gillet et

al., 2012; Guo et al., 2015; Ludwig et al., 2018; Lucas et al.,

2019), together with a sample processing workflow with novel

data processing methods, it is now possible for proteomes to

be acquired reproducibly at scale (Tully et al., 2019; Poulos

et al., 2020). The generation and distribution of large-scale

proteomic datasets have the potential to drive new computa-

tional approaches, including deep learning-based algorithms,

to investigate the impact of molecular changes on cancer

vulnerabilities. This will enable proteomics to contribute impor-

tant clinical advances for cancer therapeutic applications.

Cell lines have been invaluable models for our understanding

of cellular processes and themolecular drivers of carcinogenesis
ugust 8, 2022 ª 2022 The Authors. Published by Elsevier Inc. 835
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Figure 1. A pan-cancer proteomic map of 949 human cancer cell lines

(A) Methodology overview for pan-cancer characterization of 949 human cell lines using a DIA-MS workflow.

(B) Proteomic measurements were integrated with independent molecular and phenotypic datasets spanning 1,303 cancer cell lines as part of the Cell Model

Passports Database. Data include proteomics (ProCan-DepMapSanger) presented here, transcriptomics, drug response (Sanger), mutation, copy number,

methylation, drug response (CTD2), CRISPR-Cas9 gene essentiality (Broad&Sanger), drug response (PRISM), and proteomics (CCLE). Each gray slice denotes

a unique cell line, and the total number of cell lines per dataset is indicated. The proteomic data (ProCan-DepMapSanger) generated in this study are shown in

orange, as well as the expanded drug response (Sanger) dataset.

(C) Number of drugs included in the drug response (Sanger) screen, with the orange bar highlighting the additional number of unique drugs presented in this study

compared to previous studies. Drugs are grouped by the pathway of their canonical targets.

(D) Pearson’s correlations of the proteomes for each set of six technical replicates, as well as each cancer type, tissue type, batch and instrument. Random

indicates the correlation between random unmatched sets of replicates. Median Pearson’s r for each group is reported. Box-and-whisker plots indicate inter-

quartile range (IQR) with a line at the median. Whiskers represent the minimum and maximum values at 1.5 3 IQRs.

See also Figure S1, Tables S1 and S2.
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(Garnett et al., 2012; Iorio et al., 2016; Barretina et al., 2012;

Tsherniak et al., 2017; Meyers et al., 2017; Behan et al., 2019;

Ghandi et al., 2019; Picco et al., 2019), and for identifying cancer

cell vulnerabilities to both genetic (McDonald et al., 2017;

Tsherniak et al., 2017; Hart et al., 2015; Meyers et al., 2017;

Behan et al., 2019) and pharmacological (Garnett et al., 2012;

Iorio et al., 2016; Corsello et al., 2020; Barretina et al., 2012;

Seashore-Ludlow et al., 2015; Rees et al., 2016) perturbations.

However, proteomic quantifications for cancer cell lines are

either limited in the range of cancer types or number of samples

analyzed, or are largely unavailable (Nusinow et al., 2020; Gho-

lami et al., 2013; Li et al., 2017; Frejno et al., 2020; Guo et al.,

2019). For this reason, biomarkers for cancer vulnerabilities

have so far been primarily based on genomic and transcriptomic

measurements (Iorio et al., 2016; Tsherniak et al., 2017; Ghandi

et al., 2019). Consequently, little is known about the contribution

of the proteome to cancer vulnerabilities or how the cancer pro-

teome is regulated in diverse tissues and genetic contexts.

This study reports a pan-cancer cell line proteomic map quan-

tifying 8,498 proteins across 949 cell lines. The generation and

analysis of this rich resource involved the development of a

workflow with rapid sample processing and minimal complexity,

followed by the application of a deep neural network-based

computational pipeline to uncover cancer targets. Integration of

our proteomic data (referred to as the ProCan-DepMapSanger
836 Cancer Cell 40, 835–849, August 8, 2022
dataset) with existing molecular and phenotypic datasets from

the Cancer Dependency Map (Boehm et al., 2021), showed that

protein networks are more strongly co-regulated than are tran-

scriptomics and functional genomics. Our approach identified

biomarkers of well-established cancer vulnerabilities and, more

important, highlighted those that cannot be identified with

genomics or transcriptomics alone. The proteome measured in

our study had an equivalent performance to the total measured

transcriptome in predicting cancer phenotypes. Furthermore,

random subsets of 1,500 proteins downsampled from the

complete dataset achieved 88% of the power to predict drug

responses. These results have broad implications for the

design of future studies, ranging from basic research to clinical

applications.

RESULTS

A resource of 949 cancer cell line proteomes
To construct a pan-cancer proteomic map, proteomes of 949

human cancer cell lines from 28 tissues and more than 40 genet-

ically and histologically diverse cancer types were quantified

(Figures 1A and S1A, Table S1). The proteome for each cell

line was acquired by DIA-MS from six replicates using a

workflow that enables high throughput and minimal instrument

downtime (see STAR Methods, Figure S1B). The resulting
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dataset was derived from 6,864 DIA-MS runs acquired over

10,000 MS h (Table S1), including peptide preparations derived

from the human embryonic kidney cell line HEK293T that were

used throughout all data acquisition periods and instruments

for quality control. These data, together with the spectral library,

were deposited in the Proteomics Identification Database

(Perez-Riverol et al., 2019) with dataset identifier PXD030304.

Raw DIA-MS data were processed with DIA-NN (Demichev

et al., 2020), using retention time-dependent normalization and

with a spectral library generated by DIA-NN. For full details of

data processing steps and parameters, see STAR Methods

and Table S1. MaxLFQ (Cox et al., 2014) was then used to quan-

tify a total of 8,498 proteins (Table S2, Figure S1C), with amedian

of 5,237 proteins (min-max range: 2,523–6,251) quantified per

cell line (Table S1, Figure 1A). The ProCan-DepMapSanger

dataset significantly expands the existing molecular character-

izations of this broad range of cancer cell linemodels (Figure 1B).

Pharmacological screens of anti-cancer drugs tested against

this cell line panel were also expanded in this study, increasing

the number of unique drugs tested by 48% over our prior work

(n = 625 drugs and investigational compounds; Figure 1C),

with a total of 578,238 half-maximal inhibitory concentrations

(IC50) experimentally measured.

High correlations were observed between replicates of each

cell line, yielding a sample-wise median Pearson’s correlation

coefficient (Pearson’s r) of 0.92 (Figures 1D and S1A). Correla-

tions between unmatched samples from the same instrument

or batch were similar to random (median Pearson’s r = 0.75,

Figure 1D). Although integration of outputs from different prote-

omics platforms is acknowledged to be an unsolved challenge,

we have compared our data with previously published proteomic

datasets comprising smaller subsets of the same cell lines (Law-

rence et al., 2015; Roumeliotis et al., 2017; Guo et al., 2019; Nu-

sinow et al., 2020; Frejno et al., 2020) and have shown compara-

ble levels of correlation among all datasets (Figure S1D).

Nonlinear dimensionality reduction using Uniform Manifold

Approximation and Projection (UMAP) (McInnes et al., 2018)

showed no evidence of instrument or batch effects (Figure S1E).

Proteins that were detected had higher mean RNA expression

across the cell line panel than proteins that were not detected

in this study (p < 0.0001 by the Mann-Whitney U test) (Fig-

ure S1F), suggesting some bias toward abundant proteins.

Overall, this study generated a high-quality and biologically

reproducible pan-cancer proteome map of human cancer

cell lines.

Proteomic profiles reveal cell type of origin
Next, we defined a stringent set of protein quantifications

that were supported by measuring more than one peptide

(n = 6,692 human proteins) (Table S2). Visualization of these

protein intensities via UMAP showed groupings by cell type of

origin, such as distinct clusters of hematopoietic and lymphoid

cells and skin cells (Figure 2A). Hematopoietic and lymphoid

cells appeared to exhibit further subgroups, and we found that

this cell type could be segregated into different cell lineages (Fig-

ure 2B). This high-level dimensionality reduction suggested a

profile of protein expression that relates to cell type of origin.

To investigate this further, a set of 279 proteins that are enriched

in certain cell types was selected (Table S3). These cell type-en-
riched proteins were defined as any protein quantified in 50% or

more of cell lines from nomore than two tissue types and 35% or

less of cell lines from all remaining tissues, considering only

tissues represented by at least 10 cell lines (Figure 2C). Cell lines

from hematopoietic and lymphoid, peripheral nervous system,

and skin cell types showed the greatest numbers of these

proteins (Figure 2D). Proteins encoded by genes representing

gene ontology terms for lymphocyte activation, neuron projec-

tion, and pigmentation were identified in each of these cell types,

respectively. Further, the cell type-enriched proteins had a

higher correlation between the transcriptome and proteome

than did other proteins, suggesting that these represent cell

type-specific processes that are more highly conserved

between transcription and translation (Figure 2E). Overall, this

analysis demonstrates a general alignment of the proteomic

data with cell lineage, revealing patterns of protein expression

that are consistent with some cancer cell types of origin.

Post-transcriptional regulation in diverse cancer
cell types
We next sought to identify the key drivers of the distinct protein

expression patterns observed across the cell line panel and to

investigate how these integrate with other molecular and

phenotypic measurements. Multi-omics factor analysis (MOFA)

(Argelaguet et al., 2018, 2020) was used to integrate the proteo-

mic measurements with a range of molecular (promoter methyl-

ation, gene expression and protein abundance) and phenotypic

(drug response) datasets available for most cancer cell lines

(Table S4 and Figure 3A). MOFA uses a Bayesian group factor

analysis framework to enable unsupervised integration of

datasets to infer a set of factors (latent variables) that account

for biological and technical variability in the data (Argelaguet et

al., 2018, 2020). Epithelial-to-mesenchymal transition (EMT) ca-

nonical markers, vimentin and E-cadherin, and EMT gene set

enrichment analysis enrichment scores (Subramanian et al.,

2005; Liberzon, 2011) were found to be associated with the first

two factors (F1 and F2) corresponding with large portions of the

variability across all datasets (Figure 3A). Technical aspects like

cell line media and growth conditions explained little or no vari-

ability, while cell size and growth rate were moderately related

with some factors (Figure S2A). Cancer cell lines from the

same tissue of origin showed gradients of EMT markers (Fig-

ure 3B), which may indicate that the cell lines were established

from cancers derived from different epithelial or mesenchymal

lineages, or that the cancers had undergone EMT. EMT markers

are known to be associated with different stages of cancer pro-

gression including initiation, metastasis, and the development of

therapy resistance (Brabletz et al., 2018). We observed that

some factors capture tissue-specific processes, with their load-

ings being enriched toward the cell type-enriched proteins

defined earlier (Figure 3A). For example, a MOFA analysis high-

lighted an association between factor 12 and skin-derived cell

lines (Figure S2B), which in this study are primarily from mela-

nomas. Factor 12 also related to phenotypic measurements

that are typical of melanomas, correlating with CRISPR-Cas9

gene essentiality scores for BRAF (Figure 3C) and with its

inhibitor, dabrafenib (Figure 3D), both of which are strongly

associated with cell lines harboring BRAF mutations that are

very common in cutaneous melanomas.
Cancer Cell 40, 835–849, August 8, 2022 837



Figure 2. Distinct proteomic profiles according to cell type

(A) Proteomic data dimensionality reduction by UMAP, with cell lines colored by tissue.

(B) UMAP of hematopoietic and lymphoid cell lines colored by cell lineage.

(C) Heatmap of the frequency of cell type-enriched proteins observed within each tissue. Tissues and proteins are clustered on the vertical and horizontal axes,

respectively.

(D) Number of cell type-enriched proteins identified in each tissue type represented by more than 10 cell lines.

(E) Median RNA-protein correlation of cell type-enriched proteins against all other proteins with more than 10 observations in that tissue type. Only tissues with at

least five cell type-specific proteins are shown.

See also Table S3.
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While EMT markers were largely concordant between

transcriptomics and proteomics, more broadly, a modest and

variable association was observed between protein and tran-

script measurements (median protein-wise Pearson’s r = 0.42,

Figure S2C). This is consistent with the expectation that proteo-

mic data capture variability explained by post-transcriptional

regulation and the proteostasis network. Focusing on the impact

of genomic alterations on proteomic profiles, gene copy number

was more weakly correlated with protein levels than with

gene expression, indicating attenuation of copy number effects

between the transcriptome and the proteome (Figures 3E and

Table S4). This was particularly evident among subunits of

protein complexes such as those involved in ribosomes

(Figure S2D), which can co-regulate their abundance post-tran-

scriptionally to maintain complex stability and stoichiometry

(Gonçalves et al., 2017; Roumeliotis et al., 2017; Ryan et al.,
838 Cancer Cell 40, 835–849, August 8, 2022
2017; Sousa et al., 2019). Proteins involved in protein synthesis

and degradation had some of the strongest post-transcriptional

regulation, with several proteasome and ribosome subunits

showing strong attenuation (Figure S2D). Together, this reflects

an active proteostasis network, revealed primarily via direct

measurement of the proteome (Gumeni et al., 2017).

Using somatic mutation data to stratify the full set of protein

quantifications according to mutation status (Table S4) re-

vealed 478 proteins with significant differential protein intensities

between cell lines that were wild type versus those that had

protein-coding mutations (false discovery rate [FDR]-adjusted

p value < 0.05) (Figure 3F). When mutations were present in the

gene encoding a given protein, the majority of proteins had

decreased abundance (n = 354 proteins). In contrast,

mutations in some genes, such as TP53, were associated with

significantly higher protein intensities than wild-type cell lines



Figure 3. Post-transcriptional regulatory mechanisms of cancer cell lines

(A) Identification of shared variability (factors) from MOFA across multiple molecular and phenotypic cancer cell line datasets. Hematopoietic and lymphoid cells

are grouped and trained separately from the other cell lines. The upper two heatmaps (blue) report the portion of variance explained by each factor (columns) in

each dataset. The central (yellow) heatmap reports Pearson’s r between each learned factor and various molecular characteristics of the cancer cell lines. The

lower heatmap shows gene set enrichment analysis (GSEA) enrichment scores of each factor to cell type-specific proteins.

(B) Separation of cancer cell lines byMOFA factors 1 and 2, colored by tissue of origin (left) and by EMT canonical marker vimentin (VIM) protein intensities (right).

(C) Scatterplot with linear regression betweenMOFA factor 12 and BRAF CRISPR-Cas9 gene essentiality scores. Skin cancer cell lines are highlighted in red, and

BRAF mutant cell lines are marked with a cross.

(D) Similar to (C), but instead the vertical axis indicates the dabrafenib drug response (IC50) measurements.

(E) Pearson’s r between gene absolute copy number profiles with transcriptomics (horizontal axis) and with protein intensities from the ProCan-DepMapSanger

dataset (vertical axis). Representative Comprehensive Resource of Mammalian Protein Complexes (CORUM) protein complexes with the highest differences be-

tween the Pearson’s r are shown, and the top 15 most attenuated proteins from these complexes are labeled. N indicates the number of proteins in each protein

complex. Box-and-whisker plots represent the Pearson’s r distributions of proteins involved in each highlighted gene ontology term compared with all pro-

teins (gray).

(F) Volcano plot showing differential protein intensities between cell lines that are wild type versus mutant for each protein in the ProCan-DepMapSanger dataset

that is mutated in at least 1% of the cohort. The top 10 proteins by p value are annotated. The horizontal axis shows the –log10 of the empirical Bayes moderated t

test p value, and proteins with FDR of less than 5% are colored in red.

(G) Recall of PPIs, i.e., ability to detect known PPIs, from resources CORUM, STRING, BioGRID, and HuRI. All possible protein pairwise correlations (Pearson’s p

value) were ranked, using proteomics, transcriptomics, and CRISPR-Cas9 gene essentiality. The merged score was defined as the product of the p values of the

different correlations.

In (C), (D), and (E), box-and-whisker plots indicate interquartile range (IQR) with a line at the median. Whiskers represent the minimum and maximum values at

1.5 3 the IQRs. See also Figure S2 and Table S4.
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(TP53: FDR-adjusted p value < 0.0001). This is consistent with the

known increase in stability ofmanymutant P53 proteins, which re-

sults from a decreased rate of proteasome-mediated degradation

(Vijayakumaran et al., 2015).

These results indicate that, while variability in protein expres-

sion is associated with other molecular and phenotypic layers,

there is only partial correlation between transcript and protein

abundance, consistent with the effects of post-transcriptional

regulation. Thus, the ProCan-DepMapSanger dataset captures

additional protein-specific information that can augment our un-

derstanding of the impact of genomic alterations affecting,

among others, well-established cancer genes.

Co-regulatory protein networks of cancer cells
Having observed post-transcriptional co-regulation of protein

complex abundance (Figure 3E), we next investigated whether

the abundance of co-regulated proteins could be used to predict

putative protein-protein interactions (PPIs). We assessed all

possible pairwise protein correlations (n = 16,580,952) and, as

a comparator, used corresponding gene expression and

CRISPR-Cas9 gene essentiality profiles, where available. As ex-

pected, paralogs and protein complex subunits had some of the

strongest correlations (Table S4; absolute Pearson’s r > 0.5 and

FDR adjusted p value < 0.05). We systematically assessed this

enrichment using multiple resources for protein interactions:

protein complex interactions from the Comprehensive Resource

ofMammalian Protein Complexes (CORUM) (Ruepp et al., 2010);

functional interactions from the Search Tool for the Retrieval of

Interacting Genes/Proteins (STRING) database (Szklarczyk

et al., 2017); physical protein interactions from the Biological

General Repository for Interaction Datasets (BioGRID) (Chatr-Ar-

yamontri et al., 2015); and the Human Protein Interactome (HuRI)

(Luck et al., 2020). For all resources, proteomic measurements

had greater ability to detect known PPIs (area under the

recall curve [AUC] = 0.55–0.80) than transcriptomics

(AUC = 0.53–0.72) and CRISPR-Cas9 gene essentiality (AUC =

0.51–0.63) (Figure 3G), indicating that PPIs and co-regulation

are best captured by proteomics.

The correlation p value score (Fisher’s combined probability

test) for BioGRID and HuRI databases was improved slightly

by merging different datasets (AUC = 0.54–0.82), suggesting

that different types of interactions are captured across multi-

omic layers. Proteins with higher numbers of positive protein-

protein correlations were more essential for cancer cell survival,

as observed in the CRISPR-Cas9 gene essentiality dataset (Fig-

ure S2E). This is likely linked to their increased transcript and pro-

tein expression levels, and the number of pathways in which they

are involved. Paralogs were an exception, as they had largely

non-essential profiles independent of their gene expression (Fig-

ure S2F), consistent with their functional redundancy attenuating

the impact of loss (Dandage and Landry 2019).

Considering the high correlations that were observed with

known interactions, these pairwise protein correlations could

be used to identify novel putative PPIs, such as between protein

subunits. Consistent with this, we identified 1,182 putative PPIs

with a Pearson’s r greater than 0.8 that are not reported in any

of the protein network resources analyzed here. For example,

there were strong correlations between protein profiles for

EEF2-EIF3I, RPSA-SERBP1 and CCT6A-EEF2 (Table S4). These
840 Cancer Cell 40, 835–849, August 8, 2022
proteins are not reported to interact directly but are also closely

related in the high confidence STRING protein interaction

network (Szklarczyk et al., 2017). Overall, this analysis highlights

the ability for protein measurements to detect known interac-

tions, and suggests the utility of this dataset for predicting

co-regulated interactions.

Identifying biomarkers of cancer vulnerabilities
Next, we considered the application of proteomics to identify

biomarkers by harnessing drug (Garnett et al., 2012; Iorio

et al., 2016; Picco et al., 2019; Gonçalves et al., 2020) and

CRISPR-Cas9 gene essentiality (Behan et al., 2019; Meyers

et al., 2017; Pacini et al., 2021) screens. The previous Sanger

pharmacological screens were expanded to include a total of

578,238 IC50 values (Figure 1B). These included a total of 625

unique anti-cancer drugs (48% increase in unique drugs over

previously published datasets (Iorio et al., 2016; Picco et al.,

2019; Gonçalves et al., 2020)) that were screened across 947

of the 949 cancer cell lines, including U.S. Food andDrug Admin-

istration-approved drugs, drugs in clinical development, and

investigational compounds. To identify protein biomarkers

predictive of cancer cell line response to these drugs or

CRISPR-Cas9 gene essentialities (n = 17,486), we applied linear

regression to test all pairwise associations between proteins,

drug sensitivity, and CRISPR-Cas9 gene dependencies, while

considering potentially confounding effects, such as cell line

growth rate, culture media, and the average replicate correlation

(see STAR Methods for more details) (Figure 4A, Table S5).

Among the strongest significant associations (FDR < 5%), we

observed that 57 drugs were associated with the protein

abundance of their canonical target(s), including negative

associations between EGFR protein abundance and its inhibitor

gefitinib, and MET protein abundance and its inhibitor drug

response (Figure 4A). We observed a significant negative asso-

ciation between ERBB2 (also known as HER2) and lapatinib, a

tyrosine kinase inhibitor that targets EGFR and HER2 (Figure 4A).

This association has been observed in proteomic studies using

other preclinical models (breast cancer patient-derived xeno-

grafts) (Huang et al., 2017) and in human cancers, with lapatinib

already an approved drug used in the treatment of HER2-posi-

tive breast cancers (Xu et al., 2017). For another 132 drugs, sig-

nificant associations were identified with proteins functionally

related with their targets (i.e., one step away in the STRING

PPI network). The majority of the significant drug-protein target

associations showed a negative effect size (Figure 4A), indi-

cating greater sensitivity of a cell line to a drug when the target

of the drug is more abundant. Last, the identification of

associations with reported gene copy number alterations,

such as amplification of MET and ERBB2, are also observed at

the protein level (Figure 4B). Non-self interactions were also

observed, such as PPA1-PPA2 paralog synthetic-lethal interac-

tion, where cell lines with lower PPA2 abundance are more sen-

sitive to PPA1 knockout (Figure S3A).

To identify biomarker associations that are unique to the

proteome and could not be predicted by gene expression

measurements alone, we developed a deep learning-based

computational pipeline called Deep Proteomic Marker

(DeeProM) (Figure 4C). DeeProM is powered by DeepOmicNet

(see Figure S3B and STAR Methods for more details), a deep



Figure 4. Biomarkers for cancer vulnerabilities

(A) Significant linear regression associations (FDR < 5%) between protein measurements and drug responses (left) and protein measurements and CRISPR-Cas9

gene essentiality scores (right). Each association is represented using the linear regression effect size (beta) and its statistical significance (log ratio test), and

colored according to the distance between the target of the drug or CRISPR-Cas9 and the associated protein in a PPI network assembled from STRING. T

denotes the associated protein is either a canonical target of the drug or the CRISPR-Cas9 reagents; numbers represent the minimal number of interactions

separating the drug or CRISPR-Cas9 targets to the associated proteins; and the symbol ‘-’ denotes associations for which no path was found. Representative

examples are labeled.

(B) Representative top-ranked CRISPR-Cas9-protein and drug-protein associations. The top shows ERBB2 protein intensities associated with CRISPR-Cas9

gene essentiality, where cell lines with ERBB2 amplifications are highlighted in orange. The bottom shows the association between AZD6094 MET inhibitor

and MET protein intensities, where MET amplified cell lines are highlighted in orange. Box-and-whisker plots indicate interquartile range (IQR) with a line at

the median. Whiskers represent the minimum and maximum values at 1.5 3 IQRs.

(C) Overview of the DeeProM workflow: (i) deep learning models of DeepOmicNet were trained to predict drug responses and CRISPR-Cas9 gene essentialities,

prioritizing those that are best predicted by proteomic profiles; and (ii) Fisher-Pearson coefficient of skewness was calculated to identify drug responses and

CRISPR-Cas9 gene essentialities that selectively occur in subsets of cancer cell lines. The selected candidates from (i) and (ii) are illustrated by the gray box.

(iii) Linear regression models were fitted to identify significant associations between protein biomarkers, drug responses and CRISPR-Cas9 gene essentialities.

(iv) Filtering algorithms were applied to further identify tissue-specific cancer vulnerabilities.

See also Figure S3 and Table S5.

ll
OPEN ACCESSArticle
neural network architecture designed to prioritize drug re-

sponses and CRISPR-Cas9 gene essentialities that are highly

predictive and specific to subsets of cancer cell lines. In addition,

DeeProM incorporates results from linear models described

above to highlight biomarkers that are only evident at the prote-

omic level. As a benchmark, we found that the accuracy of
DeepOmicNet, evaluated using Pearson’s r between the

observed and predicted IC50 values, consistently outperformed

other machine learning approaches such as elastic net and

Random Forest, across a range of multi-omic datasets used in

previous studies (Iorio et al., 2016) (Figure S3C). DeeProM

assessed all possible drug-protein (n = 4,218,788) and
Cancer Cell 40, 835–849, August 8, 2022 841



Figure 5. Protein biomarkers identified by DeeProM

(A) Predictive performance and selectivity of all drug responses (left) and CRISPR-Cas9 gene essentialities (right) across 947 and 534 cancer cell lines,

respectively. Data points toward the top left corner of each plot indicate drug responses or gene essentialities that are both selective and well predicted. Top

selective drugs and CRISPR-Cas9 gene essentialities are labeled.

(B) Top significant protein associations with FOXA1 CRISPR-Cas9 gene essentiality scores, each bar representing the statistical significance (log ratio test) of the

linear regression, and below the effect size (beta). The minimal distance of PPIs in the STRING network between FOXA1 and each protein is annotated in each

respective bar and color coded according to the description in Figure 4A.

(C) Association between FOXA1 CRISPR-Cas9 gene essentiality scores and BSG protein intensities. Breast cancer cell lines are highlighted and sub-classified

using the PAM50 gene expression signature (Parker et al., 2009). Box-and-whisker plots indicate the PAM50 subtypes of breast cancers. Pearson’s r (r), p value

(p), and number of observations/cell lines (N) within each PAM50 type is provided; for ‘‘normal’’ subtype no correlation was performed considering N is 1.

These plots indicate interquartile range (IQR) with a line at the median. Whiskers represent the minimum and maximum values at 1.5 3 IQRs.

(D and E) Representative examples of tissue-specific associations between drug responses and protein markers for cell lines derived from bone (green; all other

cell lines are shown in gray). The number of cell lines and Pearson’s r from the highlighted tissue type are annotated at the top right and bottom left corners,

respectively. The dashed line represents the maximum concentration used in the drug response screens. (D) The GSK1070916-PPIH association in bone

supported by the ProCan-DepMapSanger proteomic dataset. (E) Similar to (D), instead showing data for the drug alisertib.

See also Figure S3 and S4; Table S5.
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CRISPR-protein (n = 86,584,537) associations to identify cancer

vulnerabilities that are simultaneously well predicted and selec-

tive in subsets of cell lines (Figure 5A). These two selection

criteria yielded 67 drug responses and 62 gene essentialities,

with a total of 7,698 drug-protein and 5,823 CRISPR-Cas9-pro-

tein associations, that had significantly improved predictions

when compared to models that considered gene expression

measurements alone (Figure 4C and Table S5).

Promising targeted therapeutics are often developed for spe-

cific cancer types and can display tissue-specific responses. For

this reason, DeeProM was used to interrogate associations at

the tissue type level by applying a filtering strategy (Figure 4C

and STARMethods). Using the DeeProMworkflow, we identified
842 Cancer Cell 40, 835–849, August 8, 2022
1,538 tissue type-level CRISPR-Cas9-protein associations

(Table S5). Among the strongest was the dependency on

FOXA1 transcription factor knockout and protein levels of basi-

gin (BSG; also known as CD147), a plasma membrane protein

expressed in breast cancer cells (Figures 5B and 5C). This

association was not observed at the gene expression level (Fig-

ure S3D). FOXA1-BSG association occurred in luminal (luminal A

and B) and HER2-positive (non-basal) breast cancer cell lines, in

which BSG protein abundance is low relative to basal cell lines

(Figure 5C). BSG has been implicated in breast cancer progres-

sion (Landras et al., 2019), and is a marker of the aggressive

basal-like and triple-negative subtypes, as well as being associ-

ated with poor overall survival within these patients (Liu et al.,
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2018). These data support a model where BSG protein expres-

sion is associated with basal-like breast cancer cells, whereas

luminal and HER2-positive breast cancer cells with low BSG

expression have an increased dependency on estrogen recep-

tor-driven FOXA1 transcriptional activity. Further work that ex-

pands the number of samples, and confirmatory studies, would

be required to validate this observation.

DeeProM also identified 108 tissue type level drug-protein

associations (Table S5). Filtering by the effect size, the strongest

association identified was between sensitivity to Aurora kinase

B/C selective inhibitor GSK1070916 and the protein abundance

of peptidyl-prolyl cis-trans isomerase H (PPIH) in cell lines

derived from bone (Figure 5D). This association was significant

at the protein level, but was not significant in the transcriptome

(Figure S4A). The association was further supported by examina-

tion of the Cancer Cell Line Encyclopedia (CCLE) proteomic

dataset (Figures S4B and S4C) (Nusinow et al., 2020), the

PRISM drug response dataset (Figure S4D) (Corsello et al.,

2020), and using an independent screening of GSK1070916 in

the Sanger drug sensitivity dataset (Figures S4E and S4F), in

which there is a suggestive association that does not reach

statistical significance due to the smaller sample size.

Furthermore, there was a strong association between PPIH pro-

tein levels and Alisertib, a second Aurora kinase inhibitor

(Figures 5E, S4G and S4H). PPIH and Aurora kinase A are both

regulated by the p53-p21-DREAM-CDE/CHR signaling pathway

(Fischer et al., 2016), supporting the identified link between

Aurora kinase inhibitor sensitivity and PPIH protein levels.

Elucidating the precise mechanism underlying this association

will require further research.

Taken together, these results demonstrate the added value

of proteomic measurements for the discovery of cancer

biomarkers. We identified both established and potential cancer

related biomarkers, including protein biomarkers for selective

cancer vulnerabilities that were not found using gene expression

measurements alone.

Predictive power of protein sub-networks on cancer cell
phenotypes
We have established the utility of proteomics to identify specific

biomarkers for cancer vulnerabilities. Using an independent

cell line proteomic dataset from the CCLE (Nusinow et al.,

2020), we observed comparable performance to the ProCan-

DepMapSanger dataset when predicting three independent

drug response datasets (Figures 6A and S5A) and CRISPR-

Cas9 gene essentiality profiles (Figures 6B and S5B). We next

compared the predictive power of proteomic and transcriptomic

data for modeling drug responses and CRISPR-Cas9 gene es-

sentialities. The predictive power of ourmodelswas highly similar

when trained using either the ProCan-DepMapSanger or the

transcriptomics dataset (Figure 6C). This was recapitulated by

machine learning methods such as elastic net and Random For-

est (Figure 6D). Notably, the predictive performance of protein

measurements and transcript measurements were highly similar,

and protein measurements alone outperformed the correspond-

ing overlapping subset of the transcriptome (p value < 0.0001,

two-tailed paired Student t test) (Figure S5C). Proteomic mea-

surements further showed overall stronger protein pairwise cor-

relations than transcriptomics or CRISPR-Cas9 gene essential-
ities (Figure 6E). Taking these observations together, this

demonstrates that proteomics and transcriptomics share com-

parable predictive power and suggests that proteomicsmay pro-

vide additional relevant information that is not captured by

transcriptomics.

To determine how predictive power is influenced by the num-

ber of proteins used in the modeling, a random downsampling

analysis was performed to predict drug responses, with a

decrease of 500 proteins in each step (see STAR Methods).

This showed that a randomly selected subset of 1,500 proteins

was able to provide 88% of the predictive power of the full da-

taset (mean Pearson’s r = 0.43 at n = 1,500 proteins versus

mean Pearson’s r = 0.49 at n = 8,498 proteins) (Figure 7A).

This implies that a random fraction of quantifiable proteins is

sufficient to represent fundamental elements of the proteome

involved in mediating key cellular phenotypes. We propose

this is in part because proteins are organized into complexes

and pathways with connected and co-regulated subunits

(Figure 7B).

To investigate protein networks, DeeProM analyses of drug-

protein and CRISPR-Cas9-protein associations were examined

in the context of protein networks (Figures 7C and 7D). The

strongest overall associations were observed between the

drug and CRISPR-Cas9 targets and their protein intensities

(Figures 7C and 7D). Additionally, CRISPR-Cas9-protein associ-

ations showed that proteins closer in the PPI network to the

targeted proteins had stronger associations than those further

apart (Figure 7D). This enrichment for targets and functionally

closer proteins remains even when the contribution of transcrip-

tomic measurements is removed for the drug-protein and

CRISPR-Cas9-protein associations (Figures S5D and S5E).

However, many seemingly functionally distant proteins (more

than two steps away from the perturbation target in PPIs) also

exhibit significant drug-protein and CRISPR-Cas9-protein

associations (Figures 7C and 7D).

We next explored the relationship between predictive

performance and sub-networks comprising proteins of differing

frequencies in the full dataset, defining categories of proteins as

those found in 90% or more (category A; n = 2,944 proteins),

20%–90% (category B; n = 3,939) or less than 20% (category

C; n = 1,615) of the cell lines, respectively (Figure S5F). Down-

sampling these protein sets at random, with a decrease of 250

proteins in each step (see STARMethods), showed that proteins

that are frequently observed in the dataset (category A), provided

the highest predictive performance (e.g., mean Pearson’s

r = 0.463 for 1,500 proteins, or r = 0.435 for 250 proteins) when

compared against less frequently observed proteins (category

B,mean r = 0.441; and category C,mean r = 0.432, for 1,500 pro-

teins) (Figure 7E). Category A proteins had a significantly higher

degree of connectivity (mean of 8 degrees) than category B and

C proteins (mean of 2 degrees and 1 degree, respectively) in the

STRINGprotein interaction network (Szklarczyk et al., 2017) (Fig-

ure 7F). It is possible that category A proteins, as a consequence

of being more frequently observed, are better studied and there-

fore have greater annotation in the STRING database. However,

together these results suggest that the quantification of small

subsets of commonly expressed proteins within highly intercon-

nected networks can be used for predictive modeling of cellular

phenotypes.
Cancer Cell 40, 835–849, August 8, 2022 843



Figure 6. Evaluation of the predictive power of DeepOmicNet for multi-omic datasets
(A and B) Distribution of the predictive power (mean Pearson’s r between predicted and observed IC50 values) of DeepOmicNet, comparing ProCan-

DepMapSanger to an independent proteomic dataset (CCLE), using cell lines in common between the two datasets. Plots show prediction of (A) drug responses

(N represents the total number of drugs tested; n = 290 cell lines) and (B) CRISPR-Cas9 gene essentialities (n = 234 cell lines).

(C) Two-dimensional density plots showing the predictive power of DeepOmicNet in predicting drug responses (left) and CRISPR-Cas9 gene essentiality profiles

(right) using protein (horizontal axis) and transcript (vertical axis) measurements. Each data point denotes the Pearson’s r between predicted and observed mea-

surements for each drug or CRISPR-Cas9 gene essentialities.

(D) Similar to (A), distribution of the predictive power of threemachine learningmodels using either proteomic or transcriptomicmeasurements to train and predict

drug responses (Sanger dataset).

(E) Cumulative distribution function of the Pearson’s r of all pairwise protein-protein correlations compared with transcriptomics and CRISPR-Cas9 gene es-

sentiality measurements.

See also Figure S5.
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DISCUSSION

The ProCan-DepMapSanger data resource is a large pan-can-

cer proteomic map that provides multiple insights beyond ex-

isting molecular datasets. This map quantifies 8,498 proteins

across 949 human cancer cell lines, representing 28 tissues

and more than 40 histologically diverse cancer types and a

wide range of genotypes, significantly expanding the molecu-

lar characterization of cancer models as part of a Cancer De-

pendency Map (Boehm et al., 2021). All data are publicly avail-

able along with other molecular and phenotypic datasets at

http://cellmodelpassports.sanger.ac.uk (van der Meer et al.,

2019). This proteomic dataset is a high-quality resource for

mechanistic investigation of network organization and regula-

tory principles of the proteome, as well as for translational

discoveries.
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This study demonstrated protein expression patterns reflect-

ing cell lineage and, potentially, EMT. The data also revealed

widespread protein regulatory events, such as post-transcrip-

tional attenuation of gene copy number effects. ProCan-

DepMapSanger allowed the comprehensive characterization of

protein expression patterns that could not be captured by the

transcriptome, exposing the benefits of directly measuring

protein abundance. Furthermore, we developed a deep

learning-based pipeline DeeProM, with a deep neural network

architecture, which consistently outperformed other machine

learning approaches. DeeProM enabled the full integration of

proteomic data with drug responses and CRISPR-Cas9 gene

essentiality screens to build a comprehensive map of protein-

specific biomarkers of cancer vulnerabilities that are essential

for cancer cell survival and growth. Notably, this demonstrates

that proteomic data spanning a broad range of cancer cell types

http://cellmodelpassports.sanger.ac.uk


Figure 7. Proteomic support for a network pleiotropy model
(A) Comparison of the predictive power of DeepOmicNet trained with randomly downsampled sets of proteins. The dots indicate the means and vertical lines

represent 95% confidence intervals derived from 10 iterations of random downsampling. The red point represents the full predictive power using all of 8,498

quantified proteins.

(B) Schematic diagram depicting protein network pleiotropy with widespread protein associations with responses to either drugs or CRISPR-Cas9, and

demonstrating the strongly co-regulated nature of protein networks. Nodes represent proteins that could be either quantified or are undetected, where T rep-

resents a protein target of a drug or CRISPR-Cas9 gene essentialities. Edges showcase putative interactions, with high correlation coefficients between proteins

depicted by thicker edges. Orange arrows represent the variability explained by that protein for the cancer cell line’s response to a drug or CRISPR-Cas9 gene

perturbation. The size of the arrow is proportional to the variance explained.

(C and D) Quantile-quantile plots of protein associations with (C) drug responses and (D) CRISPR-Cas9 gene essentiality profiles. Protein associations are

grouped and colored by their distances from the drugs or CRISPR-Cas9 targets using the STRING protein interaction network, where ‘-’ and the blue circles

denote associations for which no link in the protein network could be found between the protein and the drug or CRISPR target. The p values were calculated

in likelihood ratio tests on all parameters of the linear regression models. Annotation is as described in Figure 4A. For each group, the p value distribution inflation

factor lambda, l, was calculated using the median method (Aulchenko et al., 2007).

(E) Comparison of the predictive power of DeepOmicNet models trained with subsets of Category A, B and C proteins (per Figure S5F) comprising randomly

downsampled sets of proteins. The dots indicate themeans and vertical lines represent 95%confidence intervals derived from 10 iterations of random samplings.

(F) The STRING protein interaction network diagram (left), with proteins colored according to category. The bar chart (right) shows the network connectivity for

these proteins, where degree represents the number of other proteins connected to a given protein according to the STRING PPI network. ***p < 0.001 by un-

paired t test. Error bars represent 95% confidence intervals.

See also Figure S5.
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and molecular backgrounds has significant utility for predicting

cancer cell vulnerabilities.

The proteomic workflow used in this study was devised to be

clinically relevant, so that our methods could be readily

applied for use in human cancer tissue samples. To do so, we

used shortened preparation times, low peptide loads, and a short

liquid chromatography (LC)/MS run time, enabling the analysis of

large numbers of very small cancer samples,with high throughput

and minimal instrument downtime. This will facilitate future

validation of proteomic predictions from cell line data in clinical

sample cohorts for which outcome of treatment is documented

and proteomic data are obtained. The CCLE proteomic dataset

was generated using higher peptide loads and longer LC/MS

run time to measure more proteins (12,755 proteins). Despite

the different depths of protein coverage, the CCLE and ProCan-
DepMapSanger proteomic datasets had equivalent power

for predicting cancer dependencies. Similarly, the ProCan-

DepMapSanger proteomic dataset had similar predictive power

to cancer cell line transcriptomic data. Taken together, this dem-

onstrates that a high-throughput sampleworkflow, as used in this

study, produces data with power to inform predictions of cancer

dependencies and indicates the potential of proteomics for

clinical applications using small biopsies of human cancer tissue

in diversemolecular contexts. Subsequent application of this pro-

teomics sample workflow, and integration of this cell line dataset

with proteomic data from cancer tissue samples, is likely to pro-

vide numerous potential clinical applications, such as the proteo-

micmolecular identification and stratification of cancer subtypes.

Measuring even a fraction of the proteome, as small as 1,500

randomly selected proteins, provided power to predict drug
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responses thatweresimilar to the full proteomethatwereport. This

suggests that random subsets of protein data comprising a rela-

tively small number of proteins would be sufficient to represent

many fundamental cellular processes. This is consistent with an

omnigenic model (Boyle et al. 2017), whereby large numbers of

genes are related to many different disease traits in an intercon-

nected manner. This is related to the proteostasis network model

of sustaining proteomebalance via coordinated protein synthesis,

folding, conformation anddegradation (Gumeni et al., 2017). In the

context of the cancer proteome, we propose that pleiotropic net-

works of highly connected and co-regulated proteins contribute

toward establishing cellular phenotypes. This includes a small

numberofcoreproteinmodules thatareproximal to thephenotype

and have the strongest effect, and amuch larger set ofmore distal

proteins that togetherexplain a significantportionof total variation.

In conclusion, this dataset represents a major resource for the

scientific community, for biomarker discovery and for the study

of fundamental aspects of protein regulation that are not evident

from existing molecular datasets. This will enable the identifica-

tion of targets (including cell surface proteins) and treatments for

validation in cancer tissue cohorts, with applications in precision

oncology.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Ammonium bicarbonate Sigma-Aldrich Cat#09830-500G

CAS: 1066-33-7

Acetonitrile VWR Chemicals Cat#20060.32

CAS: 75-05-8

Formic Acid Fluka Cat#94318-250ML-F

CAS: 64-18-9

Benzonase Sigma-Aldrich Cat#E1014-25KU

Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) Sigma-Aldrich Cat#C4706-2G

CAS: 51805-45-9

Iodoacetamide Sigma-Aldrich Cat#C4706-2G

CAS: 51805-45-9

Sodium deoxycholate Calbiochem Cat#264101

CAS: 302-95-4

Peptides (MS spike-in) JPT Custom

Deposited data

Cancer cell lines Proteomics This paper PXD030304

Cancer cell lines Drug response This paper cancerrxgene.org

Cancer cell lines RNA-seq transcriptomics Garcia-Alonso et al., 2018 cellmodelpassports.sanger.ac.uk

Cancer cell lines Illumina 450k methylation Iorio et al., 2016 cellmodelpassports.sanger.ac.uk

Cancer cell lines TMT Proteomics Nusinow et al., 2020 depmap.org

Cancer cell lines CRISPR-Cas9 Pacini et al., 2021 score.depmap.sanger.ac.uk

Cancer cell lines Mutations and Copy Number alterations Iorio et al., 2016 cellmodelpassports.sanger.ac.uk

Cancer cell lines CTD2 drug response Seashore-Ludlow et al., 2015 ocg.cancer.gov/programs/ctd2/data-portal

Cancer cell lines PRISM drug response Corsello et al., 2020 depmap.org

Experimental models: Cell lines

949 human cancer cell lines, with details,

including Source and Identifier, in Table S1

CellModelPassports See Table S1 and cellmodelpassports.

sanger.ac.uk

Software and algorithms

Analyst TF 1.7.1 Sciex USA https://sciex.com/support/software-

support/software-downloads

DIA-NN Demichev et al., 2020 Version 1.8

DIA-NN R package Demichev et al., 2020 https://github.com/vdemichev/diann-rpackage

DeeProM and data analysis scripts This paper https://doi.org/10.5281/zenodo.6563157

scikit-learn Pedregosa et al., 2011 scikit-learn.org

PyTorch Paszke et al., 2019 pytorch.org

matplotlib Hunter, 2007 matplotlib.org

pandas Reback et al., 2022 pandas.pydata.org

seaborn Waskom, 2021 seaborn.pydata.org

Other

Sciex 6600 TripleTOF MS Sciex Australia

Eksigent HPLC 425 Sciex Australia

Trajan analytical column Trajan Australia Cat#2C181-03R30KSC

Trajan trap column Trajan Australia Cat#2C181-03T30K

Implen Nanophotometer N80 Labgear Australia Cat#IMPLN60-TOUCH

Barocycler 2320 EXT Pressure Biosciences Inc Cat#2320-EXT

Cell Model Passports van der Meer et al., 2019 cellmodelpassports.sanger.ac.uk
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Lead contact
Further information and requests for resources and reagents should be directed to Roger Reddel, rreddel@cmri.org.au.

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The raw mass spectrometry proteomic data and accompanying files have been deposited at the ProteomeXchange Con-

sortium via the PRIDE (Perez-Riverol et al., 2019) partner repository. The accession number is PXD030304, also listed in the

key resources table. All protein measurements from the ProCan-DepMapSanger dataset are available in Table S2. Drug

responsemeasurements are available under Release v8.4 at https://www.cancerrxgene.org/. Any additional datasets (e.g. pro-

tein and peptide level measurements and drug response), together with analytical results (e.g. full list of drug-protein and

CRISPR-protein associations), are available in figshare https://doi.org/10.6084/m9.figshare.19345397. Any previously pub-

lished datasets used for analysis in this study are listed in the Key resources table. All data are publicly available as of the

date of publication.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. The DOI is https://doi.org/

10.5281/zenodo.6563157, also listed in the Key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Cell line authentication

The 949 human cancer cell lines used in this study have been obtained from public repositories and private collections and

are cultured in DMEM/F12 or RPMI 1640 (Table S1). More detailed information about each cell line can be found at the Cell

Model Passports portal (https://cellmodelpassports.sanger.ac.uk/) (van der Meer et al., 2019). All cell line stocks were tested

for mycoplasma contamination prior to banking using both a polymerase chain reaction (EZ-PCR Mycoplasma Detection Kit,

Biological Industries) and a biochemical test (MycoAlert, Lonza). Cultures testing positive using either method were removed

from the collection.

To prevent cross-contamination or misidentification, all banked cryovials of cell lines were analyzed using a panel of 94 single

nucleotide polymorphisms (SNPs) (Garnett et al., 2012) (Fluidigm, 96.96 Dynamic Array IFC). The data obtained were compared

against a set of reference SNP profiles that have been authenticated by short tandem repeat (STR) back to a published reference

(typically the supplying repository). Where a published reference STR profile is not available, the reference SNP profile is required

to be unique within the collection/dataset. A minimum of 75% of SNPs is required to match the reference profile for a sample to

be positively authenticated.

Additionally, one of the replicate cell pellets generated from each cell line for this study underwent authentication via STR profiling

at CellBank Australia (Westmead, Australia). To do so, STR loci were amplified using the PowerPlex� 16HS System (Promega) and

the data were analyzed using GeneMapper� ID software (ThermoFisher). Only cell lines that passed this quality control metric were

retained for analysis (n = 949).

Cell culture and harvesting

For each cell line, distinct cell pellets from a single cell culture were produced as technical replicates. Cells were cultured to semi-

confluence at 37�C and 5%CO2 in the appropriate medium and then harvested. Suspension cells were centrifuged at 200 g for 5 min

at 4�C and the supernatant was removed. The cells were then washed twice by resuspension in ice-cold Dulbecco’s phosphate

buffered saline containing no calcium or magnesium (DPBS) and centrifugation at 200 g for 5 min at 4�C. For adherent cells, the
culture medium was removed before washing with ice-cold DPBS and the cells were removed by mechanical scraping into fresh

ice-cold DPBS. The harvested cells were then centrifuged as before, washed twice in ice-cold DPBS, transferred to 1.5mL centrifuge

tubes (Protein LoBind Tubes, Eppendorf) and centrifuged at 600 g for 5min at 4�C. The DPBSwas removed and the tubes containing

the cell pellets were snap frozen on dry ice, then stored at �80�C.

METHOD DETAILS

Cell lysis and digestion
Three cell pellets were analyzed for each of the 949 cell lines. The cell pellets were processed using Accelerated Barocycler Lysis and

Extraction (ABLE) protocol with minor modifications (Lucas et al., 2019). In brief, all cell pellets were centrifuged to remove residual

DPBS, then resuspended in a volume of 1% (w/v) sodiumdeoxycholate (SDC) that was appropriate for the cell count (between 50 and

400 mL). To this, 1 unit of benzonase was added to digest the DNA/RNA in the samples for 5 min at 37�C and mixed with shaking at
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1000 rpm. After incubation, a 50 mL aliquot was taken and further processed, with peptide digestion carried out as previously

published (Lucas et al., 2019).

Data independent acquisition (DIA)-MS
We used a workflow that enables high throughput and minimal instrument downtime; 2 mg of peptide was loaded for each repli-

cate with 90-min acquisitions. Three technical replicates of peptide preparations were generated. Each replicate was injected

on two of six different SCIEX� 6600 TripleTOF� mass spectrometers coupled to Eksigent nanoLC 425 high-performance liquid

chromatography (HPLC) systems, housed in a single laboratory, ProCan in Westmead, Australia (Figure S1B). In each case, an

Eksigent nanoLC 425 HPLC system (Sciex) operating in microflow mode was coupled online to a 6600 TripleTOF� system

(Sciex) run in sequential windowed acquisition of all theoretical fragment ion spectra (SWATH�) mode using 100 variable isola-

tion windows (Table S1). The parameters were set as follows: lower m/z limit 350; upper m/z limit 1250; window overlap (Da) 1.0;

collision energy spread was set at 5 for the smaller windows, then 8 for larger windows; and 10 for the largest windows. MS/MS

spectra were collected in the range of m/z 100 to 2000 for 30 ms in high resolution mode and the resulting total cycle time was

3.2 s.

The peptide digests (2 mg) were spiked with retention time standards and injected onto a C18 trap column (SGE TRAPCOL C18

G203 300 mm3 100 mm) and desalted for 5 min at 10 mL/min with solvent A (0.1% [v/v] formic acid). The trap column was switched

in-line with a reversed-phase capillary column (SGE C18 G203 250 mm 3 300 mm ID 3 mm 200 Å), maintained at a temperature of

40�C. The flow rate was 5 mL/min. The gradient started at 2% solvent B (99.9% [v/v] acetonitrile, 0.1% [v/v] formic acid) and increased

to 10% over 5 min. This was followed by an increase of solvent B to 25% over 60 min, then a further increase to 40% for 5 min. The

column was washed with a 4 min linear gradient to 95% solvent B held for 5 min, followed by a 9 min column equilibration step with

98% solvent A. The TripleTOF� 6600 system was equipped with a DuoSpray source and 50 mm internal diameter electrode and

controlled by Analyst 1.7.1 software. The following parameters were used: 5500 V ion spray voltage; 25 nitrogen curtain gas;

100�C TEM, 20 source gas 1, 20 source gas 2.

Spectral library and DIA-MS data processing
An in silico spectral library was created using DIA-NN (version 1.8) (Demichev et al., 2020) for the canonical human proteome (Uniprot

Release, 2021_03; 20,612 sequences), along with retention time peptides and commonly occurring microbial and viral sequences.

DIA-MS data in wiff file format were collected for 6,981 MS runs (Table S1), and all of these MS runs were used to create a spectral

library in DIA-NN (Demichev et al., 2020). To reduce the search space, the library was confined to precursors identified in the in silico

library only. The following settings were used for library generation. Precursor mass ranges were set between 400 and 1250 m/z and

fragment mass ranges were set between 100 and 2000 m/z. Mass accuracies of 40 ppm were set for both MS1 and MS2, with the

scan window set to 9. Precursors of charges 2-4 and of length between 7 and 30 were retained. Only Carbamidomethylation at

Cysteine residues was allowed as a fixed modification. Interfering precursor peaks were removed, the robust LC (high accuracy)

quantification strategy was used, and precursors were filtered at a q-value of 0.01. Protein grouping was done at the canonical

protein sequence level rather than gene level. The final spectral library contained a total of 12,487 proteins and 144,578 precursors.

DIA-NN (version 1.8) (Demichev et al., 2020) was used to process the MS data using this spectral library, implemented using RT-de-

pendent normalization. See Table S1 for the full code and parameters used to run DIA-NN. All MS runs, as well as the FASTA and

spectral library files, have been deposited in the Proteomics Identification Database (PRIDE) (Perez-Riverol et al., 2019) with identifier

PXD030304.

DIA-NN output data were filtered to retain only precursors from proteotypic peptides with Global.Q.Value % 0.01. These pre-

cursors were then used for protein quantification by maxLFQ (Cox et al., 2014), implemented using the DiaNN R Package (https://

github.com/vdemichev/diann-rpackage) and with default parameters. Data were then log2 - transformed. 117 files were discarded

from downstream analyses (Table S1), as follows: one MS run recorded no peptides, six replicates of SW900 were removed

because the cell line failed STR profiling; 32 files from the earliest pilot batch were removed, as these were repeated later in

the experiment; 39 files that quantified fewer than 2,000 proteins were removed; 39 files were removed because they had a

poor correlation across replicates. Cell lines with a poor replicate correlation were identified using two methods. First, the mini-

mum correlation between replicates was calculated for each cell line. The 10% of cell lines with the lowest correlation across

the cohort were then examined to identify whether any MS run had a correlation with an MS run from another cell line that

was above the 75% percentile of correlations (n = 11 cell lines). MS runs were then discarded for each cell line if manual exam-

ination of replicate correlations indicated that a sample mix up could have occurred (n = 21 MS runs discarded). Second, any cell

line was selected that had a minimum correlation in at least one replicate of < 0.8 or a coefficient of variation, from proteins

observed in > 80% of the cohort, across replicates of > 30% (n = 9 cell lines). These MS runs were then also manually examined

for each cell line and MS runs that were discordant with the remainder of replicates were removed (n = 18 MS runs discarded). The

final dataset, termed ProCan-DepMapSanger, was derived from 6,864 mass spectrometry runs covering 949 cell lines (Table S1)

and quantifying a total of 8,498 proteins (Table S2). A filtering was applied to identify protein quantifications derived from more

than one supporting peptide (n = 6,692 human proteins; Table S2. MS runs across replicates of each cell line were combined

by calculating the geometric mean. Protein quantifications and number of peptides identified per protein in each MS run are

available in figshare https://doi.org/10.6084/m9.figshare.19345397.
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Assembly of multi-omics cell line datasets
Drug response measurements were assembled from multiple studies (Garnett et al., 2012; Iorio et al., 2016; Picco et al., 2019;

Gonçalves et al., 2020) and 204 new compounds were screened and dose-response curves fitted as previously described in

detail (Iorio et al., 2016; Vis et al., 2016). A total of 625 unique drugs were included in our drug response dataset. All data

and respective details can be accessed at www.cancerRxgene.org (Yang et al., 2013). Cell line growth rates were represented

as the ratio between the mean of the untreated negative controls measured at day one (time of drug treatment) and the mean of

the dimethyl sulfoxide (DMSO) treated negative controls at day four (72 h post drug treatment). Data acquisition and processing

was performed as previously described (https://www.cancerrxgene.org/) to systematically fit drug response curves and derive

half-maximal inhibitory concentration (IC50) measurements for each drug across the cell lines measured (Garnett et al., 2012;

Yang et al., 2013; Iorio et al., 2016; Picco et al., 2019; Gonçalves et al., 2020). The dataset comprises two different screening

approaches (Yang et al., 2013), and for drugs screened with both modalities, these were kept as separate entries for the down-

stream analyses by constructing a unique identifier (drug_id) with the pattern of <drug_code>_<drug_name>_<GDSC_version>,

resulting in 819 drug_ids. A threshold of a minimum of 300 cell lines was applied to exclude drugs that were screened without

enough cell lines for DeeProM analysis, resulting in a total of 710 drug_ids. The natural log of the raw IC50 was used for all

computations.

RNA sequencing (RNA-seq) transcriptomics and Infinium HumanMethylation450 methylation measurements for the same set of

cancer cell lines were assembled from previous analyses, for which the acquisition and processing are described in detail

(Garcia-Alonso et al., 2018; Iorio et al., 2016). Mutation and copy-number calls were inferred from whole-exome sequencing and

Affymetrix SNP6 arrays, respectively, as described previously (Iorio et al., 2016).

Genome-wide essentiality measurements for 17,486 genes were assembled for 534 cancer cell lines that overlap with those

analyzed in the ProCan-DepMapSanger dataset, using CRISPR-Cas9 screens (Pacini et al., 2021). This is an integrated CRISPR-

Cas9 dataset derived from two projects (Behan et al., 2019; Meyers et al., 2017) that removes library biases and represents gene

essentiality as log2 fold-changes corrected for copy number bias (Iorio et al., 2018).

Dimensionality reduction and visualization
Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) was calculated using Python package umap-learn

(v.0.4.2) with the default setting of 15 nearest neighbors and the first 50 principal components derived from the protein matrix.

Missing values were replaced with a value representing the first percentile of the input data matrix to calculate the principal com-

ponents with the Python package scikit-learn (v.0.22.1) (Pedregosa et al., 2011). The first two dimensions were used for

visualization.

Multi-omics factor analysis
Multi-omics decomposition by factor analysis was performed using the mofapy2 Python module (v0.5.6) (Argelaguet et al., 2018,

2020). Datasets with continuous measurements were selected for this analysis, i.e., drug responses, methylation, proteomics,

and transcriptomics. For proteomic measurements, we used both the ProCan-DepMapSanger dataset and an independently

acquired dataset (Nusinow et al., 2020) measuring an overlapping set of 290 cancer cell lines. Considering the strong separation

of hematopoietic and lymphoid cell lines from the rest of the cell lines (Figure 2A), these were treated as a separate group in the

analysis. Different numbers of factors were tested and n = 15 was chosen as it represented a trade-off between the total variance

explained and the correlation between factors. Higher numbers of factors increased the correlation between factors and only

marginally increased the variance explained, indicating that some factors were unnecessary. For the ProCan-DepMapSanger

dataset, the mean sample intensity was regressed out prior to the factor analysis, thereby avoiding it being captured by any factor

and artifactually increasing the total variance explained. Mofapy2 was run with convergence mode set to ‘slow’. Scale views and

groups were set to ‘True’ to have a unit variance.

Pairwise protein-protein correlations
Weconsidered proteins with corresponding data alsomeasured in the transcriptomics andCRISPR-Cas9 datasets (n = 6,347). For all

pairwise protein combinations, we calculated Pearson’s r correlations between their protein, gene expression and essentiality

measurements. A minimum of 15 complete observations was required to calculate the correlation, yielding 16,580,952 pairwise

combinations. Protein-protein correlations were annotated using multiple sources of protein interactions: Comprehensive Resource

of Mammalian Protein Complexes (CORUM) (Ruepp et al., 2010); Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING) (Szklarczyk et al., 2017); Biological General Repository for Interaction Datasets (BioGRID) (Chatr-Aryamontri et al.,

2015); and Human Protein Interactome (HuRI) (Luck et al., 2020). For BioGRID, only physical interactions between proteins from

humans were considered. For STRING, the most stringent threshold of the confidence score was chosen, and only interactions

with a score R 900 were considered. The average path length of the STRING PPI networks was 3.9. Protein-protein Pearson’s

correlations were then used to estimate the capacity to recover interactions from the different resources by ranking in ascending

order all correlations according to their p value (x axis) and drawing the cumulative distribution curve of the interactions found in

the resource (y axis). The area under the recall curve (AUC) was estimated using the corresponding function from the Python package

scikit-learn (v0.24.2) (Pedregosa et al., 2011).
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DeeProM (Deep Proteomic Marker) - Overview
We developed amultistep computational workflow, Deep Proteomic Marker (DeeProM), to identify protein biomarkers of cancer vul-

nerabilities. The analysis steps in DeeProM are fourfold. First, it prioritizes drug responses and CRISPR-Cas9 gene essentialities that

can be confidently predicted using proteomic profiles. Second, it prioritizes strong drug responses and gene essentialities that are

specific to small subsets of cancer cell lines. Third, it prioritizes protein biomarkers that show significant associations with drug

responses or gene essentialities. Fourth, it prioritizes protein biomarkers that are present in specific tissues. The source code is pro-

vided in the GitHub repository (see Data and code availability).

DeeProM - DeepOmicNet model
DeeProM is powered by a deep neural network architecture, DeepOmicNet, to predict drug responses and CRISPR-Cas9 gene

essentialities. DeepOmicNet ranks drugs and gene essentialities based on predicted cellular responses using the ProCan-

DepMapSanger dataset as the input. Both the proteomic and the drug response datasets contain missing values, while the gene

essentiality dataset provides a complete data matrix. DeepOmicNet models these missing values accordingly. Multilayer perceptron

(MLP) is a classic neural network architecture that has been used by default for deep learning in numerous biomedical studies

(Z. Zhang et al., 2019). To enhance the predictive performance of MLP with proteomic data, we modified its network architecture

and developed DeepOmicNet with the following three major improvements:

Grouped bottleneck

DeepOmicNet uses grouped bottlenecks to avoid fully connected layers, which involves a large number of parameters being opti-

mized. Compared with a fully-connected layer, breaking the connections into smaller groups allows the network to be more memory

efficient, thus enabling wider or deeper layers. A weight matrixW˛R(k x k) containing k2 parameters with grouped bottlenecks can not

only reduce the number of parameters, but also provide better predictive performance. Instead of connecting all pairs of neurons,

neurons can be broken into groups, and only neurons within the same group are connected between layers (Figure S3B). The group

size g can be set as any number that is divisible by the hidden layer width k. When g=k, all neurons are treated as one group, which

reduces to a normal fully-connected layer. Multiple configurations were tested and the optimal group size gwas set to 2. The number

of parameters for one layer with grouped bottlenecks is significantly reduced from k2 to k/23 22=2k. The number of parameters with

grouped bottlenecks is calculated as k/g3g2=g3k, thus the run-time complexity is decreased from quadratic to linear.

Skip connections

The complete network architecture is visualized in Figure S3B. Neurons between every two consecutive layers are connected in MLP,

which is computationally intensive and suboptimal for model training. To mitigate this problem, DeepOmicNet utilizes skip connec-

tions (He et al., 2016) to connect alternate layers. Let x˛Rkbe the vector of the ith hidden layer of a real coordinate space of dimension

k (corresponds to the number of neurons in a layer, also known as the layer width), the value of xi is calculatedwith skip connections as:

xi = fðWi� 1 xi� 1 + bi� 1 + xi� 2Þ (Equation 1)

where f is the activation function,Wi� 1 ˛RðkxkÞ is theweightmatrix, bi� 1 ˛Rk is the bias vector and xi� 2 ˛Rk is the hidden layer ahead

of the hidden layer xi� 1. The value of the hidden layer i-2 is fed into the hidden layer i by skipping the hidden layer i-1, resulting in skip

connections (Figure S3B). Each hidden layer is set with the same width k, which is a hyperparameter for model tuning, and usually is

chosen to be slightly smaller than the input feature dimension. In DeepOmicNet, a sigmoid function was chosen to be the activation

function f, because it outperformed the rectified linear activation function and the hyperbolic tangent function.

Loss function

DeepOmicNet is trained with mini-batches using a customized mean squared error (MSE) as the loss function. DeepOmicNet is

applied to predict both drug responses and CRISPR-Cas9 gene essentialities. For the cell line m, the loss for the target variable n

is defined as:

Lm; n =

��
ym; n � bym; n

�2
if ground truth is present for n

0 otherwise
(Equation 2)

where ym,n is the ground truth label of the target n (either drug response or gene essentiality) and bym;n is the predicted value of the

target n. The label ym,n is missing if a particular cell line m was not screened with drug n.

In addition to the three major improvements, other characteristics of DeepOmicNet include the following:

Missing values

One specific challenge of DIA-MS based proteomics is the missing values in the data matrix (Webb-Robertson et al., 2015; Poulos

et al., 2020). Imputation is widely used but often leads to distortion to some extent (Wei et al., 2018). For DeepOmicNet, missing

values were replaced by zeros, thus allowing the neural network to ignore the weight update for these inputs.

Hyperparameter tuning

Hyperparameters including model width, depth, learning rate and batch size were tuned to achieve the highest predictive per-

formance. Pearson’s r between true and predicted values is used as the evaluation metric. Hyperparameters that resulted in the

highest performance in five-fold cross-validation of the 80% training data were chosen for the final evaluation on the 20%

independent test set. The chosen hyperparameters can be found in the configuration files in the source code (see Data and

code availability).
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Thresholding

The thresholds are set to Pearson’s r > 0.4 and Pearson’s r > 0.3 to prioritize highly predictive drug responses and CRISPR-Cas9

gene essentialities, respectively. This yielded 67 drug responses and 62 gene essentialities.

DeeProM - Prioritizing selective associations
DeeProM prioritizes drug responses and CRISPR-Cas9 gene essentialities that are likely to be non-toxic to normal cells. Since the

cell lines used in this study were derived from cancer (the majority) or viral transformation, we approximated this task by finding drug

responses and gene essentialities that were selective for only a small fraction of the cell lines, which indicates that the drug response

or gene essentiality is less likely to be toxic to normal cells. Ranking of strongly selective drug responses and gene essentialities was

performed using Python package scipy (v1.5.2) skew function, which calculates the Fisher-Pearson’s coefficient of skewness.

Skewness values of �1 and �2 were used for drug responses and gene essentialities, respectively.

DeeProM - Linear regression models
Associations between protein and phenotypic measurements, drug responses and gene essentialities were performed using

linear regression models (sklearn v0.24.2 class LinearRegression). Several technical and biological covariates were added to

the model to remove potentially spurious associations. First, we built the following technical covariates into the model: (i) the

growth rate of the cell lines; (ii) cell culture medium, D/F12 (DMEM/F12: 10% FBS, 1% PenStrep) or R (RPMI 1640: 10%

FBS, 1% PenStrep, 4.5 mg/mL Glucose, 1 mM Sodium Pyruvate); (iii) cell line growth properties (i.e., adherent, semi-adherent

or suspension), ploidy, and if they are hematopoietic and lymphoid cell lines; (iv) sample mean protein replicates Pearson’s cor-

relation; (v) for the CRISPR-Cas9 gene essentiality only, we considered the institute of origin of the CRISPR-Cas9 screen, i.e.,

Wellcome Sanger or Broad Institute; and (vi) for the drug response models only, we considered the cell line mean IC50 across all

drugs. Discrete covariates were represented as dummy binary variables. Second, to identify associations that were exclusively

found at the protein level, we added the following gene expression covariates to the model: (i) the first ten gene expression

principal components using the Python package scikit-learn (v0.24.2) (Pedregosa et al., 2011); and (ii) the corresponding tran-

script level of the protein being tested. Formally, we fit the following linear regression model for each drug response/gene

essentiality–protein pair:

d = Mb0 +E b1 + e b2 +p b3 + ε (Equation 3)

where, d represents an n x 1 vector of the drug response IC50 (n = 710 drugs) for 947 cell lines or CRISPR-Cas9 gene essentiality log2
fold changes (n = 17,486 genes) for 534 cell lines;M is the n x kmatrix of covariates (k = 11 covariates); E is an n xmmatrix containing

the first (m = 10) principal components of the gene expression dataset; e is a vector of size n x 1 containing the transcriptomics mea-

surements of the corresponding protein p; p is a vector of size n x 1 containing the protein measurements; and ε is the error vector of

size n x 1. For each protein, cell lines with missing values were dropped from the modeling. For drug response, missing values

were replaced by the drug mean IC50. The number of cell lines with complete information per fit was provided. The model was fitted

by minimizing the residual sum of squares to estimate the parameters bn of each variable. In total, there were 710 3 6,692 =

4,751,320 drug-protein pairs and 17,486 3 6,692 = 117,016,312 possible CRISPR-Cas9 gene essentiality-protein pairs, however,

both drug response and CRISPR-Cas9 data covered various subsets of cell lines. We required a minimum number of 60 cell lines

to test the association. As a result, a total of 4,218,788 drug-protein and 86,584,537 CRISPR-Cas9-protein tests were performed.

Statistical assessment of the improvement of adding protein measurements to the linear regression was performed using a likeli-

hood ratio test between the full model [Equation 3] and the null model, which excludes the protein measurement and its parameterb2.

Likelihood ratio test’s p value was estimated using a chi-square distribution with one degree of freedom. Adjustment for multiple

testing was performed per drug or CRISPR-Cas9 gene essentiality using the Benjamini-Hochberg procedure to control the false

discovery rate (FDR). Associations with FDR < 10% for models with covariates, or FDR < 0.1% for models that do not use covariates,

were considered as significant associations.

DeeProM - Tissue type level filtering
To investigate drug-protein and CRISPR-Cas9-protein associations for a given tissue type, we used metrics derived from

DeepOmicNet, Fisher Pearson’s coefficient of skewness and linear regression to prioritize drug responses and CRISPR-Cas9

gene essentialities according to the thresholds described above. The overlap of these three methods was used as the final result,

which included 7,698 drug-protein and 5,823 CRISPR-Cas9-protein associations. Finally, we applied additional filters to further pri-

oritize associations that are unique to certain tissue types, yielding the final list of 108 drug-protein associations for 18 drugs and

1,538 CRISPR-Cas9-protein associations for 38 genes (Figure 4C). The filtering steps are described below:

Step 1

Tissue types with < 20 protein measurements were filtered out.

Step 2

For each significant association identified from 7,698 drug-protein and 5,823 CRISPR-Cas9-protein associations, Pearson’s r was

calculated. Using protein data, the significance level was set to 0.1 and Pearson’s rwas defined as r(target, protein)
tissue for a target-pro-

tein association in a given tissue type. Here, protein indicates a protein of interest, target indicates either a drug response or CRISPR-

Cas9 gene essentiality and tissue refers to the tissue type under investigation. We then calculated the Pearson’s r for the gene that
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encodes each protein, and we defined this value as r(target, RNA)
tissue. To prioritize associations that were uniquely identified at the

protein level, the difference d for a given tissue type between target-protein and target-RNA associations was set to be larger

than 0.15, where d = |r(target, protein)
tissue |-|r(target, RNA)

tissue |. This prioritizes associations that have either strong positive or strong nega-

tive correlations at the protein level but have weak correlations around zero at the RNA level. Rare cases where r(target, protein)
tissue and

r(target, RNA)
tissue have opposite signs and d is close to 0 were not considered.

Step 3

For drug-protein associations, a large value of d alone is insufficient to select candidate associations, because a drugmay be entirely

ineffective for all the cell lines in a particular tissue type. Therefore, we applied an additional filter to ensure that a drug is effective on

the cell lines for which the protein abundance is high. That is, for a drug-protein association to be included for a given tissue type, the

median IC50 of the 20%of cell lines with the highest corresponding protein abundancemust be lower than themaximal concentration

for that drug.

Step 4

The remaining associations were ranked in descending order according to d.

Comparing DeepOmicNet and other models
DeepOmicNet was compared against traditional machine learning models, including elastic net and Random Forest. A total of 947

cell lines were randomly separated into a training set comprising 80% of the cell lines, and a test set with the remaining cell lines for

unbiased evaluation. Grid search was used to find the best hyperparameters for elastic net and Random Forest in the training set by

cross-validation. Hyperparameter tuning for DeepOmicNet was performed manually due to the limit of graphics processing unit

(GPU) memory. For each model, missing values were imputed using the method that gave the best prediction based on cross-vali-

dation. Specifically, four imputation methods were considered, including imputation by minimum, first percentile of the whole input

matrix, mean and zero. Based on the predictive performance of models in cross-validation, imputation by one percentile of the whole

matrix was chosen for the elastic net and Random Forest, and imputation by zero was used for DeepOmicNet. This strategy yielded

the best prediction accuracy in comparison with other imputation and normalization methods, such as imputation with k-nearest-

neighbor, mean values of proteins and zeros. A cut-off was set at a minimum of 300 screened cell lines for the drug response dataset

to filter out drugs without sufficient data. A simplified version of DeepOmicNet without grouped bottlenecks was used for omics data

other than proteomic data due to the large input dimension. The Python package scikit-learn (v.0.22.1) (Pedregosa et al., 2011) was

used to train elastic net and Random Forest models. DeepOmicNet was implemented and trained using PyTorch (v.1.4.0) (Paszke et

al., 2019).

Machine learning for lethality prediction
Due to the limit of GPU memory, elastic net, Random Forest and DeepOmicNet were applied only to transcriptomic and proteomic

data to predict CRISPR-Cas9 gene essentialities. The same computational strategy for drug response prediction was used to predict

CRISPR-Cas9 gene essentialities.

Predictive power comparison with CCLE
The predictive power of machine learning models for two proteomic datasets (ProCan-DepMapSanger and the Cancer Cell Line

Encyclopedia (CCLE) (Nusinow et al., 2020)) were compared independently on three drug response datasets (Sanger, CTD2 and

PRISM) and the CRISPR-Cas9 gene essentiality dataset (Behan et al., 2019; Meyers et al., 2017; Pacini et al., 2021). The analysis

was performed using the 290 overlapping cell lines to ensure a fair comparison. The proteomic (Nusinow et al., 2020) and drug

response (CTD2 and PRISM) (Corsello et al., 2020; Seashore-Ludlow et al., 2015; Rees et al., 2016) datasets were retrieved from

the DepMap portal (https://depmap.org/portal/). DeepOmicNet was used to compare the predictive power of models for

CRISPR-Cas9 gene essentialities, and Random Forest was used for drug response prediction due to the limited number of cell lines

for certain drugs. AUC instead of IC50 was used for the drug response (PRISM) dataset due to a large proportion of drugs having no

IC50 values provided.

Downsampling for drug response prediction
For downsampling analysis, the full set of 8,498 proteins were randomly downsampled using a step decrease of 500 proteins (Fig-

ure 7A). Each step was repeated ten times and for each iteration, results from five-fold cross-validations and an unbiased test were

included in evaluating predictive power. Therefore, each downsampling step used ten different random subsets of proteins for six

distinct experiments (the five-fold cross-validation and one unbiased test). The predictive power of each DeepOmicNet model

was evaluated for each protein set and each iteration, with confidence intervals summarizing the results across the ten iterations.

This random downsampling procedure was also performed with step sizes of 250 proteins for proteins in Categories A, B and C

(Figure 7E).

Figures
Figures were generated using Pandas (Reback et al., 2022), Seaborn (Waskom 2021) andMatplotlib (Hunter 2007) Python packages,

as detailed in the Key resources table.
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QUANTIFICATION AND STATISTICAL ANALYSIS

DIA-NN (version 1.8) (Demichev et al., 2020) was used to build the peptide spectral library and process raw MS data. MaxLFQ

(Cox et al., 2014) was used to quantify relative protein intensities. Sigmoid drug response curves were fitted to estimate IC50s

(Vis et al., 2016). Associations between pairs of continuous variables were tested by Peason’s correlation coefficient r. Statistical

tests were adjusted for multiple hypotheses correction using the Benjamini-Hochberg False Discovery Rate (FDR), and statistical

significance was considered when FDR < 5%, except when otherwise specified (such as when multiple thresholds were

compared). Quantification methods and statistical analyses for the proteomics, drug response and multi-omics datasets are

described in the respective sections of the STAR Methods. Unless otherwise stated, relevant statistical parameters are reported

in the legend of each figure.
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