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Abstract: The electrocardiogram (ECG) signal has become a popular biometric modality due to
characteristics that make it suitable for developing reliable authentication systems. However, the
long segment of signal required for recognition is still one of the limitations of existing ECG biometric
recognition methods and affects its acceptability as a biometric modality. This paper investigates
how a short segment of an ECG signal can be effectively used for biometric recognition, using
deep-learning techniques. A small convolutional neural network (CNN) is designed to achieve
better generalization capability by entropy enhancement of a short segment of a heartbeat signal.
Additionally, it investigates how various blind and feature-dependent segments with different lengths
affect the performance of the recognition system. Experiments were carried out on two databases for
performance evaluation that included single and multisession records. In addition, a comparison
was made between the performance of the proposed classifier and four well-known CNN models:
GoogLeNet, ResNet, MobileNet and EfficientNet. Using a time–frequency domain representation
of a short segment of an ECG signal around the R-peak, the proposed model achieved an accuracy
of 99.90% for PTB, 98.20% for the ECG-ID mixed-session, and 94.18% for ECG-ID multisession
datasets. Using the preprinted ResNet, we obtained 97.28% accuracy for 0.5-second segments around
the R-peaks for ECG-ID multisession datasets, outperforming existing methods. It was found that
the time–frequency domain representation of a short segment of an ECG signal can be feasible for
biometric recognition by achieving better accuracy and acceptability of this modality.

Keywords: biometrics; deep learning; convolutional neural network; ECG signal; continuous
wavelet transformation

1. Introduction

The recent explosive evolution in science and technology has raised security standards,
rendered classical security methods, such as keys, passwords, PIN codes, and ID cards,
unsatisfactory and opened the door for new technologies. Biometric authentication is one
approach that provides a unique method for identity recognition. This approach uses
metrics related to human characteristics, such as facial features [1,2], fingerprints [3,4],
hand-geometry [5], handwriting [6,7], the iris [8,9], speech [10,11], and gait [12,13] for
identification and verification. However, these traditional biometric modalities have
proved to be vulnerable, as they can be easily replicated and used fraudulently [14]. For
instance, the face is vulnerable to artificial masks, fingerprints and hand features can be
recreated by latex, handwriting and voice are easy to mimic, and the iris can be faked by
using contact lenses with copied iris features printed on it.

In recent times, physiological signals, such as electroencephalogram (EEG) signals pro-
duced by the brain [15,16] and electrocardiogram (ECG) signals produced by the heart [17–19]
have become popular for biometric recognition. As biometric modalities, their main advan-
tages are that the brain and heart are confined inside the body’s structure, making them
secure against any tempering and difficult to simulate or copy. Furthermore, they have live-
ness properties, as these signals can be captured from living individuals only. Among these
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physiological signals, good quality ECG signals can be easily captured from fingers [20,21],
unlike EEG signals, which are hard to capture without sophisticated equipment. Hence, the
ECG signal could be more acceptable as a biometric modality for commercial and public
applications. ECG signals have been studied and presented as a biometrics modality for
the last two decades. They have been proven to have the needed properties for a reliable
identification process, such as universality, performance, uniqueness, robustness to attacks,
liveness detection, continuous authentication, and data minimization [22,23].

Recently, deep-learning techniques have effectively used ECG signals for improving
recognition performance [19,21]. However, one of the factors that affect the accuracy of
biometric recognition is the length of the ECG signal used. Generally, most of the existing
works use a long segment of a signal consisting of several heartbeats; it requires a long
time to capture and process [24,25], which may not be acceptable by users in commercial
applications. A limited number of works studied the effect of the length of the segment on
the recognition process. Moreover, ECG signals of a person can also vary due to different
physiological and mental conditions, which become more apparent in signals captured
in different sessions [26]. Accordingly, multisession analysis reveals the effectiveness and
robustness of any ECG-based recognition system. Based on the results reported to date,
most of the existing, deep learning-based methods usually consider only single-session
records, and a limited number of studies consider multisession analysis [27,28].

This paper investigates how a time–frequency domain representation of a short seg-
ment of an ECG signal can be effectively used for biometric recognition, using deep learning
techniques to improve the acceptability of this modality. Capturing the right part of the
signal can improve the quality of the segments, which improves the learning process as
well and increases the classification accuracy without needing a large number of heart-
beat samples. The speed of the classification also increases, and the identification system
becomes more reliable and acceptable. Based on the investigation, a small convolutional
neural network (CNN) was designed for biometric recognition, using short segments of
a heartbeat signal around the R-peak. The segment was presented as input images after
applying continuous wavelet transformation (CWT). Four pre-trained networks of differ-
ent models (GoogLeNet, ResNet, MobileNet and EfficientNet) were also used. The effect
of the segmentation methods using single session analysis was investigated, using the
Physikalisch Technische Bundesanstalt (PTB) [29] dataset, an ECG dataset that is widely
used for deep convolutional recognition models. The ECG-ID [30] dataset was used for the
multisession analysis. The main contributions of this paper can be identified as follows:

1. We investigate the effectiveness of time–frequency domain representation of a short
segment of an ECG signal (0.5-second window around the R-peak) for improved bio-
metric recognition. The significance of this finding is that it improves the acceptability
of an ECG signal as a biometric modality, which can be used for a liveness test.

2. A small convolutional network (CNN) is designed to learn less complex decision
boundaries in the transferred domain to achieve better generalization capability and
at the same time to avoid overfitting.

3. This study investigates the effects of different types of segments of ECG signal, such
as fixed-length, variable-length, blind, and feature-dependent segments, on the deep
learning-based ECG recognition process.

4. The effectiveness of the short segment is also investigated, using a multisession database
to ensure its viability in biometric recognition over time. The viability of a short segment
can help to develop a robust, reliable, and acceptable authentication system. It can also
make this modality practical to fuse with other modalities, especially the fingerprint, to
improve the robustness and security of biometrics in general [25,31].

The rest of the paper is organized as follows. Section 2 presents recent state-of-the-
art approaches for ECG biometric recognition that apply deep learning, using different
segments and lengths of the signal. In Section 3, we describe the deep learning-based
biometric recognition method. In Section 4, we describe the experimental protocol for
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testing the effectiveness of the proposed method. Experimental results and discussion are
given in Section 5. Finally, the conclusion and future works are given in Section 6.

2. Related Works

This section presents recent works on ECG biometric systems that used deep learning
approaches for biometric recognition. We specifically reviewed the performance of the
state-of-the-art methods for using different types of segments of ECG signals (e.g., blind
segment or fiducial point-based segment) and the length of the segment. We also reviewed
whether testing was carried out using the same session or multisession records.

Feature engineering-based Multilayer Perceptrons (MLP) were previously used in
ECG signal classification [32]. SVM was used as a classifier in [33] that obtained 93.15%
accuracy for 50 subjects from the PTB dataset and another 140 subjects from a private
dataset. SVM was also used to classify 10 subjects from the PTB dataset in [34], obtaining
97.45% accuracy. Recently, deep learning-based methods have become popular for ECG
biometrics recognition [19,21]. An inception network was used as a classifier in [32] with
an accuracy of 97.84%. In [35], RNN was used as a feature extractor, along with GRU
and LSTM as classifiers, and was tested with 90 subjects from the ECG-ID database and
47 subjects from the MIT-BIH database to obtain approximately 98% accuracy. The model
proposed in [36] used a multiresolution, 1D CNN with an overall accuracy of 93.5% on eight
ECG datasets with subjects ranging from 18 to 47. CNN was also used as a classifier in [37]
and obtained almost 97% accuracy for identifying 90 subjects from the ECG-ID dataset.
A fusion technique between 1D and 2D CNNs was presented in [38] to verify 46 subjects
from UofTDB, obtaining a 13% equal error rate (EER), and for verifying 65 subjects from
the CYBHi dataset to obtain a 1.3% equal error rate (EER). Multiple single session datasets
were used to test the cascade CNN proposed in [39], where the number of subjects did not
exceed 28. This model resulted in accuracy ranges from almost 92% to 99.9%, depending
on the datasets that were tested. A private dataset was collected to test the model proposed
in [27], for which a CNN was used to classify 800 subjects with 2% EER. In [40], a 98.84%
classification accuracy was obtained, using CNN on 52 subjects from the PTB dataset and
99.2% on 18 subjects from the MIT-BIH dataset.

As mentioned previously, there is no proper investigation on the impact of segment
length on the recognition process in the literature. The segmentation was mentioned only
as part of the method been used. Several studies used fixed-length, blind segmentation as
in [41], for which segments of 15 seconds were used. A large, 10 s window captured blindly
was used in [42] and [24]. A relatively small blind segmentation of 2 s and 3 s of ECG data
was used in [36] and [37], respectively. R-peak dependent segmentation was widely used.
Segment durations of 0.2 s and 1 s around the R-peaks were used in [43]. A 0.65 s segment
around the R-peak was used in [44], and 3.5 s segments around R-peaks were used in [45].
Segments of lengths 0.5, 1.6, and 2 s for three different datasets were tested in [46]. In [47],
a large 11 s segment around the R-peak was used. The model in [38] used 3.5 s segments
around the R-peak from the UofTDB database and 0.8 s segments around the R-peak from
the CYBHi database. Segments of 3 s in length captured around the R-peak were used
in [27]. A fixed-size segmentation window around the R-peak was also used in [40], and
the size of the window was calculated using the average of the first 5 RR intervals in [48].
The RR-interval was used as the segment in [33,34] and [40].

Most of the available deep learning base methods used single session datasets for the
evaluation of biometric recognition performance, as shown in Table 1. In [33,37,38,49,50],
cross-session and same session records were tested. Table 1 summarizes state-of-the-
art approaches for the ECG biometrics based on segmentation type and length, feature
extractor, and classification scheme.
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Table 1. State-of-the-art for ECG biometrics with database, learning model, segmentation type, and length, performance.

RefeRence Dataset Subjects Segmentation
Classification Performance

Type Length

[32] PTB 200 HB 0.66 s CNN Acc = 97.84%

[24] PTB 52 Blind 10 s CNN Acc = 100%

[36]

CEBSDB 20

Blind 2 s CNN

Acc = 99%
STDB 28 Acc = 90.3%

MI-BIH 47 Acc = 91.1%
NSRDB 18 Acc = 95.1%
AFDB 23 Acc = 93.9%
WECG 22 Acc = 95.5%
VFDB 22 Acc = 86.6%

FANTASIA 20 Acc = 97.2%

[37] ECG-ID 90 Blind 3 s CNN Acc = 96.63%

[38]
CYBHi 65

HB
0.8 s

CNN EER = 13%UofTDB 46 3.5 s

[39]

CEBSDB 20

HB

0.4 s

CNN

Acc = 93.1%
NSRDB 18 1.5 s Acc = 91.4%
STDB 28 0.5 s Acc = 92.7%
AFDB 23 0.8 s Acc = 89.7%

FANTASIA 20 0.8 s Acc = 99.9%

[27] Privet 800 HB 3 s CNN EER = 2%

[41] Mix (PTB+MIT-BIH) 175 Blind 15 s SVM Acc = 95.5%

[43] Privet 460 HB 0.2 s, 1 s LDA Acc = 91.6%

[34] PTB 10 HB (RR
interval) - SVM Acc = 97.45%

[47] TEOAE 82 HB 11 s SVM EER = 6.9%

[45] UofTDB 1019 HB 6 s Euclidean
Distance EER = 5%

[44] Privet 6 HB 0.65 s SVM Acc = 94.9%

[42] PTB 50 Blind 10 s Euclidean
Distance Acc = 100%

[46]
MIT-BIH 47

HB
0.5 s

Random Forest
Acc = 98%

NSRDB 18 1.6 s Acc = 99%
ECG-ID 90 2 s Acc = 91%

[50]
FANTASIA 20

Blind
6 s

CNN
Acc = 99.98%

ECG-ID (Multi) 90 4 s Acc = 73%

ECG-ID (Single) Acc = 94.23%

[40]
PTB 52 HB (RR

interval)
- CNN

Acc = 98.45%
MIT-BIH 18 Acc = 99.2%

[51]
ECG-ID 90

HB
0.6 s

GRU
Acc =98.6%

MIT-BIH 47 0.5 s Acc = 98.4%

[52]
PTB 52

HB 1.2 s CNN
Acc =100%

ECG-ID 90 Acc = 98.24%
MIT-BIH 47 Acc = 95.99%

[49]
ECG-ID 90

HB
0.5 s × 8

CNN Acc = 100%MIT-BIH 47 0.5 s × 6

[32]
ECG-ID 89

HB
0.5 s × 9

LSTMGRU
Acc = 100%

MIT-BIH 47 0.6 s × 9 ERR = 3.5%

[33]
Privet 140 HB (RR

interval)
- SVM Acc = 93.15%PTB 50
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3. Method

ECG is a continuous and semi-periodic signal representing the electrical activities of
the heart. For a healthy individual, a single heartbeat contains all of the morphological
features. Each heartbeat signal consists of a sequence of P, QRS, and T waves occurring
repeatedly. The duration of heartbeats of an individual varies due to different physiological
and mental conditions. However, for biometric recognition, the invariant segment of the
signal is required. It is observed that for a healthy person, the signal around the QRS
complex is the most invariant segment, which preserves its shape over time and is the most
distinctive from other individuals. Figure 1 shows the intra-individual similarities and
inter-individual differences of the segments obtained from four different individuals. Here,
each of the subfigures show 0.5-second windows of the signal around the R-peaks of an
ECG record obtained from the PTB dataset [29]. Although the morphology of the signal
for a particular person remains invariant, the inter-individual difference is noticeable. In
Figure 2, we plotted 0.5 s windows of signals around the R-peaks obtained from different
ECG records on a particular individual from different sessions in the ECG-ID database [30].
Only one segment is taken from each record. The intra-individual correlations of the signal
among different sessions and the inter-individual differences can be observed.

Figure 1. Segments of ECG signal around the R-peaks for four different individuals in the same ECG record. Each subfigure
shows the intra-individual similarities; inter-individual differences among the individuals can be observed from four
subfigures.

Figure 2. Segments of ECG signal around the R-peaks for four different individuals in different ECG records obtained in
different sessions. Each subfigure shows the intra-individual similarities; inter-individual differences among the individuals
can be observed from four subfigures.

The recognition process uses a small segment of the ECG signal as the input, which is
then transformed into Continuous Wavelet Transformation (CWT) images and used by the
convolutional neural network (CNN) for the recognition of the individual. Figure 3 shows
the block diagram for biometric recognition. We obtain a segment of the ECG signal as the
preprocessing step as discussed in Section 3.1. Section 3.2 describes the Continuous Wavelet
Transformation method for the time–frequency domain representation of a segment of an
ECG signal. Finally, the CNN-based deep learning method is discussed in Section 3.3.
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Figure 3. Block diagram of the proposed deep learning-based biometric recognition process.

3.1. Segmentation of an ECG Signal

There are different ways to obtain a segment of the ECG signal for biometric recog-
nition, as shown in Figure 4. A segment can be captured for a constant period, obtaining
an arbitrary fragment of a segment (blind segment), which may exclude certain heartbeat
features or may include redundant features. Another way is to depend on fiducial points
that capture the essential features of a heartbeat. Hence, three different types of segments
are considered: (i) R-centered segments, which are taken in a window around the R-peak,
(ii) R-R segments, and (iii) P-P segments.

Figure 4. Conts.
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Figure 4. Examples of segmentation methods: Blind and HB segmentation. (a) Original signal with P,
Q, R, S, and T peaks, (b) blind segments, (c) PP-interval segments, (d) RR-interval segments, and (e)
R-centered segments.

The P and R segments were detected following the method presented in [53,54]. In
this method, the approximate location of R-peak is detected as the local minima of the
signal’s curvatures, using a sliding window and an adaptive threshold. Then a search
back in the preprocessed signal within a window of the samples around the approximated
locations is applied to obtain the final location of the R-peak. The P-peak is identified to
the left of the R-peak as the maximum within a window of 245 ms in the signal obtained by
the augmented-Hilbert transform [54].

3.2. Entropy Enhancement

Although a short segment of the ECG signal could be helpful for the acceptability of
this biometric modality, the information content of such a segment is rather limited due to
the finite time–domain representation. The information content offered by the signal can
be analyzed by biometric system entropy (BSE) [55,56]. Here, BSE measures the entropy by
using Kullback–Leibler (KL) divergence of the signal (s) from two different distributions of
genuine user scores (fG) and imposter scores (fI) obtained from a given set of ECG samples
as defined below:

BSE(s) =
∫

fGlog
(

fG
f I

)
dG (1)

Frequency analysis of the signal allows us to enhance entropy by representing the
signal in the infinite frequency domain. Although various methods exist [25,57], continuous
wavelet transformation (CWT) proposes a method of representation of the signal s(t) in a
2D time–frequency domain, using mother wavelet functions + ϕ:

scwt(a, b) =
1√
a

∫
s(t)ϕ

(
t− b

a

)
dt (2)

where a is the scale factor and b is the shift of the wavelet function.
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The time–frequency representation of the signal is obtained by decomposing it at dif-
ferent time scales, each of which represents a specific frequency range in the time–frequency
plane. This representation, which consists of the absolute value of the CWT coefficients of
the signal, is called a scalogram [58]. Figure 5 shows time–frequency representations of
segmented ECG signals, using CWT. To examin the BSE of the time–domain signal and its
CWT representation, we created two distributions of 9900 biometric scores for each from
ECG signals obtained from the PTB [29] dataset. Figure 6a,b shows the distributions of
biometric scores for genuine users and imposters in time and time–frequency domains,
respectively. The entropy computed by using Equation (1) was 1.44 and 3.15 for the time
and time–frequency domains, respectively, indicating significant enhancement of BSE.

Figure 5. Continuous Wavelet Transformation: (a) A segment of ECG signal, (b) CWT image.

Figure 6. Distribution of genuine score and imposter scores of ECG signals (a) in time–domain and
(b) CWT representation.

3.3. Deep Learning

Different deep learning-based methods, especially CNN models, are becoming popular
in ECG-based biometric recognition [24,39]. To achieve optimal classification accuracy, the size
of the training datasets used for CNN is consistently increasing, which, in turn, has caused
the volume of CNN models proposed for image classification to continuously grow larger
and require more learning time and space. By enhancing the entropy, the CWT representation
makes the decision boundary much simpler as shown in Figure 6. Hence, a simpler CNN
could effectively learn the decision boundary with more generalization capability. On the
other hand, very deep CNN models, designed for complex image learning, could suffer from
overfitting due to the fact that the CWT representation transfers the signal into less complex
images, yielding decision boundaries with a smaller degree of nonlinearity.
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We designed a small CNN that depends on the quality of short ECG segments with
enhanced entropy to learn the relatively simpler decision boundary offered by CWT repre-
sentation. The proposed small CNN is a network with fewer layers as presented in Figure 7.
It starts with a convolutional layer with a small filter size followed by max-pooling layers,
a rectified linear unit (ReLU), and batch normalization. Then a residual block uses the
max-pooling layer as a skip connection when the gradient becomes very small and prevents
the weights from changing in value. After that comes a fully connected layer followed by
SoftMax and classification layers, which predict each test sample label and determine the
classification accuracy. Table 2 presents the detailed parameters of the network.

Figure 7. Block digram of the proposed small CNN.

Table 2. Proposed small CNN architecture.

Layer Number Type Input Size Number of Filters Size of Filters Stride Padding

1 Image Input 224 × 224 × 3 - - - -

2 Convolution 224 × 224 × 3 32 7 × 7 1 3

3 Max Pooling 224 × 224 × 32 - 2 × 2 2 1

4 ReLU 113 ×1 13 × 32 - - - -

5 Batch
Normalization 113 × 113 × 32 - - - -

6 Convolution 113 × 113 × 32 32 3 × 3 1 1

7 Convolution 113 × 113 × 32 32 3 × 3 1 1

8 Batch
Normalization 113 × 113 × 32 - - - -

9 Addition 113 × 113 × 32 - - - -

10 ReLU 113 × 113 × 32 - - - -

11 Convolution 113 × 113 × 32 64 3 × 3 2 1

12 Convolution 57 × 57 × 64 64 3 × 3 2 1

13 Batch
Normalization 29 × 29 × 64 - - - -

14 Convolution 113 × 113 × 32 64 1 × 1 2 0

15 Max Pooling 57 × 57 × 64 - 2 × 2 2 1

16 Addition 57 × 57 × 64 - - - -
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Table 2. Conts.

Layer Number Type Input Size Number of Filters Size of Filters Stride Padding

17 Batch
Normalization 57 × 57 × 64 - - - -

18 Convolution 57 × 57 × 64 128 3 × 3 2 1

19 Convolution 15 × 15 × 128 128 3 × 3 2 1

20 Batch
Normalization 8 × 8 × 28 - - - -

21 Convolution 57 × 57 × 64 128 1 × 1 2 0

22 Max Pooling 15 × 15 × 128 - 2 × 2 2 1

23 Addition 8 × 8 × 28 - - - -

24 Global Max
Pooling 8 × 8 × 28

25 Fully Connected 1 × 1 Number of Class - - 0

26 Softmax 1 × 1 Softmax - - -

27 Classification
Output - - - - -

In addition to the small CNN network, a deep-learning method known as transfer
learning, where a previously trained model works as a starting point for a model to be
used in a new task [59], was used. Transfer learning has a lower computational cost than
training a new model from scratch. GoogLeNet [60], ResNet [61], EfficientNet [62] and
MobileNet [63] architectures were chosen as the pre-trained models in this study. The
main idea of GoogLeNet is the inception layers. There are nine inception layers; each layer
has parallel convolutional layers with different filter sizes to simultaneously maintain the
resolution for small information and cover a larger area in the image. The residual block is
a solution for when the gradient becomes very small and prevents weights from changing
in value. MobileNet depends on depthwise separable convolution to reduce the model
size and complexity, which makes it useful for mobile and embedded vision applications.
EfficientNet uses compound coefficient to scale up width, depth or resolution uniformly.
All networks were originally trained to classify images into one of 1000 categories. In this
study, the pre-trained network’s output layer was replaced with the number of classes that
needed to be predicted for each experimental scenario. Table 3 presents the number of
layers, learnable parameters, and average training time for each model.

Table 3. Number of layers, learnables (M = Million, K = Thousand) and average training for each model.

Network Number of Layers Learnable Parameters Average Training Time

GoogLeNet 144 5.9 M 132 min
ResNet 71 4.8 M 48 min

EfficientNet 290 4.1 M 112 min
MobileNet 154 2.4 M 53 min
Small CNN 27 324 K 37 min

4. Experiments
4.1. Datasets

We used two datasets in this study: (i) the PTB dataset and (ii) the ECG-ID dataset.
These two databases are popular PhysioNet databases that several researchers used to test
the performance of ECG-based authentication and identification algorithms. These datasets
include data with different sampling rates, leads, resolutions, and lengths. Additionally,
they contain both normal and abnormal signals, which aids in testing the generalized
performance of the networks.
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The PTB is a public database with diverse profile information, such as gender, age,
health information, and different ECG lengths obtained from 290 subjects sampled at 1 kHz.
Subjects 124, 132, 134, and 161 are not available in the database. Each record includes
12 lead ECG signals. We only used a single lead (lead i) as the raw signal source. In this
study, we considered 100 subjects.

The ECG-ID database contains ECG recordings obtained from 90 healthy individuals.
Each recording lasts for 20 seconds and is digitized at 500 Hz. Some subjects’ records were
collected in a one-day session, while others were collected in multiple periodic sessions
over six months.

4.2. Equipment

The experiment was conducted using MATLAB and a PC with the following features:

• Intel® Core i5-8600K CPU @ 3.60 GHz 6-core machine;
• 240 GB of DDR4 RAM;
• One GTX 1080 Ti GAMING OC 11 GB.

4.3. Experimental Protocol

The experiments were conducted in three phases to investigate the effect of different
ECG segments on the recognition process, as illustrated in Figure 8. The first phase examined
how different segmentation types with different lengths affected the recognition accuracy,
using the PTB dataset. In the second phase, the best segmentation and length option was
used to examine the classification performances of the networks, using the multisession
ECG-ID dataset. In the third phase, the classification results were analyzed to determine the
identification and verification performance by scenarios as suggested in [15,64].

Figure 8. Block diagram of experimental protocol.

Phase-1: Segmentation and length analysis
Records of ECG signals are segmented using different methods:

• Blind segmentation: A preprocessed signal is blindly divided into segments of equal
durations. To examine the effect of different segment sizes, we performed segmenta-
tion with different window sizes, such as 0.5, 1, 1.5, 2, 2.5, and 3 s.

• Heartbeat segmentation: An ECG record is divided into segments based on different
fiducial points, such as the P- and R-peaks in the QRS complex, producing the (i) R-
centered segment, (ii) R-R segment, and (iii) P-P segment. We divided the signal using
three different window sizes, 0.5, 0.75, and 1 s, around each R-peak in the R-centered
segment. To balance the samples, only subjects in which the P-peak was detectable were
considered in this phase. We selected 100 records with a detectable P-peak.

Phase-2: Recognition using multisession data
The segment of the ECG signal with the highest recognition accuracy from phase one

was used to examine the performance of the recognition process in multisession scenarios
using the ECG-ID database. Since this dataset contains 90 subjects, we used 90 class
classification problem, using the following three scenarios:

• Single session: To support the findings of phase-1 and to compare with other methods
(using single-session data only), we used one record of each subject from ECG-ID in
this scenario and divided them into training and test sets.
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• Mixed session: We collected segments from ECG signals in different sessions and
mixed them together before dividing them into training and test sets.

• Multisession: The training and test segments were collected from ECG signals in
different sessions without mixing them. In the ECG-ID dataset, all subjects have at
least two records, except subject 74. For subject 74, we used the same record for both
sessions, but the segments were randomly divided into training and test segments.
This resulted in 90 classifiable subjects.

Phase-3: Identification and verification analysis
Biometric recognition systems are generally used in two different modes in practi-

cal applications: (i) identification (one to many matching), (ii) verification (one to one
matching). We used the results obtained by the biometric recognition process to analyze
the identification and verification performance by scenarios as suggested in [15,64]. In
this process, we used the results of classification using the multisession data only. The
identification analysis aims to identify each of the 90 subjects correctly. On the other hand,
the verification analysis aims to identify one subject versus all other 90 subjects. In this
case, there were only two classes: genuine (target subject) and imposter (all other subjects).

4.4. Network Training and Testing

The segmentation process was followed by data augmentation to increase the number
of segments and balance the number of samples among the subjects. New segments
were generated as needed from the original segments, where the new segment was the
average of 10 randomly selected segments from the same individual. We used 100 heartbeat
segments for each individual, leading to a total number of 10,000 segments in phase one
and 9000 segments in total for the single-session, mixed-session, and multisession analyses.

A 10-fold cross-validation method was used to reduce the training set’s generalization
error. The cross-validation test generates ten different results, the average of which is the
final accuracy of the classification task. The 10-fold cross-validation was used in the phase
one analysis and the first two session analysis scenarios: single and mixed sessions.

For the multisession analysis, a 2-fold cross-validation was conducted, where the first
iteration of training used segments from one session, while the testing set used segments
from other sessions. Sessions were then exchanged for the second iteration, which generated
two different results. The average of the two outcomes was the final accuracy.

For training the CNNs, stochastic gradient descent with minimum batches of size 150
and a momentum coefficient of 0.9 were used. A learning rate of 0.001 was considered
during 80 training epochs. We tried higher values for training epochs, but no improvements
were noticed.

4.5. Evaluation

We used the classification results for a network to compute the true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) predictions. TP is the number
of test segments correctly classified as labeled, and TN is the number of test segments
correctly rejected for not belonging to the class. FP is the number of test segments classified
into the wrong class, and FN is the number of test segments incorrectly rejected from the
correct class. Since the data samples used were balanced, the accuracy was used as an
evaluation measure for classification [28], which is calculated as follows:

Accuracy =
TP + TN

Total trials
(3)

For verification analysis, we used false rejection rates (FRR), false acceptance rates
(FAR), true acceptance rates (TAR), and true rejection rates (TRR) as defined in Equations
(4)–(7). As we used the classification results to obtain the four verification metrics, it is not
possible to compute the equal error rate (EER) of FA and FR, which is a popular metric in
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biometric authentication. Hence, half total error rate (HTER), as shown in Equation (8),
was used as an equivalence to EER [65].

FRR =
FN

Genuine attempts
=

FN
FN + TP

(4)

FAR =
FP

Imposter attempts
=

FP
FP + TN

(5)

TAR =
FN

Genuine attempts
=

TP
TP + FN

(6)

TRR =
TN

Imposter attmpts
=

TN
TN + FP

(7)

HTER =
FRR + FAR

2
(8)

5. Results and Discussion

In this section, we present the experimental results according to the experimental
protocol discussed in Section 4.3. We also present comparisons and discussions about the
results obtained.

5.1. Effect of Length and Segmentation of Signal on Classification Performance

The classification accuracy for different segments and lengths obtained from the
PTB dataset (phase-1) is presented in this subsection. Table 4 shows the classification
accuracy for blind segments of different lengths. The use of blind segmentation resulted
in inconsistent samples that were difficult to learn from. Due to this problem, the trained
classifier failed to obtain the desired recognition accuracy. According to Table 4, a smaller
segment size leads to lower performance than a larger size. Using 2 s segmentation
size results in segments containing approximately a single complete heartbeat. The 2 s
segmentation size results in a 98.14% accuracy for GoogLeNet, approximately the same
accuracy for the small CNN but a significantly lower accuracy for ResNet and much lower
for EfficientNet and MobileNet. Among the tested lengths, 2 s produced the best result for
blind segmentation.

Table 4. Blind segmentation performance with different lengths of a signal.

Length of Signal
(second)

Accuracy (%)

GoogLeNet ResNet EfficientNet MobileNet Small CNN

0.5 61.81 74.6 75.33 80.3 76.06

1 97 87.2 57.30 61.3 97.84

1.5 98.10 92.7 62.10 63.7 98.82

2 98.14 93.2 63.05 64 98.90

2.5 97.61 93.9 62.12 63.54 96.0

3 95.77 94.9 58.03 60.86 93.0

Table 5 shows the classification accuracy for different, fiducial-based segmentations. It
can be observed from the table that R-centered segments (especially segments of length 0.5 s)
obtained a higher accuracy than P-P and R-R segments. This result indicates that a short
segment around the R-peak could capture sufficient information for biometric recognition.
Furthermore, the R-peak is the most apparent and recognizable point, which means that
accurate identification of the R-peak ensures accurate and useful signal segmentation.
Use of the P-P or R-R segment results in different segment lengths based on the distance
between two consecutive P or R peaks, respectively. Hence, heartbeat resampling and
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alignment [66,67] are required to be used for biometric recognition. Using the P-peak for
segmentation may not be convenient as the P-peak is difficult to identify, and the procedure
used to remove noise and normalize the signal may affect the detection of the P-peak. It
may produce inconsistent segments degrading the recognition performance.

Table 5. Classification accuracy for single heartbeat using different types of segmentation.

Segmentation Length of Signal
(seconds)

Accuracy (%)

GoogLeNet ResNet EfficientNet MobileNet Small CNN

R-centered
0.5 s 99.90 100 99.70 100 99.90

0.75 s 99.34 99.96 99.32 99.92 99.61
1 s 99.25 99.65 99.01 99.70 99.52

P-P 1 HB 98.50 97.39 92.1 93.9 97.86

R-R 1 HB 98.83 99.30 96.98 97.5 98.0

While the 0.5 s blind segment gave the least accurate classification result, as shown
in Table 4, the opposite result was obtained when the segmentation relied on the R-peak,
as shown in Figure 9. It shows that the R-peak centered segment increased the accuracy
by 30%, compared to blind segmentation, using all five different networks. The results
presented in this section show that the combination of deep learning and the use of the
right segment of the ECG signal can be effective for human recognition.

Figure 9. Classification performance for R-centered (0.5 s) segment vs. blind (0.5 s) segment.

5.2. Biometric Recognition with Multisession Data

The classification accuracy for using the 0.5 s segment captured around the R-peak ob-
tained from the ECG-ID dataset (phase-2) is presented in this subsection. The experiments
were conducted in different session scenarios as discussed in Section 4.3. The results for the
session analysis are presented in Tables 6 and 7. Table 6 shows the average accuracy for five
different networks. Table 7 presents the accuracy of each fold of the 2-fold cross-validation
in multisession scenarios and the average accuracy. It can be noted ResNet, GoogLeNet and
small CNN yielded comparable results. On the other hand, the performance of EfficientNet
and MobileNet was lower. Furthermore, the performance dropped significantly with the
multisession records, and that can be due to the complexity of the networks. Figure 10
compares the accuracy for PTB and ECG-ID databases in different scenarios. It could be
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noted that the performance of multisession data is quite high, with accuracy exceeding 97%
for the ResNet model.

Table 6. ECG-ID session analysis performance.

Session
Scenario

Accuracy (%)

GoogLeNet ResNet EfficientNet MobileNet Small CNN

Single 99.33 99.01 95.56 94.22 99.14

Mix 98.05 98.95 89.05 90.78 98.20

Multi 93.87 97.28 83.10 87.51 94.18

Table 7. Detailed ECG-ID multisession scenario performance.

Sessions Accuracy (%)

Testing Training GoogLeNet ResNet EfficientNet MobileNet Small CNN

S1 S2 95.06 96.78 89.09 88.47 95.54

S2 S1 92.68 97.78 77.12 86.56 92.81

Average 93.87 97.28 83.10 87.51 94.18

Figure 10. PTB and ECG-ID performance using single R-centered heartbeat.

5.3. Analysis of Identification and Verification Performance for Multisession Data

The overall recognition for multisession data was quite good for three networks, with
94.18%, 97.28% and 93.87% for small CNN, ResNet and GoogLeNet, respectively. However,
EfficientNet and MobileNet did not perform that well; their accuracies were 83.10% and
87.51%, respectively. From the cumulative distribution plot of accuracy [64] as shown in
Figure 11, it can be observed that most of the subjects had accuracy higher than 99%. In fact,
for some of the subjects, it could be lower as shown in the subject-wise confusion matrix
presented in Figure 12. As the number of subjects (90) is too high for meaningful visualization,
the confusion matrix was sorted according to its diagonal value (true acceptance), and the
values for only ten of the worst-performing subjects are shown. The Fisher Z-transformation
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was applied to calculate the population mean and standard deviation, yielding the mean
accuracy and standard deviation for five networks as shown in Table 8.

Figure 11. Cumulative distribution plot of accuracy for five networks.

Table 8. The mean accuracy and standard deviation for five networks.

Network Mean Accuracy Standard Deviation

Small CNN 0.9511 0.1231

ResNet 0.9342 0.1720

GoogLeNet 0.9269 0.1359

EfficientNet 0.8909 0.1596

MobileNet 0.8847 0.1817

For the verification scenario, the confusion matrixes for five networks are presented
in Figure 13. The TRR, FRR, FAR, TAR, and HTER are shown in Table 9. We evaluated
the confusion matrix statistically, using the McNemar test. The critical value at a 95%
significance level is 3.8415 for all five networks. McNemar’s chi-square at alpha = 0.05 level
is shown in Table 10.
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Figure 12. Subject-wise confusion matrix for five networks where the diagonal elements in darker color repsent the correct
classification rate.

Figure 13. Confusion matrices for verification scenarios for five networks where the darker color elements represent correct
classification rate.
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Table 9. The TRR, FRR, FAR, TAR, and HTER for five networks.

Network TRR FRR FAR TAR HTER

Small CNN 0.9992 0.0008 0.0658 0.9342 0.033

ResNet 0.9994 0.0006 0.0489 0.9511 0.025

GoogLeNet 0.9991 0.0009 0.0731 0.9296 0.037

EfficientNet 0.9986 0.0014 0.1019 0.8909 0.052

MobileNet 0.9985 0.0015 0.1153 0.8847 0.058

Table 10. McNemar chi-square with alpha = 0.05 level.

Network Yates Correction p

Small CNN 0.000845 0.976815

ResNet 0.001136 0.973108

GoogLeNet 0.000760 0.978008

EfficientNet 0.000509 0.981998

MobileNet 0.000482 0.982490

Identification and verification analysis on multisession data reveals the strength of the
short ECG segment on deep learning-based biometric recognition methods. Although most
networks performed well, the proposed small network yielded the highest mean accuracy
(Table 9), indicating that the quality of the segment is an important factor. The verification
performances of all five networks are statistically significant (Table 10). Although for most
of the subjects, the accuracy was high (Figure 13), only for few individuals the accuracy
was low, as shown in the subject-wise confusion matrix in Figure 12. This could be due to
the noisy signal captured in different sessions.

5.4. Comparison with State-of-the-Art Methods

We compared the results of our method with the state of the art for using both PTB
and ECG-ID databases. Table 11 shows a comparison between the obtained results with
state-of-the-art methods that tested their deep learning authentication systems, using the
PTB database. Blind segmentation was found to be effective, using long signals with a small
number of subjects, as in [24], where a segment length of 10 s was used to authenticate
52 subjects, resulting in 100% accuracy. However, for a larger number of individuals, as in
our experiment, the fiducial-based, short segment gave a higher performance. We obtained
99.76, 100, 99.70, 100, and 99.83% accuracies through the use of 0.5 s segment lengths for
GoogLeNet, ResNet, EfficientNet, MobileNet, and small CNN, respectively.

Table 11. Comparison of results with state-of-the-art methods that used CNN and PTB dataset.

Refrance Number of
Subjects

Length of Signal
(second)

Segmentation
Method Accuracy (%)

[32] 200 0.66 HB 97.84

[24] 52 10 Blind 100

[52] 52 1.2 (2 HBs) HB 100

GoogLeNet

100 0.5 HB

99.76
ResNet 100

EfficientNet 99.70
MobileNet 100
Small CNN 99.83
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Table 12 shows a comparison between the obtained results with state-of-the-art meth-
ods that tested deep learning authentication systems, using the multisession ECG-ID
database. From the table, it could be observed that the works that used fiducial-based
heartbeat segmentation [49,52], along with the proposed model, performed better than
works that used blind segmentation [37,50]. Although the model in [49] achieved 100%
accuracy, it needs eight consecutive heartbeats. This accuracy decreased for using fewer
beats, as when one heartbeat was used, the accuracy did not exceed 83.33%.

Table 12. Comparison of results with state-of-the-art methods that use CNN and ECG-ID.

Refrance Number of Subjects Session Length of Signal (seconds) Segmentation Method Accuracy (%)

[52] 90 Single 1.2 (2 HBs) HB 98.24

[37] 50 Multi 3 Blind 96.63

[49] 90 Multi
0.5 × 1

HB
83.33

0.5 × 8 100

[50] 90
Mix

4 Blind
94.23

Multi 73.54

GoogLeNet

90 Single 0.5 (1 HB) HB

99.33
ResNet 99.01

EfficientNet 95.56
MobileNet 94.22
Small CNN 99.14

GoogLeNet

90 Mix 0.5 (1 HB) HB

98.05
ResNet 98.95

EfficientNet 89.05
MobileNet 90.78
Small CNN 98.2

GoogLeNet

90 Multi 0.5 (1 HB) HB

93.87
ResNet 97.28

EfficientNet 83.10
MobileNet 87.51
Small CNN 94.18

6. Conclusions

This paper investigated how the time–frequency domain representation of a short
segment of an ECG signal could be effectively used for biometric recognition, using deep
learning techniques to improve the acceptability of this modality. In most of the existing,
deep learning-based recognition systems, a long segment of ECG signal is used to achieve
high recognition accuracy. In contrast, we used a short segment of 0.5 s around the R-peak
to obtain excellent recognition accuracy in multisession data, outperforming state-of-the-
art methods. It can be concluded that time–frequency domain representation of a short
segment of an ECG signal is important to increase the recognition capability, even for
multisession data. In fact, less complex CNN models could be effective in biometric
recognition, using a short segment of an ECG signal. The viability of time–frequency
domain representation of the short segment can help to develop a robust, reliable, and
acceptable authentication system useful for commercial and public applications.

To improve the reliability of the ECG signal as a biometric modality, further inves-
tigation is required to identify the performance of short invariant segments on larger
multisession datasets. Moreover, the change in the signal due to different cardiac condi-
tions is an important concern in the research community. For future work, we would like
to investigate the recognition performance of the short segment under such circumstances.
We would also like to develop a more sophisticated deep-learning machine that is robust
to different changes of the signal over a long period.
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