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Abstract: The Pseudomonas savastanoi species comprises a group of phytopathogenic bacteria that
cause Symptoms of disease in woody hosts. This is mediated by the rapid activation of a pool of
virulence factors that suppress host defences and hijack the host’s metabolism to the pathogen’s
benefit. The hrpL gene encodes an essential transcriptional regulator of virulence functions, including
the type III secretion system (T3SS), in pathogenic bacteria. Here, we analyzed the contribution
of HrpL to the virulence of four pathovars (pv.) of P. savastanoi isolated from different woody
hosts (oleander, ash, broom, and dipladenia) and characterized the HrpL regulon of P. savastanoi
pv. savastanoi NCPPB 3335 using two approaches: whole transcriptome Sequencing (RNA-seq) and
the bioinformatic prediction of candidate genes containing an hrp-box. Pathogenicity tests carried
out for the P. savastanoi pvs. showed that HrpL was essential for symptom development in both
non-host and host plants. The RNA-seq analysis of the HrpL regulon in P. savastanoi revealed a
total of 53 deregulated genes, 49 of which were downregulated in the ∆hrpL mutant. Bioinformatic
prediction resulted in the identification of 50 putative genes containing an hrp-box, 16 of which
were Shared with genes previously identified by RNA-seq. Although most of the genes regulated
by HrpL belonged to the T3SS, we also identified some genes regulated by HrpL that could encode
potential virulence factors in P. savastanoi.

Keywords: P. savastanoi pv. savastanoi (Psv); type III secretion system (T3SS); HrpL regulon; RNA-seq
analysis; hrp-box prediction; virulence factors

1. Introduction

The type III secretion system (T3SS) is considered one of the most relevant virulence
mechanisms in animal and plant pathogenic bacteria. The T3SS is a complex membrane-
embedded nanomachine through which Gram-negative bacteria translocate a set of pro-
teins, known as type III effectors (T3Es), into the cytoplasm of host cells [1–7]. Structurally,
the injectosome is made up of more than 20 proteins and is the most complex secre-
tion system in bacteria [8]. From a functional point of view, the translocation of T3Es
contributes to perturbing host cellular functions to facilitate bacterial survival and host
colonization [6,9–13]. The T3SS is essential for Pseudomonas syringae pathogens to thrive
in plant tissues. Although the evolution of the T3SS remains controversial, phylogenetic
analysis through amino acid sequence comparison suggests that the T3SS first emerged in
plant pathogens as an evolutionary adaptation of the flagellar export apparatus [4].

The P. syringae species complex is considered one of the most relevant phytopathogenic
bacteria worldwide, due to its capacity to infect the phyllosphere and cause disease in a
diverse range of cultivated, ornamental, and wild plants [14,15]. The complex comprises
13 phylogroups (PGs) encompassing 15 Pseudomonas species [16,17] that can be divided
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into about 65 pathovars (pv.) defined by their host ranges [18]. Except for some naturally
occurring non-pathogenic P. syringae strains that lack the canonical T3SS [19–21], most of
the Strains included in the P. syringae complex require a functional T3SS for pathogenesis
in susceptible plants [4,22,23].

The T3SS in P. syringae is encoded and regulated by the products of the hypersensi-
tive response and pathogenicity (hrp) and hypersensitive response and conserved (hrc)
gene clusters, which are included in a tripartite pathogenicity island together with other
genes that encode accessory and conserved T3Es [24,25]. After translocation into the host
cytoplasm, T3Es subvert host cellular functions, facilitating bacterial survival and host
colonization [6,9–13]. The recognition of T3Es or their activity by the plant immune Sys-
tem, through resistance proteins or other mechanisms, induces the host’s hypersensitive
response (HR), a localized plant cell death response that limits bacterial growth [26]. For
this reason, the T3SS and its T3E repertoire have been recognized as the main determinants
of host specificity in P. syringae [27–29].

The transcriptional regulation of T3SS’ structural components and their associated
T3E repertoire in P. syringae is dependent on the HrpL regulator, which encodes an alter-
nate Sigma (σ) factor that recognizes a conserved promoter sequence (GGAACC-N15/16-
CCACNNA), known as the hrp-box [30]. HrpL’s expression depends on the σ54 factor
RpoN and two transcriptional activators, HrpR and HrpS, which work as heterodimers
and cooperate with σ54 to promote the expression of hrpL [31,32]. Recent studies have
clearly shown that the Signaling pathways and molecular mechanisms involved in T3SS
regulation in P. syringae are a complex, intricate network [33] involving dozens of regulatory
proteins [8,34], second messenger molecules such as c-di-GMP [35], and variations in the
physicochemical conditions during host colonization [36].

Pseudomonas savastanoi belongs to the PG3 group of the P. syringae complex; the unique
PG includes knot-producing bacteria in woody hosts [16,37,38]. P. savastanoi comprises five
pathovars that cause diseases in woody plants: pv. savastanoi (Psv, isolated from olive),
pv. nerii (Psn, isolated from oleander), pv. fraxini (Psf, isolated from ash), pv. retacarpa
(Psr, isolated from broom), and pv. mandevillae (Psm, isolated from dipladenia) [37,39].
In the Psv and Psn strains, the functionality of the T3SS has been shown to be essential
for knot formation in the respective hosts and the induction of a characteristic HR in
resistant hosts [37,40–43]. Recent comparative genomics analysis of strains belonging
to these five pathovars identified the codification of highly conserved canonical T3SSs
in strains of Psf, Psm, and Psr. However, their functionality and roles in pathogenesis
in these three pathovars have not yet been established [39,44,45]. Furthermore, and as
previously reported for Psv NCPPB 3335 [46], an additional T3SS resembling that found
in Rhizobiaceae was also found in the other pathovars [39,44]. The relevance of T3SS
regulation by HrpL in P. savastanoi is evidenced by the inability to induce knot formation
in olive plants and to induce HR in tobacco plants by using a ∆hrpL mutant of the model
Psv strain NCPPB 3335 [47]. Furthermore, pathovar-specific regulation of the T3SS and its
T3E genes has been identified in Psv, Psn, and Psf, suggesting a possible role in host range,
depending on the physiological conditions found in the apoplast, or the extracellular space
of the host plant tissues [45].

The global regulation of transcription by HrpL in the P. syringae complex has been
approached using microarrays or RNA-seq strategies. However, the HrpL regulon has
only been defined in P. syringae strains isolated from herbaceous hosts [48,49], and no
data are available for strains isolated from woody hosts. Here, we constructed HrpL
mutants of model Psn, Psm, Psf, and Psr strains to study the role of this regulator in the
pathogenicity of P. savastanoi strains isolated from other woody hosts. Then, we defined the
HrpL regulon of Psv NCPPB 3335, the only P. savastanoi strain whose chromosome [44,46]
and plasmids [50] have been fully sequenced. For this purpose, we used two approaches:
(i) the comparative transcriptomic analysis (RNA-seq) of wild-type Psv NCPPB 3335
and its ∆hrpL mutant, and (ii) the bioinformatic prediction of hrp-box promoters in the
genome of this strain. A comparison of the results obtained from these analyses with those
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previously reported for P. syringae strains isolated from herbaceous hosts allowed us to
unravel novel HrpL-dependent genes that may play a role in the virulence of P. savastanoi
and the interactions of bacterial pathogens with woody hosts.

2. Materials and Methods
2.1. Bacterial Strain, Plasmids, and Growth Conditions

The bacterial strains and plasmids used in this study are described in Tables S1 and S2,
respectively. All the P. savastanoi strains were grown at 28 ◦C in lysogeny broth (LB)
medium [51] without glucose and containing 0.5% NaCl, in King’s B (KB) medium [52]
or in Super Optimal Broth (SOB) medium [53]. Escherichia coli strains were grown in LB
medium at 37 ◦C. When required, the medium was supplemented with the following: for
P. savastanoi: ampicillin (Ap) (400 µg/mL), kanamycin (Km) (7 µg/mL), nitrofurantoin (Nf)
(25 µg/mL), and cycloheximide (Ch) (100 µg/mL); for E. coli: Ap (100 µg/mL) and km
(50 µg/mL).

2.2. Construction of P. savastanoi Mutants

To construct the hrpL mutants, the complete gene was removed from model strains
of Psn, Psm, Psf, and Psr. These mutants were constructed using the pIAC4-Km plasmid
previously described [47] (Table S2), which contains a DNA fragment of approximately
1.2 kb corresponding to the 5′ and 3′ flanking regions of the Psv NCPPB 3335 hrpL gene
and the nptII (Km)-resistance gene. This plasmid was electroporated into Psn Psn23, Psm
Ph3, Psf NCPPB 1006, and Psr CECT 4861, as previously described [54]. The mutants
were Screened and verified as previously described [47]. Thereafter, the kanamycin gene
was removed using the pFLP2 plasmid [55].

2.3. Plant Bioassays

The Nicotiana tabacum var. Newdel and Solanum lycopersicum var. MoneyMaker plants
used in the HR assays were 3 months and 4–6 weeks old, respectively. The plants were
grown with a photoperiod of 16 h of light and 8 h of darkness, with day/night temperatures
of 26 and 22 ◦C, respectively. The leaves were infiltrated with bacterial suspensions in
10 mM MgCl2 (5 × 107 to 1 × 108 CFU/mL) of the ∆hrpL mutants using a blunt syringe.
The generated symptoms were captured with a high-resolution digital camera (Nikon
DXM 1200; Nikon Corporation, Tokyo, Japan) at 48 h post-inoculation.

The pathogenicity of the ∆hrpL mutants was analyzed for Nerium oleander plant
accession “pink” (single pink flowers) supplied by Viveros Guzmán (Málaga, Spain),
Fraxinus excelsior and Retama sphaerocarpa plants native to Valladolid and supplied by
Viveros Fuenteamarga (Valladolid, Spain), or Mandevilla spp. var. red flowers supplied by
New Plants Motril SA (Motril, Spain). Two plants per strain were inoculated, as previously
described in [44]. The number of wound sites infected per plant varied between 10 and 12,
depending on the Size of the plant.

2.4. Preparation of Samples for RNA-Seq Analysis

A pre-inoculum of 20 mL of the wild-type P. savastanoi pv. savastanoi NCPPB 3335 and
its ∆hrpL mutant was grown overnight in KB medium at 28 ◦C. The cells were diluted in
2 cultures of 110 mL of fresh KB medium at an OD600 of 0.1 and incubated with agitation at
28 ◦C to an OD600 of 0.5 (approximately 5 × 107 CFU/mL). Then 48 mL of each culture was
pelleted; one of these was frozen, and the other was washed twice with 10 mM MgCl2 and
resuspended in the Same volume of Hrp-inducing medium [56]. After 6 h of incubation,
each culture was divided into 6 samples of 8 mL and pelleted. For each strain, there were
2 biological replicates divided into 8 mL samples. A sample per biological replicate and
strain was processed for RNA isolation using the RNAeasy Mini Kit (Qiagen, Hilden,
Germany). Isolated total RNA was treated twice with a TURBO DNA-free Kit (Invitrogen,
Carlsbad, CA, USA). The RNA concentration was determined spectrophotometrically, and
its integrity was assessed by agarose gel electrophoresis. Before Sequencing, we performed
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RT-qPCR on genes (hrpA, avrPto1, and hopAO2) whose expression was already known to
be regulated by HrpL (Figure S1). This confirmed that the expression of those 3 genes was
repressed in the RNA samples obtained from the hrpL mutants. Two independent RNA
extractions (two biological replicates) from each strain were Sent to the Ultrasequencing Ser-
vice of the University of Malaga, where the necessary quality checks were carried out and
RNA sequencing was performed. Sample quality control was performed with a LabChip
RNA 6000 Pico (Agilent Technologies, Santa Clara, CA, USA). An Illumina Ribo-Zero Plus
rRNA Depletion Kit (Illumina, San Diego, CA, USA) was used for the degradation of
ribosomal RNA. The libraries were prepared with a TruSeq Stranded mRNA Kit (Illumina,
San Diego, CA, USA), and sequencing was performed on an Illumina NextSeq550.

2.5. Sequence Mapping and Analysis

The RNA reads were analyzed by the Ultrasequencing Service of the University
of Malaga. The Illumina adapters, lower-quality bases, and ribosomal sequences were
removed using SeqTrimNext (https://rubygems.org/gems/seqtrimnext/versions/2.0.60,
accessed on 1 June 2021). Quality control was performed with the FastQC software.
Then, the reads were aligned to the complete Sequence of the chromosome of Psv NCPPB
3335 (accession number: NZ_CP008742.1) and those of its 3 native plasmids (pPsv48A,
FR820585.2; pPsv48B, FR820586.1; pPsv48C, FR820587.2) using Bowtie 2 (v. 2.2.9) [57].
Differential gene expression and transcript abundance were calculated using the Tuxedo
Suite [58] with some modifications. Within this Suite, the Cufflinks program was used to
estimate the aligned readings in the different transcripts and estimate their abundance. The
fragments per kilobase per million mapped reads (FPKM) values were used to normalize
and quantify gene expression. A false discovery rate (FDR) with a significance level of 0.05
(q value) and a minimum log2 (fold change) of ±0.5 was used to judge the Significance of
differences in gene expression. A graphical representation of the differential expression
results was constructed using the cummeRbund package in R [59].

2.6. RT-qPCR Assays

For quantitative real-time PCR (RT-qPCR), DNA-free total RNA obtained as described
in the previous section was used. In this procedure, 1 µg of DNA-free total RNA was
retrotranscribed to cDNA using a cDNA iScriptTM cDNA synthesis kit (Bio-Rad, Her-
cules, CA, USA) and random hexamers. The RT-qPCR primers were designed with free
online Software according to the instructions previously described (Table S3) [60]. The
primer efficiency tests, RT-qPCR, and confirmation of amplification reactions were assessed
according to the criteria previously described [61]. Each reaction was carried out initially
for 2 min at 95 ◦C, followed by 45 cycles of PCR (95 ◦C for 15 s and 59 ◦C for 30 s). The
relative transcript abundance was calculated using the ∆∆ cycle-threshold (Ct) method [62].
The data obtained were normalized to the gyrA housekeeping gene and represented as fold
change in expression compared with the expression of each gene in the wild-type Strain.
The relative expression ratio was calculated as the difference in the Ct of the gene of in-
terest and gyrA (∆Ct = Ctgen of interest – CtgyrA). One PCR cycle represents a twofold
difference in template abundance; therefore, fold change values were calculated as 2−∆∆Ct,
as previously described [63,64].

2.7. Prediction of HrpL-Dependent Genes

To search for HrpL-dependent genes, we used an ad hoc pipeline considering the
presence of potential HrpL boxes (hrp-boxes) 500 nucleotides upstream of the Start codon,
as previously described [65]. To identify novel hop genes, we analyzed the N-terminal
sequence features of the Selected genes using EffectiveDB [66].

2.8. Bioinformatic Characterization of Identified Genes

A comparison was made of the genes identified in this study with the genes whose
dependence on HrpL was previously demonstrated by RNA-seq in 6 strains of the Pseu-
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domonas syringae complex isolated from herbaceous hosts: P. syringae pv. tomato (Pto)
DC3000, P. syringae pv. phaseolicola (Pph) 1448A, P. syringae pv. syringae (Psy) B728A, P.
syringae pv. lachrymans (Pla) 107, P. syringae pv. japonica (Pja) MAFF 301072, and P. syringae
pv. oryzae (Por) 1_6 [48,49]. This comparison was made by blastp using Geneious 8.1.9 [67].
In addition, a more Specific search looking for protein domains was carried out with
Pfam [68] and HHPred [69].

3. Results
3.1. HrpL of P. savastanoi Pathovars Is Required for the Induction of Hypersensitive Response in
Non-Susceptible Hosts and Symptom Development in Susceptible Hosts

The type III secretion system has been described as a key virulence factor in Psv [42,43,47].
To analyze the role of HrpL in the virulence of Psn, Psm, Psf, and Psr, we generated ∆hrpL
mutants of Psn Psn23, Psm Ph3, Psf NCPPB 1006, and Psr CECT 4861. First, we analyzed
the capacity of P. savastanoi strains to induce HR in tobacco plants, a non-susceptible host
(Figure 1a). As previously reported, the infection of Psv NCPPB 3335, included as positive
control, induced characteristic HR symptoms 24 h post-inoculation (Figure 1a). Out of the
four remaining pathovars, Psf NCPPB 1006 and Psr CECT 4861 were also able to induce
HR symptoms in tobacco leaves. However, no HR symptoms were observed on tobacco
leaves infiltrated with wild-type Psn Psn23 and Psm Ph3 after 24 h (Figure 1a). Based on
this result, we carried out infiltration assays in tomato plants (Figure 1b). The Same as the
positive control, all the pathovars were able to induce HR symptoms on tomato leaves
after 24 h. However, none of the ∆hrpL mutants were able to induce the formation of HR
symptoms 24 h post-inoculation in either tobacco or tomato leaves (Figure 1a,b).
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Figure 1. Hypersensitive response (HR) produced by wild-type (WT) strains of P. savastanoi pathovars
and their ∆hrpL mutants in Nicotiana tabacum var. Newdel (tobacco) and Solanum lycopersicum var.
Moneymaker (tomato) leaves. (a) HR symptoms induced on tobacco leaves following bacterial
infiltration 24 h post-inoculation. Control (+), leaves inoculated with Pseudomonas syringae pv. tabaci
CFBP 1621. (b) HR symptoms induced on tomato leaves after 24 h post-inoculation. Control (+),
leaves inoculated with Pseudomonas syringae pv. tomato DC3000. Control (−), mock-infiltrated plants
with 10 mM MgCl2.
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Besides its role in the development of HR symptoms in non-susceptible hosts, HrpL
is also required for full symptom induction by Psv in olive plants [47]. To evaluate the
contribution of HrpL to the virulence of the other four P. savastanoi pathovars, we carried
out pathogenicity tests of ∆hrpL mutants in their respective host plants (Figure 2). As
expected, wild-type Psn Psn23, Psm Ph3, Psf NCPPB 1006, and Psr CECT 4861 were able to
induce tissue proliferation (overgrowth) at the inoculation points 90 days post-inoculation.
By contrast, none of the inoculated ∆hrpL mutants showed tumor symptoms at inoculation
points that were distinguishable from the mock control plants 90 days post-inoculation
(Figure 2).
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Figure 2. Symptoms induced in oleander, dipladenia, ash, and broom plants 90 days after inoculation
with wild-type (WT) strains of P. savastanoi pathovars and their ∆hrpL mutants. Control (−), plants
mock-inoculated with 10 mM MgCl2.

3.2. RNA-Seq Transcriptome Profiles for Psv NCPPB 3335 and Its ∆hrpL Mutant

Previous work reported that non-effector genes controlled by the HrpL regulon vary
across the P. syringae phylogeny [48]. Out of the Six P. syringae strains analyzed by Mucyn
and collaborators [48], none was pathogenic in a non-herbaceous plant. Our Psv NCPPB
3335 reference Strain [44,46] and its ∆hrpL mutant [47] were cultivated on Hrp-inducing
medium [56], which simulates in planta apoplastic conditions, to obtain the total RNA. To
compare transcript abundance, two biological replicates of each strain were Subjected to
Illumina RNA sequencing, and a total of 177.83 million (81.9 million from the wild-type
and 95.8 million from the mutant strain) 100-bp paired-end reads was generated (Table S4).

The raw reads were trimmed by removing the adaptor sequences, empty reads, and
sequences that did not pass the quality threshold. As a result, 148.1 million high-quality
reads (83.3%), designated as clean reads, were obtained for both samples (Table S4). By
iterative alignment, an average of 99.6% of the clean reads were mapped to the Psv NCPPB
3335 genome, whereas 0.33% of the clean reads did not show any identity with the Psv
NCPPB 3335 chromosome or any of its three native plasmids. A summary of the Psv NCPPB
3335 genome coverage obtained with the Illumina RNA-seq data is shown in Table S5. Out
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of the 5597 coding sequences contained in the Psv NCPPB 3335 chromosome, 5551 genes
(99.18%) were covered by Illumina sequencing. Coverage of 99.27% was obtained for the
5596 genes contained in the Psv NCPPB 3335 ∆hrpL mutant. In addition, the 68, 53, and
51 genes located in the pPsv48A, pPsv48B, and pPsv48C plasmids, respectively, were also
covered by the Illumina RNA sequencing (Table S5).

3.3. Characterization of HrpL Regulon of P. savastanoi pv. savastanoi

After the bioinformatics processing of the raw data, the cleaned reads of each replicate
were compared using the cummeRbund package in R [59]. The distribution of normal-
ized FPKM values did not show significant differences among the biological replicates
(Figure S2), suggesting that no technical bias was introduced during library construction
and sequencing. The normalized expression levels of the wild-type and mutant strains
were compared to detect differentially expressed genes (DEGs). The DEGs were Selected
considering a fold change of ±0.5 and a statistical value of q = 0.05 (Figure 3a). A total
of 53 DEGs were obtained after the analysis of Psv NCPPB 3335 and its ∆hrpL mutant
strain. Out of the 53 DEGs, four genes (7.55%) were upregulated, and 49 genes (92.45%)
were downregulated relative to the wild-type Strain (Figure 3b). Based on their annota-
tion, the DEGs were manually classified into six functional categories (Figure 4a): T3SS
pilus/chaperones (30 DEGs), type III effectors (14 DEGs), hypothetical proteins (5 DEGs),
signaling (2 DEGs), toxins (1 DEG), and secondary metabolism (1 DEG).
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Figure 3. Identification of HrpL-dependent genes in P. savastanoi pv. savastanoi NCPPB 3335 by
RNA-seq. (a) Volcano plot showing differentially expressed genes (DEGs) between Psv NCPPB
3335 strain and its ∆hrpL mutant. In red, significant DEGs with q value < 0.05. (b) Venn diagram of
significantly upregulated and downregulated genes in ∆hrpL mutant relative to wild-type Strain in
RNA-seq analysis.

To obtain a more complete picture of the HrpL regulon in P. savastanoi, we performed
a bioinformatics search of genes that could putatively be under the regulation of an hrp-box.
To this end, we used an ad hoc pipeline considering two criteria: the N-terminal sequence
features [66], and the presence of potential hrp-box 500 nucleotides upstream of the Start
codon [65]. A total of 50 bioinformatically predicted genes (BPGs) were identified as
candidate genes containing a potential hrp-box in their promoter regions. Like the DEGs
identified by RNA-seq, the BPGs showed a similar functional categorization, except for
the toxin category, which was absent, and the presence of transporters and “others” as
additional categories (Figure 4b). Similar to the DEGs, T3SS pilus/chaperones (10 BPGs),
type III effectors (10 BPGs), and hypothetical proteins (10 BPGs) were the most represented
categories of BPGs. The Signaling category, with 6 BPGs, was also significantly represented
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compared with the two DEGs identified by RNA-seq. Interestingly, a Venn diagram
representation shows that only 19 out of the 49 DEGs and 50 BPGs were common to both
in vitro and in silico analysis (Figure 4c, Table S6), suggesting that both experimental
approaches provide valuable and complementary information.
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Figure 4. Classification into functional categories of HrpL regulon in P. savastanoi pv. savastanoi NCPPB 3335. Genes were
manually classified into functional categories based on their annotation and/or annotation of encoded proteins showing
highest homology in a blastp analysis (https://www.ncbi.nlm.nih.gov/, accessed on 1 June 2021). (a) Classification into
functional categories of differentially expressed genes (DEGs) identified by RNA-seq. Green and red represent upregulated
and downregulated genes, respectively, in ∆hrpL mutant relative to wild-type Strain. (b) Classification into functional
categories of bioinformatically predicted genes (BPGs) with putative hrp-box in their promoter regions (hrp value ≥ 2500).
(c) Venn diagram of downregulated genes identified by RNA-seq (in vitro) and BPGs (in silico).

3.4. HrpL Is a Master Regulator of T3SS and Its Effectors in P. savastanoi pv. savastanoi

The hrp/hrc cluster of Psv NCPPB 3335 is formed by 29 genes organized in five operons
(Figure 5), four of which contain structural genes with roles in the Secretory system and
one formed by hrpR and hrpS, two regulatory elements that regulate the expression of hrpL.
Besides these Structural and regulatory genes, Psv NCPPB 3335 encodes 31 T3Es in its
genome [44,46,47]. Except for the operon formed by hrpR/hrpS, the remaining structural
operons contained an hrp-box upstream of their first ORF, suggesting that gene expression
is regulated by HrpL. In fact, the RNA-seq data showed that, except for hrpK and hrcS,

https://www.ncbi.nlm.nih.gov/


Microorganisms 2021, 9, 1447 9 of 21

the expression of hrp/hrc genes was downregulated in the ∆hrpL mutant compared with
the wild-type Strain (Figure 5 and Table S7). Although the expression of hrcS, a member
of the hrpP operon, did not show a significant q value (0,921), its expression was also
downregulated, with a fold change value (log2) of −4.15 (Figure 5). However, unlike what
was previously described for other strains of the P. syringae complex, hrpK was significantly
overexpressed in the mutant strain compared with the wild-type (Figure 5 and Table S7).
Besides hrpK, the first gene of the operon (Figure 5), the expression of schA and the T3E
hopA2 was also upregulated in the ∆hrpL mutant.
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In addition to the Structural genes encoded in the hrp/hrc cluster, RNA-seq analysis
showed that the expression of five auxiliary genes of the T3SS, encoding two chaperones
(shcV and shcF) and three helper proteins (hopAK1, hrpW1, and hrpH), was repressed in
the ∆hrpL mutant (Table 1). Out of these genes, shcF formed an operon with avrRpm2, a
T3E whose expression was also downregulated in the ∆hrpL mutant compared with the
wild-type Strain (Figure 6, Table S8). The bioinformatic prediction showed the presence of
an hrp-box in three out of the five genes (hopAK1, shcV, and shcF), and for the gene encoding
the chaperone ShcM, which forms an operon with hopM1, a gene was also identified
through RNA-seq analysis (Table 1).
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Table 1. Genes associated with T3SS under regulation of HrpL in P. savastanoi pv. savastanoi NCPPB 3335.

Accession
Number a

Gene O b
RNA-seq c HrpL Dependence in other Pathovars e

q Value Log2
(fc)

hrp
Value d Pto Pph Psy Pla Pja Por

Genes Associated with T3SS
PSA3335_RS07245 hopAK1 0.006 −1.85 2741
PSA3335_RS10495 hrpW1 0.006 −1.66 nd
PSA3335_RS10540 hrpH 0.006 −1.60 nd
PSA3335_RS10690 shcA 2 0.006 1.89
PSA3335_RS15920 shcV 0.006 −3.14 2701
PSA3335_RS25240 shcF 1 0.006 −1.33 2699
PSA3335_RS10520 shcM 1 - - 2685

a Accession number in NCBI (https://www.ncbi.nlm.nih.gov/, accessed on 1 June 2021). b O, operon. Number indicates order of gene
within the operon (from 5′ to 3′). c Genes identified by RNA-seq. Significantly differentially expressed genes have q values < 0.05. Fold
change (fc) refers to average expression rate obtained in ∆hrpL mutant relative to wild-type Strain in two biological replicates. Negative (red)
and positive (green) log2 (fc) correspond to genes downregulated and upregulated, respectively, in ∆hrpL mutant relative to wild-type Strain.
d Bioinformatic prediction of putative hrp-box upstream of start codon of genes encoded in P. savastanoi pv. savastanoi NCPPB 3335 genome
(hrp value ≥ 2500); nd, not detected. e Red box, strains in which activation by HrpL of a homologous protein was identified by RNA-seq
[48,49]. Pto, Pph, Psy, Pla, Pja, and Por: P. syringae pv. tomato DC3000, P. syringae pv. phaseolicola 1448A, P. syringae pv. syringae B728A, P.
syringae pv. lachrymans 107, P. syringae pv. japonica MAFF 301072, and P. syringae pv. oryzae 1_6, respectively.

Among the 31 annotated T3Es in Psv NCPPB 3335 [44], RNA-seq analysis identified
12 effectors whose expression was downregulated (avrPto1, avrRpm2, hopAA1, hopAB1,
hopAE1, hopAO1, hopAU1, hopAZ1, hopI1, hopM1, hopR1, and hopV1) and one (hopA2) whose
expression was upregulated in the ∆hrpL mutant compared with the wild-type Strain
(Figure 6a and Table S8). Among these 13 deregulated genes, two (avrPto1 and hopAO1)
coincided with some of the eight genes whose HrpL dependency was demonstrated
by RT-qPCR in P. savastanoi pv. savastanoi NCPPB 3335 [47,70,71]. The bioinformatic
analysis predicted a total of 9 genes that contained an hrp-box and 11 genes that encoded
proteins containing an N-terminal translocation signal (Figure 6b and Table S8). Among
the effectors identified by the aforementioned methods, only avrPto1, avrRpm2, and hopAB1
were identified with all of them (Figure 6b). Interestingly, using both of these criteria
(RNA-seq analysis and bioinformatic prediction), we identified a putative non-annotated
T3E homologous to the XopAD effector from Xanthomonas, which is also encoded by P.
syringae pv. phaseolicola 1448A and for which HrpL dependency has been demonstrated
(Table S8) [72].

3.5. HrpL Regulon of P. savastanoi pv. savastanoi Also Regulates Expression of Genes Unnrelated
to T3SS

In addition to genes related to the T3SS, genes encoding proteins annotated as hypo-
thetical proteins, toxins, signaling proteins, and proteins related to secondary metabolites
were also identified in the RNA-seq analysis (Table 2). Four out of the five genes encoding
hypothetical proteins showed downregulated expression and only one was upregulated in
the ∆hrpL mutant (Table 2). Among these five genes, the bioinformatic analysis revealed the
existence of an hrp-box upstream of the HP02555 and HP29775 genes and a translocation
signal in the protein encoded by the HP07405 gene. Interestingly, the first gene (hsvA) of
an operon related to the Synthesis of phevamine A, a toxin that can suppress the plant
immune response [73], was identified by RNA-seq as part of the HrpL regulon of Psv
(Table 2). The expression of hsvA was downregulated in the ∆hrpL mutant compared with
the wild-type Strain. Furthermore, genes encoding a TonB-dependent siderophore receptor
(fecA), a hypothetical protein homologous to a N-acyl homoserine lactone Sintase (HP05360)
and a FMN transferase (apbE), were identified by RNA-seq as part of the HrpL regulon of
Psv NCPPB 3335 (Table 2).

https://www.ncbi.nlm.nih.gov/
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values represent downregulation and upregulation of genes, respectively. (b) Venn diagram of T3E genes identified by 
RNA-seq analysis, bioinformatic prediction of hrp-box, and N-terminal T3SS targeting pattern (EffectiveDB). Diagram la-
beled “not detected” represents all T3E genes of Psv NCPPB 3335 that were not identified by the three methods. # plasmid-
encoded genes; a T3E genes of Psv NCPPB 3335 for which translocation through T3SS was experimentally demonstrated; 
b T3E genes for which dependence on HrpL was demonstrated by RT-qPCR in Psv NCPPB 3335 [47,70,71]. * HrpL represses 
expression of HopA2. 

Figure 6. T3Es regulated by HrpL in P. savastanoi pv. savastanoi NCPPB 3335. (a) Graphical representation of log2 (fold
change) values of T3E genes obtained by RNA-seq analysis of ∆hrpL mutant and wild-type Strain. Negative and positive
values represent downregulation and upregulation of genes, respectively. (b) Venn diagram of T3E genes identified by
RNA-seq analysis, bioinformatic prediction of hrp-box, and N-terminal T3SS targeting pattern (EffectiveDB). Diagram
labeled “not detected” represents all T3E genes of Psv NCPPB 3335 that were not identified by the three methods. # plasmid-
encoded genes; a T3E genes of Psv NCPPB 3335 for which translocation through T3SS was experimentally demonstrated;
b T3E genes for which dependence on HrpL was demonstrated by RT-qPCR in Psv NCPPB 3335 [47,70,71]. * HrpL represses
expression of HopA2.

Although the number of genes identified by RNA-seq was not high, the bioinformatic
analysis revealed 26 additional genes containing a predicted hrp-box (Table 3). The pro-
teins encoded by all 26 predicted genes were classified into five categories: secondary
metabolism, signaling, hypothetical proteins, transporters, and others. For the eight pre-
dicted genes encoding hypothetical proteins, their predicted secondary structures were
compared with the Structures of other proteins included on the HHPred server [69]. How-
ever, matches with other proteins were not found. Among the hypothetical proteins, those
encoded by PSA3335_RS11510 and PSA3335_RS10865 showed a translocation signal, sug-
gesting that they could be putative T3Es. Among these 26 genes, four showed identity
with genes whose dependence on HrpL was previously reported in strains belonging to
the P. syringae complex (Table 3).
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Table 2. HrpL regulon proteins unrelated to T3SS and identified by RNA-seq in P. savastanoi pv. savastanoi NCPPB 3335.

Accession Number a Annotation Size (aa)
Domains b

Gene c RNA-seq d hrp
Value e

Effective
DB f

HrpL Dependence in other
Pathovars g

Pfam HHPred q Value Log2 (fc) Pto Pph Psy Pla Pja Por

Hypothetical proteins

PSA3335_RS02555 Hypothetical
protein 61 - - HP02555 0.006 −1.39 2789 nd

PSA3335_RS07405 Hypothetical
protein 41 - - HP07405 0.012 # nd 0.9999

PSA3335_RS29775 Hypothetical
protein 40 - - HP29775 0.006 −2.16 2785 nd

PSA3335_RS25230 Hypothetical
protein 221 - - HP25230 0.017 −0.58 nd nd

PSA3335_RS28495 Hypothetical
protein 260 - - HP28495 0.006 0.77 nd nd

Toxins

PSA3335_RS07880 Amidinotransferase 366 - HsvA protein hsvA 1 0.006 −0.87 nd nd

PSA3335_RS07885 HPr kinase 418 - - hsvB 2 NS nd nd

PSA3335_RS07890 Hypothetical
protein 414 - - hsvC 3 NS nd nd

Signaling

PSA3335_RS09570
TonB-dependent

siderophore
receptor

782
PF07660
PF07715
PF00593

Iron (III) dicitrate
transport protein

FecA
fecA 0.006 −0.62 nd nd

PSA3335_RS05360 Hypothetical
protein 212 -

N-acyl
homoserine

lactone Synthase
HP05360 0.006 −1.34 2763 nd

Secondary metabolism

PSA3335_RS20310 FMN transferase 343 PF02424 FMN transferase apbE 0.017 −0.63 2783 nd
a Accession number in NCBI (https://www.ncbi.nlm.nih.gov/, accessed on 1 June 2021). b Identification of functional domains in Pfam database [68] and HHPred database [69]. c 1, 2, and 3 indicate positions
(from 5′ to 3′) of genes encoding phevamine A operon. d Genes identified by RNA-seq. Significantly differentially expressed genes are those with q values < 0.05; NS, not significant. Fold change (fc) refers to
average expression rate obtained in ∆hrpL mutant relative to wild-type Strain in two biological replicates. Negative (red) and positive (green) fc correspond to genes downregulated and upregulated, respectively,
in ∆hrpL mutant relative to wild-type Strain. #, indicates that the expression in the ∆hrpL mutant is zero. e Bioinformatic prediction of putative hrp-box upstream of start codon of genes encoded in P. savastanoi pv.
savastanoi (Psv) NCPPB 3335 genome (hrp value ≥ 2500); nd, not detected. f EffectiveDB [66] provides values (0.999–1) for proteins in which N-terminal T3SS targeting pattern is detected; nd, not detected.
g Strains in which HrpL dependence of a protein homologous to that identified in Psv NCPPB 3335 was identified by RNA-seq [48,49]. Pto, Pph, Psy, Pla, Pja, and Por: Pseudomonas syringae pv. tomato DC3000, P.
syringae pv. phaseolicola 1448A, P. syringae pv. syringae B728A, P. syringae pv. lachrymans 107, P. syringae pv. japonica MAFF 301072, and P. syringae pv. oryzae 1_6, respectively.

https://www.ncbi.nlm.nih.gov/
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Table 3. Bioinformatic prediction of putative hrp-box upstream of start codon of genes encoded in P. savastanoi pv. savastanoi NCPPB 3335 genome.

Accession Number a Annotation
Size
(aa)

O b Place b hrp Value c EffectiveDB d Pfam e HHPred f HrpL Dependence in other Pathovars g

Pto Pph Psy Pla Pja Por

Secondary metabolism

PSA3335_RS07710# Alcohol dehydrogenase 85 yes 1 2718 nd PF08240 -
PSA3335_RS12335 Alcohol dehydrogenase 389 yes 2 2624 nd PF00465 -

PSA3335_RS26215
1-acyl-sn-glycerol-3-

phosphate
acyltransferase

270 yes 2 2586 nd PF01553 -

PSA3335_RS28260 iaaLPsv 397 yes 2 2571 nd - -
PSA3335_RS05405 iaaLPsn 395 no - 2568 nd - -

PSA3335_RS27660 Fructose-1,6-bisphosphate
aldolase 354 no - 2539 nd PF01116 -

PSA3335_RS18565 Aminomethyltransferase
(soxA) 968 yes 5 2511 nd

PF01571
PF17806
PF13510
PF08669
PF07992

-

PSA3335_RS18560 Sarcosine oxidase Subunit
delta (soxD) 101 yes 4 2511 nd PF04267 -

Signaling

PSA3335_RS04530 TetR family transcriptional
regulator

220 yes 1 2587 nd PF08362
PF00440

-

PSA3335_RS04245 Transcriptional regulator 80 no - 2572 nd PF13560

PSA3335_RS20160 Response regulator
transcription factor (luxR) 222 yes 2 2570 nd PF00072

PF00196
PSA3335_RS25950 Response regulator 121 yes 2 2504 nd PF00072

PSA3335_RS07965
Chemotaxis response

regulator protein-glutamate
methylesterase

358 yes 9 2500 nd PF01339
PF00072
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Table 3. Cont.

Accession Number a Annotation
Size
(aa)

O b Place b hrp Value c EffectiveDB d Pfam e HHPred f HrpL Dependence in other Pathovars g

Pto Pph Psy Pla Pja Por

Hypothetical proteins

PSA3335_RS00675 Hypothetical protein 224 yes 2 2580 nd -
Haloacid
dehaloge-

nase
PSA3335_RS11510 Hypothetical protein 289 yes 2 2577 0.9994 PF01904 -
PSA3335_RS23410# Hypothetical protein 48 yes 2 2567 nd PF07551 -
PSA3335_RS24280# Hypothetical protein 36 no - 2542 nd - -
PSA3335_RS13135 Hypothetical protein 79 no - 2539 nd - -
PSA3335_RS26045 Hypothetical protein 107 yes 5 2531 nd PF11872 -

PSA3335_RS06145 Hypothetical protein 166 yes 2 2518 nd PF14113
T6SS

effector
Tae4

PSA3335_RS10865 Hypothetical protein 290 yes 1 2517 0.9998 - T7 capsid
protein

Transporters

PSA3335_RS07870 MFS transporter 395 no - 2560 nd PF07690

PSA3335_RS09775 Amino acid ABC
transporter permease 365 yes 3 2528 nd PF00528

PSA3335_RS20980 MFS transporter 399 no - 2523 nd PF07690

Others

PSA3335_RS15760 Peptidyl-propyl cis-trans
isomerase

91 no - 2506 nd PF00639

PSA3335_RS01395 DUF2628
domain-containing protein 141 no - 2501 nd PF10947

a Accession number in NCBI. # pseudogene. b Indicates whether identified genes are part of an operon or not and their place within the operon. Prediction of operons was carried out with the fgenesb annotator
in SoftBerry [74] and the Operon-mapper web server [75].c Bioinformatic prediction of putative hrp-box upstream of start codon of genes encoded in P. savastanoi pv. savastanoi (Psv) NCPPB 3335 genome (hrp
value ≥ 2500); nd, not detected. d EffectiveDB [66] provides values (0.999–1) for proteins in which N-terminal T3SS targeting pattern is detected; nd, not detected. e Identification of functional domains in Pfam
database [68]. f Identification of structural homologues using HHPred web server [69]. Only results with probability greater than 90% are Shown. T6SS, type VI secretion system. g Red box, strains in which
activation by HrpL of a homologous protein was identified by RNA-seq [48,49]. Pto, Pph, Psy, Pla, Pja, and Por: Pseudomonas syringae pv. tomato DC3000, P. syringae pv. phaseolicola 1448A, P. syringae pv. syringae
B728A, P. syringae pv. lachrymans 107, P. syringae pv. japonica MAFF 301072, and P. syringae pv. oryzae 1_6, respectively.
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4. Discussion

We evaluated the importance of HrpL, an essential transcriptional regulator of viru-
lence functions, in the virulence of five pathovars of P. savastanoi (Psv, Psn, Psf, Psr, and
Psm) that cause disease in woody hosts (olive, oleander, ash, broom, and dipladenia).
Given the inability of some P. savastanoi strains to induce HR in tobacco plants, the capac-
ity to induce HR in a non-host plant was assessed in tobacco and tomato plants for all
the Strains and their corresponding ∆hrpL mutants (Figure 1). The Psn Psn23 strain was
previously described to induce HR in tobacco leaves, although the assay was performed
in the Burley White cultivar [40], a tobacco cultivar different from that used in this work
(Newdel). It is well known that the repertoire of bacterial T3Es, as well as the repertoire of
plant resistance genes, can vary among bacterial strains or cultivars, thus conditioning the
induction of a characteristic HR [76,77]. Furthermore, the characterization of strains Psn
Psn23 and Psm Ph3 shows that they contain a truncated version of avrPto1, which encodes
a shorter version of the effector with a C-terminal deletion [39,44]. In this sense, it has
been described that point mutations occurring at the C-terminal of AvrPto1 prevent HR
formation in tobacco but not in tomato leaves, indicating that this part of the effector could
participate in its recognition by the plant resistance protein [78]. During the last decade, it
has been reported that bacterial species of the P. syringae complex can naturally lack the
hrp/hrc cluster, making them unable to induce HR in non-host plants or compromising
their ability to cause disease in their respective hosts [19–21]. Genomic analysis carried out
for Psv NCPPB 3335, Psn Psn23, Psm Ph3, Psf NCPPB 1006, and Psr CECT 4861 confirmed
that all of these Strains contain a canonical hrp/hrc cluster [39,44], which allows them
to cause disease Symptoms in their respective woody hosts (Figure 2). In the P. syringae
complex, the role of HrpL as a global regulator of virulence has been mainly studied in
pathogenic bacteria affecting herbaceous plants [48,49,79–81]. Our results demonstrate
that HrpL is fully required for symptom development in P. savastanoi pathovars that cause
disease in woody hosts (Figure 2).

The HrpL regulon of P. syringae strains, which affect herbaceous plants, has been widely
studied using high-throughput sequencing and/or computational analysis [48,49,79–81]. In
our work, using a combination of both strategies, we identified 53 deregulated genes and
50 candidate genes containing a putative hrp-box (Figure 3 and Table 3). Out of the 53 genes
identified through RNA-seq analysis, 49 were downregulated compared with the wild-
type Strain (Figure 3). Analysis carried out with six isolates of P. syringae (pv. phaseolicola,
pv. lachrymans, pv. syringae, pv. japonica, and pv. tomato) showed that genes differentially
expressed across the Strains were mostly upregulated [48]. However, these transcriptomic
analyses were performed with mutants transformed with the native hrpL gene cloned
downstream of an arabinose-inducible promoter. By contrast, our RNA-seq data resulted
from a ∆hrpL mutant in which the hrpL locus was replaced, thus representing the oppo-
site Situation reported by Mucyn and associates with overexpressing P. syringae strains. In
agreement with previous data [48,49], most of the genes identified in our RNA-seq analysis,
44 out of the 53 deregulated genes, were annotated as T3SS components (30 genes) or
annotated T3Es (14 genes) (Figure 4), confirming that HrpL mainly regulates the T3SS and
its effectors. Unexpectedly, hrcS and hrpK were two unique genes belonging to the hrp/hrc
cluster that were not significantly deregulated in the Psv ∆hrpL mutant. Regarding hrcS,
while the log2 (fold change) value for this gene was about −4.15 (Table S7), suggesting
clear repression in the ∆hrpL mutant, the q value was greater than 0.05, indicating a non-
significant change. However, the fact that hrcS occupies the fifth position in an operon
(Figure 5), where all of the upstream (hrpP, hrcQA, hrcQB, and hrcR) and downstream (hrcT
and hrcU) genes were Significantly repressed, would suggest that differences in transcript
abundance across the biological replicates might explain the nonsignificant differences
observed for this gene. In relation to hrpK, it was previously reported that this gene is
activated by HrpL in P. syringae strains [48,49]. However, our transcriptomic analysis
shows that the hrpK gene was significantly upregulated in the ∆hrpL mutant compared
with its wild-type Strain (Table S7). In P. syringae pv. tomato (Pto) DC3000, it has been
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described that HrpK is translocated extracellularly through the T3SS, and is required for
symptom development and bacterial multiplication [82]. Furthermore, complementation
assays for the hrpK mutants showed that HrpK does not function inside the plant cells,
which would suggest a putative role for HrpK as a T3E translocator located at the plant
membrane [82]. In Pto DC3000, hrpK is the first gene of an operon together with hopB1 [83].
However, in Psv NCPPB 3335, this operon is completed by shcA (PSA3335_RS10690) and
hopA2 (hopPsyB; PSA3335_RS10695), the Same operon organization described in P. syringae
pv. syringae 61 [83]. In accordance with the expression data obtained for hrpK, the expres-
sion of shcA and hopA2 was significantly upregulated in the ∆hrpL mutant compared with
the wild-type Strain (Tables 1, S7 and S8). This result suggests that this operon could be
repressed, directly or indirectly, by the transcription factor HrpL.

The genomic analysis of Psv NCPPB 3335 revealed that this pathogenic bacterium
contains a total of 31 T3Es encoded in its genome [44]. In this study, we identified a total of
16 genes as part of the HrpL regulon, 7 genes identified by RNA-seq, 4 genes predicted
bioinformatically, and 5 genes identified by both approaches (Figure 6 and Table S8).
Of special interest was the identification of the pseudogene PSA3335_RS02560, which
encodes a protein homologous to XopAD, a T3E from Xanthomonas [84–86]. Strikingly,
in the genome of Psv NCPPB 3335, this gene appears to be Separated into two ORFs,
the pseudogenes PSA3335_RS02560 and PSA3335_RS02565. However, even when both
pseudogenes encode proteins that contain the characteristic SKWP repetitions [87], only
the expression of PSA3335_RS02560 was found to be repressed in the RNA-seq analysis
(Table S8). The fact that PSA3335_RS02560 contains an hrp-box within its promoter, as well
as the existence of a type III translocation signal at the N-terminal of the protein sequence,
suggest that PSA3335_RS02560 and its encoded protein could be a novel T3E acquired by
Psv NCPPB 3335 (Table S8). The PSA3335_RS02560 gene is homologous to the PSPPH_1525
gene from Pseudomonas syringae pv. phaseolicola 1448A, whose expression has been reported
to be regulated by HrpL and HrpS [72]. Demonstrating that PSA3335_RS02560 encodes a
novel functional T3E in Psv NCPPB 3335 would require additional translocation assays
with the protein effector.

An additional goal of work aimed at characterizing the HrpL regulon has been to
identify genes, or hrp-boxes upstream of the genes, encoding potential virulence factors that
are not related to the T3SS [48,49,79,88]. In this study, we identified a total of 34 potential
genes whose expression is potentially influenced by HrpL that were not annotated as
structural, auxiliary, or functional elements of the T3SS (Figure 4). As previously described,
most of these nonrelated T3SS genes were annotated as hypothetical proteins, secondary
metabolism, signaling, or toxins (Figure 4 and Tables 2 and 3). Included in the Signaling
category, we identified two genes, PSA3335_RS09570 and PSA3335_RS05360, whose ex-
pression is regulated by HrpL. The former encodes a TonB-dependent siderophore receptor
(FecA) protein (Table 2), an outer membrane transporter involved in citrate-mediated iron
import in bacteria [89,90]. The analysis of iron-deficient mutants in P. syringae pv. tomato
DC3000 suggests that, in contrast to mammalian pathosystems, siderophores may play a
more Specialized role in iron nutrition, growth, and virulence in plant pathogenic bacteria
during host colonization [89]. The latter gene, PSA3335_RS05360, was characterized as
encoding a hypothetical protein homologous to N-acyl homoserine lactone (AHL) synthase
(Table 2). Broadly speaking, AHL is a signaling molecule involved in bacterial quorum
sensing (QS), a relevant interbacterial communication system used to detect and respond
to cell population density by gene regulation [91–93]. In previous work, it was reported
that Psv and Erwinia toletana share QS signals and cooperate with each other, causing
more Severe Symptoms in olive tree knots [94]. The existence of AHL synthase regulated
by HrpL suggests a connection between the T3SS and the low bacterial cell density that
exists during the first stages of host colonization.

Bacterial phytotoxins are widely distributed among all the major genera of plant
pathogenic bacteria and are considered among the most important virulence factors in
symptoms of disease [95,96]. In P. syringae, it was previously reported that genes encoding
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enzymes that participate in the Synthesis of coronatine and siringomycin are regulated by
HrpL [65,97]. A similar HrpL dependency was observed for the hrp PAI of E. amylovora,
which encodes the proteins required for the Synthesis of a putative phaseolotoxin-like
phytotoxin [98]. Interestingly, as part of the Psv NCPPB 3335 HrpL regulon, we identified
the hsvA gene, whose expression was downregulated in the ∆hrpL mutant compared with
the wild-type Strain (Table 2). This gene occupies the first position of the hsv operon
(hsvA, hsvB, and hsvC), a group of genes involved in synthesizing phevamine A, a small
molecule classified as a toxin that suppresses the plant immune response during P. syringae
infection [73]. It has also been reported that the expression of the hsvA operon in E.
amylovora depends on the HrpL regulator and is required for full virulence in apples [98].
Therefore, characterizing this operon in Psv NCPPB 3335, as well as other P. savastanoi
strains, would contribute to a better understanding of its role in the virulence of plant
pathogenic bacteria infecting woody hosts.

To summarize, high-throughput transcriptome Sequencing (RNA-seq) combined with
the bioinformatic analysis of sequences containing an hrp-box allowed us to characterize the
HrpL regulon of P. savastanoi pv. savastanoi NCPPB 3335. Although most of the identified
predicted genes are related to structural or auxiliary functions of the T3SS, the combination
of these two experimental approaches showed some potential genes, whose regulation is
controlled by HrpL, that could be involved in the virulence of this pathogenic bacterium
of woody hosts. Of particular interest was the detection of the hsvA gene, which occupies
the first position of an operon dedicated to the Synthesis of phevamine A, a phytotoxic
molecule that participates in the Suppression of the plant immune response. The results
obtained in this work suggest that HrpL not only orchestrates the expression of genes
related to the T3SS but also genes that encode potential virulence factors required for the
virulence of P. savastanoi in both host and non-host plants.
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of Illumina RNA-seq data. Table S6: Genes shared by in vitro and in silico analysis. Table S7:
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