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Background: Aberrant glycosylation is significantly related to the occurrence,
progression, metastasis, and drug resistance of tumors. It is essential to identify
glycosylation and related genes with prognostic value for breast cancer.

Objective:We aimed to construct and validate a prognostic model based on glycosylation
and related genes, and further investigate its prognosis values in validation set and external
independent cohorts.

Materials and Methods: The transcriptome and clinical data of breast cancer patients
were downloaded from The Cancer Genome Atlas (TCGA, n = 1072), Molecular Taxonomy
of Breast Cancer International Consortium (METABRIC, n = 1451), and GSE2741 (n =
120). Glycosylation-related genes were downloaded from the Genecards website.
Differentially expressed glycosylation-related geneswere identified by comparing the
tumor tissues with the adjacent tissues. The TCGA data were randomly divided into
training set and validation set in a 1:1 ratio for further analysis. The glycosylation risk-
scoring prognosis model was constructed by univariate and multivariate Cox regression
analysis, followed by confirmation in TCGA validation, METABRIC, and GEO datasets.
Gene set enrichment analysis (GSEA) and Gene ontology analysis for identifying the
affected pathways in the high- and low-risk groups were performed.

Results: We attained 1072 breast cancer samples from the TCGA database and 786
glycosylation genes from the Genecards website. A signature contains immunoglobulin,
glycosylation and anti-viral related genes was constructed to separate BRCA patients into
two risk groups. Low-risk patients had better overall survival than high-risk patients (p <
0.001). A nomogram was constructed with risk scores and clinical characteristics. The
area under time-dependent ROC curve reached 0.764 at 1 year, 0.744 at 3 years, and
0.765 at 5 years in the training set. Subgroup analysis showed differences in OS between
the high- and low-risk patients in different subgroups. Moreover, the risk score was
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confirmed as an independent prognostic indicator of BRCA patients and was potentially
correlated with immunotherapy response and drug sensitivity.

Conclusion: We identified a novel signature integrated of immunoglobulin (IGHA2),
glycosylation-related (SLC35A2) and anti-viral gene (BST2) that was an independent
prognostic indicator for BRCA patients. The risk-scoring model could be used for
predicting prognosis and immunotherapy in BRCA, thus providing a powerful
instrument for combating BRCA.

Keywords: breast cancer, gene signature, prognosis mode, immunotharapy, glycosylation

INTRODUCTION

Globally, breast cancer is the most common cancer among women,
and is the leading cause of cancer deaths among women aged 20 to
59 (R. L. Siegel et al., 2021). The cumulative risk of breast cancer is
about 5% in women, and the risk of death is 1.4% (E. Hadadi et al.,
2020). In recent years, the incidence of breast cancer has continued
to increase by about 0.5% annually (R. L. Siegel et al., 2021), which
seriously affects women’s health and quality of life. Breast cancer is a
highly heterogeneous disease. The main treatments for breast cancer
include systemic therapy (chemotherapy, endocrine therapy,
targeted therapy, and immunotherapy) and local treatment
(surgery and radiotherapy). Breast cancer molecular subtypes
were essential indicators for treatment and prognosis. Currently,
the majority of patients diagnosed with a specific breast cancer
subtype receive the same treatment, even though it has been
repeatedly proven that they should adopt differential strategies (S.
A. Eccles et al., 2013; S. Fallahpour et al., 2017; W. J. Gradishar et al.,
2020). Triple-negative breast cancer (TNBC) is a type of breast
cancer that lacks expression of human epidermal growth factor
receptor 2 (HER2), progesterone receptor, and estrogen receptor (G.
Bianchini et al., 2016). Typically, the prognosis for women with
TNBC following metastatic recurrence is much poorer than other
subtypes (M. Smid et al., 2008). It is a heterogeneous disease
representing about 15% of total breast cancer incidents, which is
difficult to treat as lack of available targeted therapies. Chemotherapy
remains to be the preferred systemic treatment for TNBC (D. P.
Silver et al., 2010), and particularly in those carrying BRCA1
mutations (J. Collignon et al., 2016). This demonstrates the
reliable predictive biomarkers are necessary for precise diagnosis
and individualized treatment for breast cancer patients, and the
precision medicine progress have been fueled by the continuous
development of new sequencing and computational technologies.

Genetic and epigenetic alterations are considered the primary
causes of cancer development, and the downstream phenotypic
changes at the protein level are amongst the driving forces (A.
Peixoto et al., 2019). Glycosylation is the most common and
complicated post-translational modification for membrane-bound
proteins. More than 50–70% of proteins in the circulation are
glycosylated, which play important roles in various cellular
activities, such as cell growth, differentiation, transformation, and
adhesion (Ohtsubo and Marth, 2006). Aberrant glycosylation has
been identified as a hallmark of cancer and intimately correlated with
cancer occurrence, progression, metastasis, tumor recurrence, and
drug resistance (Pinho and Reis, 2015; Rao et al., 2017; A.

Chakraborty et al., 2018; Cui et al., 2018). There was also a
correlation between glycosylation and antitumor immunity. For
example, Freire et al. demonstrated that Tn glycosylation of the
MUC6protein strongly affects the immunogenicity of its B andT cell,
and might enable immune escape of tumor cells (T. Freire et al.,
2011). Bone marrow stromal antigen 2 (BST2) was a type II
transmembrane protein, also known as tethered protein, HM1.24
orCD317. BST2 homodimer promotes cancer cell adhesion and
enhances cancer cell survival and growth by enhancing
proteasomal degradation of pro-apoptotic proteins (Mahauad-
Fernandez and Okeoma, 2017). Sayeed et al. indicated that
aberrant BST2 overexpression promoted the disappearance of
TGFβ-mediated tumor-suppressive effects in breast cancer as a
consequence and the ensuing loss of the differentiation program
(A. Sayeed et al., 2013). Mahauad Fernandez and Okeoma suggested
that BST-2 targets breast cancer cells that are resistant to anoikis via
the GRB2/ERK/BIM/Cas3 pathway. Almost all breast tumors express
BST2 to a certain level, and the high expression level of BST2 was
related to progressivemalignancies (W.D.Mahauad-Fernandez et al.,
2014). Several studies have shown that BST2 regulates the occurrence
of gastric cancer, oral squamous cell carcinoma, lung cancer and is
involved in tumormetastasis and invasion (W.Wang et al., 2009a; K.
H. Fang et al., 2014; W. Liu et al., 2018; W. Liu et al., 2020).
Immunoglobulin heavy constant alpha 2 (IGHA2), located on
chromosome 14, expressed in breast cancer cells and upregulated
in advanced breast tumor tissues by comparison with early tumors,
was involved in the early stage of the tumor microenvironment
remodeling and has been identified as amarker of regional metastasis
in lymph nodes. Suki Kang et al. reported that IGHA2 might protect
the cells against physiological stresses during the neoplastic process
and promote tumor growth in the advanced stages of cancer (S. Kang
et al., 2012). Exploring the role of glycosylation, immunoglobulin, and
anti-viral in BRCA and related molecules will help us investigate
strategies to combat for BRCA. Currently, there is still no study
exploring the prognosis value of glycosylation, immunoglobulin, and
anti-viral -related genes. Therefore, this study aims to establish a
prognostic model for breast cancer based on glycosylation-related
genes and evaluate it from multiple dimensions.

MATERIALS AND METHODS

Data Source and Processing
Breast cancer datasets were downloaded from the Molecular
Taxonomy of Breast Cancer International Consortium
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(METABRIC, http://www.cbioportal.org), The Cancer Genome
Atlas (TCGA, https://www.cancer.gov), and the Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo). Patients who
met the following selection criteria were included: 1)
histologically diagnosed with malignant breast cancer; 2)
available RNA expression data; and 3) available OS data. After
screening, this study included 1,451 patients from METABRIC,
1,072 patients from TCGA, and 120 patients from GSE2741.
Glycosylation-related genes were downloaded from the website of
Genecards (https://www.genecards.org). A total of 786
glycosylation genes were analyzed by comparing the tumor
tissues with the adjacent tissues to obtain differentially
expressed glycosylation-related genes (DEGRGs). A p value
less than 0.05 was considered statistically significant.

Construction and Validation of the
Risk-Scoring Model
The TCGA BRCA data were randomly assigned into training
set and validation set according to the ratio of 1:1. In order
to determine the survival-related glycosylation genes, we
performed univariate Cox regression, in which p < 0.05 was
set as a cut-off criterion. Subsequently, multivariate Cox
regression was performed to construct a prognostic risk-
scoring model, in which the risk score for each patient was
calculated according to the following formula:

RiskScore � [(0.9138 × Expression value of SLC35A2)

+[(−0.2483) × Expression value ofBST2]

+[(−0.1002) × Expression value of IGHA2]]

All BRCA patients were assigned to the high- and low-risk
groups according to the median risk score in the training set. The
difference in OS between these two groups was investigated by the
log-rank test and Kaplan-Meier survival analysis. In addition, the
distributions of survival status, OS, and risk score in the training
set were also plotted.

Independent Prognostic Analysis
To evaluate the relationship between clinicopathological
factors and risk scores on survival time, we used the
“Survival” R package to perform univariate and
multivariate Cox regression. The time-dependent receiver
operator characteristic (ROC) curve was drawn, and the R
package “timeROC” was applied to determine the prognostic
performance of either clinicopathological factors or risk

FIGURE 1 |Differential expression of glycosylation-related genes (A) The
volcano plot showed the up-regulated and down-regulated differential genes
in breast tumor tissues compared with adjacent tissues (t-test, Adjust. p <
0.05) (B) The heat map showed that 163 differential glycosylation-
related genes were expressed in tumor tissues and adjacent tissues.

TABLE 1 | The association between risk score and patients’ clinical features in the
training set.

Variables Training Set Validation Set p-Value

(n = 432) (n = 429)

No. ％ No. ％

Age 0.986
≤65 319 73.8 318 74.1
>65 113 26.2 111 25.9

Stage 0.870
I 72 16.7 79 18.4
II 254 58.8 251 58.5
III 97 25.5 92 21.5
IV 9 2 7 1.6

T stage 0.622
T1 111 25.7 115 26.8
T2 253 58.6 258 60.1
T3 51 11.8 45 10.5
T4 17 3.9 11 2.6

N stage 0.504
N0 218 50.5 201 46.9
N1 141 32.6 147 34.2
N2 51 11.8 50 11.7
N3 22 5.1 31 7.2

M stage 0.812
M0 423 97.9 422 98.4
M1 9 2.1 7 1.6
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scores on survival time. p < 0.05 was considered statistically
significant.

Subgroup Analysis
We further evaluated the model’s predictive ability by stratifying
patients into various subgroups. These variables include age (≤65
and >65 years), tumor stage (I-II and III-IV), T stage (T1-2 and T3-
4), N stage (N0 and N1-3), M stage (M0 and M1), estrogen receptor
(ER) state (positive and negative), human epidermal growth factor
receptor (HER-2) state (positive and negative), triple-negative breast
cancer (yes and no). To further confirm the value of the risk score in
TNBC and HER-2 positive subgroups, the TNBC and HER-2
positive samples from METABRIC database were used for re-
verification. Through clinical survival analysis, the predictive
ability of the risk-scoring model in various clinical subgroups was
clarified. p < 0.05 was considered statistically significant.

Exploration of the Value of the Risk-Scoring
Model in Clinical Utility
To further improve the practical value of the risk-scoringmodel, a
nomogram was constructed by integrating age, tumor stage, T
stage, N stage, M stage, and risk score to predict the OS of patients
at 1, 3, and 5 years. In addition, the C-index was used to measure
the accuracy of the nomogram, and the calibration curve was
drawn to evaluate the calibration of the model. The ROC curves
of various clinical characteristics were drawn, and the AUC was
calculated to judge the performance of the prognosis model. In
addition, decision curve analysis (DCA) was used to estimate the
maximum clinical benefit by logistic regression analysis.

Functional Enrichment Analysis
To explore the difference molecular pathways underlying survival
prognosis between the high- and low-risk groups, we used the
“clusterProfiler” R package to perform Gene Ontology (GO)
enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis. Bubble Diagram
visualized the most important pathways in KEGG and each
GO category. Gene Enrichment Score Analysis (GSEA) was
also applied to determine signaling pathways regulated in
patients of the high- and low-risk groups. p < 0.05 and FC >
1.2 (or FC < 0.83) were set as the cut-off values.

Analysis of Tumor Immune
Microenvironment
The tumor microenvironment score of each single BRCA patient
was estimated using the ESTIMATE algorithm. CIBERSORT
algorithm was utilized to evaluate the proportion of 22 human
immune cell subsets in the high- and low-risk groups. The
“GSVA” R package was applied to perform single-sample gene
set enrichment analysis (ssGSEA) to quantify the GSVA scores of
the 13 immune signatures. The difference between the expression
levels of immune checkpoints in the high- and low-risk groups
was further evaluated. p-value < 0.05 was considered statistically
significant.

Tumor Mutation Burden Analysis
After obtaining the somatic mutation data in the TCGA BRCA
dataset, the “maftools” R package was applied to analyze the
tumor mutation burden (TMB) of the training set, TMB value
was calculated, and a waterfall chart was drawn. Then it would be
assessed whether the TMB scores were related to the risk scores
and patient survival probability. We found the median value of
TMB and divided TCGA BRCA dataset into high TMB group and
low TMB group. Patients were stratified into the new groups by
integrating TMB and risk scores, and Kaplan-Meier survival
analysis was used. The “Survival” and the “survminer” R
packages were used for joint survival analysis. The
CBIOPORTAL database (https://www.cbioportal.org/) was
used to analyze the mutations profiles in the high-and low-
risk groups. Finally, the protein domains where the mutations
were located were clarified. p < 0.05 was considered statistically
significant.

FIGURE 2 | Construction of risk-scoring model (A,B) PCA and t-SNE
based on the expression profile of the 3 selected signature genes separated
different risk groups.
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Relationship Between Risk Scores and
Immunotherapy
IMvigor210, a phase II trial of atezolizumab (MPDL3280A) in
platinum-treated locally advanced or metastatic urothelial
carcinoma. It was downloaded to assess the correlation between
risk scores and immunotherapy response. The tumor immune
dysfunction and exclusion (TIDE) score was calculated online
(http://tide.dfci. harvard. edu/) to assess the immune checkpoint
inhibitor response between the high- and low-risk groups (Z. Lin
et al., 2021).We downloaded RNA-seq and compound activity: DTP
NCI-60 through the CellMiner database (https://discover.nci.nih.
gov/cellminer) and excluded FDA status as empty or clinical trial
data to explore the relationship between the expression of genes and

drug sensitivity. The three-dimensional structures of drugs were
obtained through the PubChem database (https://pubchem.ncbi.
nlm.nih.gov). p < 0.05 was considered statistically significant.

RESULTS

Identification of Differential Expression of
Glycosylation-Related Genes in Breast
Cancer
We compiled the gene expression data of breast cancer from the
TCGA database and finally got 1,072 tumor tissues and 99

FIGURE 3 | Assessment of the prognostic model in mRNA expression database (A) Survival curve of the high- and low-risk groups in the training set (n = 536) (log
rank test, p < 0.05) (B) The distribution of the risk scores in the training set (C) The distributions of survival status, OS, and risk score in the training set (D) Kaplan-Meier
survival curve of validation set (n = 536) comparing the high- and low-risk groups (E) Kaplan-Meier survival curve of the high- and low-risk groups in the independent test
set METABRIC (n = 1451) (F) Kaplan-Meier survival curve analysis in the independent test set GSE2741 (n = 120) comparing two risk groups. All the K-M survival
analyses use log-rank tests to determine significant differences between two groups, p < 0.05.

FIGURE 4 | Explore the prognostic value of risk score and clinical features (A) Univariate Cox regression analysis of breast cancer patients (B) Multivariate Cox
regression analysis of breast cancer patients (Wald test, p < 0.05) (C) The AUC for risk model scores and clinical features according to the ROC curves. Clinical features:
Age, ER, PR, HER-2, TNM stage, T, N, and M.
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adjacent tissue samples. Around 786 glycosylation-related genes
were obtained by the Genecards website with a correlation >2.0 as
the cut-off value. Based on standard cut-off values for fold-change
in gene expression (|log(FC)|> 1) and false discovery rate (FDR
<0.05), the breast cancer tissues had 163 DEGRGs, with 86 down-
regulated genes and 77 up-regulated genes (Figures 1A,B).

Construction of a Risk-Scoring Model
The samples screened from the TCGA database were randomly
assigned to the training set for the construction of the model and

the validation set for accuracy estimation according to the ratio of
1:1. The clinical features of all patients are shown in detail in
Table 1. There were no statistically significant differences in
clinical features between patients in the training set and
validation set. Based on the training data set, the prognosis-
related glycosylation genes were screened by univariate Cox
regression (p < 0.05), including two low-risk genes [hazard
ratio (HR) < 1] and one high-risk gene [risk ratio (HR) > 1].
Then, multivariate Cox analysis was performed to screen three
genes related to the glycosylation with prognostic significance

FIGURE 5 | Subgroup analysis. Kaplan-Meier survival curve analysis of patients with high-vs low-risk scores in different subgroups including age, TNM stage, ER
status, HER-2 status, TNBC status. All the K-M survival analyses use log-rank tests to determine significant differences in subgroups.
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(p < 0.05), namely BST2, IGHA2, and SLC35A2. These three
genes were used to construct a risk-scoring model. According to
the risk score formula and the median risk score, the patients with
breast cancer were divided into the high- and low-risk groups.
The PCA and t-SNE showed that the high- and low-risk groups
had different distribution directions, suggesting that the risk-
scoring model could clearly divide BRCA patients into two
groups (Figures 2A,B).

Evaluation and Validation of the Aberrant
Glycosylation-Related Risk-Scoring Model
Kaplan-Meier survival analysis showed that the OS of the high-
risk group was lower than that of the low-risk group in the
training cohort (p < 0.001) (Figure 3A), demonstrating the
excellent predictive value of the risk-scoring model in the
training set. The risk curves showed the survival status and
risk scores of each breast cancer sample, which was calculated
and ranked based on the signature model (Figure 3B). The
scatter plot represented the OS status of BRCA patients
according to the risk score, suggesting that the higher the
risk scores were, the higher the number of death was
(Figure 3C). Similarly, with Kaplan-Meier survival analysis
using the validation cohort and external independent test sets,
the OS rate of the high-risk group was lower than that of the
low-risk group (p < 0.05), confirming that the risk-scoring
model had a robust prognostic value (Figures 3D–F).

Explore the Independent Prognostic
Factors of Breast Cancer
To evaluate whether the established risk-scoring model is an
independent prognostic factor for breast cancer, univariate and
multivariate Cox regression was performed. The HR of the risk
scores and 95% CI were 2.059 and 1.458–2.906 (p < 0.001),
respectively, in univariate Cox regression analysis (Figure 4A),
which were 2.049 and 1.389–3.022 (p < 0.001) in multivariate Cox
regression analysis, respectively (Figure 4B). The result
demonstrated that the risk score was a significant prognostic
factor independent of multiple clinicopathological parameters
such as the expression level of estrogen receptor (ER),
progesterone receptor (PR), human epidermal growth factor
receptor (HER-2) as well as the M stage, N stage, T stage,
tumor stage. Additionally, compared with other
clinicopathological factors, the AUC of the risk score for 1-
year OS shown by ROC analysis reached 0.759, which was
superior to other clinicopathological variables (Figure 4C). In
summary, it can be concluded that the aberrant glycosylation-
related risk scoring model is a significant independent prognostic
factor for BRCA patients.

Subgroup Analysis
We used the TCGA BRCA samples to verify the relationship
between the risk score and the prognosis of clinical features and
emphasize the molecular heterogeneity of BRCA. After
comparing a statistical difference in OS between the two risk

FIGURE 6 | Construction and evaluation of nomogram (A) Nomogram for predicting the 1-, 3-, and 5-year survival rates based on the risk score (B) Calibration
curve of the nomogram (C)ROC curve analysis evaluated the prediction performance of nomogram (D)Decision curves of “risk”, “age”, “stage”, “all” and “None”models.
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groups with Kaplan Meier survival curve, the results showed that
the OS of the high-risk group was lower than that of the low-risk
group among age ≤65, ER positive, HER-2 negative, M0, N0, N1-
N3, stage I-II, stage III-IV, T1-2, T3-4, and non-TNBC subgroups
(p < 0.05; Figure 5). In addition, the low-risk group had higher
OS in the TNBC and HER-2 positive subgroups from
METABRIC (Supplementary Figure S1A,S2). The results
suggested that the risk score is closely related to the clinical
features of BRCA and can be used as an effective auxiliary tool to
predict the BRCA prognosis.

Clinical Evaluation Ability of the
Risk-Scoring Model
A predictive nomogram based on the integration of risk score,
pathological stage, and age integration was established in the
TCGA cohort (Figure 6A). The C-index of the nomogram was
0.676 in the TCGA cohort, indicating that the nomogram had a
good predictive performance. The calibration curve analysis
verified that the nomogram was reliable and accurate, which
demonstrated that the predictive probability of 1-, 3- and 5-year

OS was ideally consistent with actual observation (Figure 6B).
With the analysis of the ROC curve, the AUC value was 0.764,
0.744, and 0.765 for 1-, 3-, and 5-year OS, respectively, indicating
that the risk-scoring model had excellent predictive accuracy
(Figure 6C). In addition, DCA analysis was performed to
evaluate the predictive value of the nomogram in clinical
decision-making (Figure 6D). The above all indicated that the
risk-scoring model and nomogram had high reliability.

Gene Set and Function Enrichment Analysis
To analyze the pathways related to the risk-scoring model, GO
and KEGG enrichment analysis were performed. GO analysis
showed that the differential genes between the high- and low-risk
groups were enriched in T cell activation, T cell receptor binding,
integrin binding, and nuclear division (Figure 7A). KEGG
enrichment showed the differential genes between two groups
related to PI3K-Akt signaling pathways, cell adhesion molecules,
and leukocyte differentiation (Figure 7B). GSEA was further used
to investigate the key signaling pathways in different risk groups
(Figures 7C,D). The results revealed that chromosome
segregation was enriched in the high-risk group while T cell

FIGURE 7 | Gene set enrichment analysis (A) GO analysis the first 10 items about the enrichment of BP, CC and MF were shown in the bar chart (B) The top 30
terms of KEGG pathways enrichment were displayed in the bubble chart (C,D) Gene set and function enrichment analysis of differentially expressed genes between the
high-risk group low-risk group. p < 0.05 and FC > 1.2 (or FC < 0.83) were set as the cut-off values.
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activation, immune response, antigen receptor-mediated
signaling pathway were enriched in the low-risk group. These
findings explained the poor survival in the high-risk group and
may help us gain insight into the implication of aberrant
glycosylation-related signature.

Tumor Immune Microenvironment of BRCA
To further explain the difference in survival between the two groups,
we explored the relationship between glycosylation and the tumor
immune microenvironment. Stromal scores, immune scores, and
ESTIMATE scores were evaluated by the ESTIMATE package, all of
which were higher in the low-risk group (p < 0.001; Figures 8A–C).
In contrast, patients in the high-risk group were associated with
significantly higher tumor purity (p < 0.001) (Figure 8D). After the
proportion of 22 immune cell types was calculated by CIBERSORT,
there were significant differences in the infiltration scores of nine
immune cells between the two groups (Figure 9A), including B cell
naive, plasma cell, T cell CD8 +, T cell CD4 +memory resting, T cell
gamma delta, Macrophage M0, Macrophage M2, mast cell resting,
and T cell follicular helper (p < 0.05). Subsequently, we used
Spearman Correlation Analysis to explore the relationship
between risk score and immune cell infiltration. The results
showed that the low-risk group had a higher infiltration level of
B cells naive, mast cells resting, plasma cells, T cells CD4 memory
resting, T cells CD8, and T cells gamma delta (p < 0.05), while higher
macrophagesM0,macrophagesM2 and T cells follicular helper were
found in the high-risk group (p < 0.05) (Supplementary Figure S3).
The ssGSEA was performed to quantify the enrichment scores of 13
immune cell-related functions between the two risk groups. The
results showed that the scores of APC co-inhibition, CCR, Check-
point, cytolytic activity, HLA, Inflammation-promoting, Para
inflammation, T cells co-stimulation, Type I IFN response, Type

II IFN response of patients in the low-risk group were higher (p <
0.01, Figure 9B), indicating that the low-risk group had higher
immune infiltration than the high-risk group did. We further
explored the immune checkpoints, and the result showed that the
distribution of immune checkpoint-related molecule expression was
significantly different between the high- and low-risk groups. The
difference analysis confirmed that the expression of 22 immune
promoting checkpoints (TNFRSF4, SELP, TLR4, CD40, ENTPD1,
CXCL9, TNFRSF18, PRF1, CD28, TNFRSF14, ICAM1, CD40LG,
ICOS, CD27, IL12A, IFNG, GZMA, ITGB2, BTN3A2, CCL5,
CX3CL1, BTN3A1) in the low-risk group was higher, indicating
that the prognosis of the low-risk group was better than that of the
high-risk group (p < 0.05) (Figure 9C), that may provide the
potential targets of immunotherapy for BRCA patients. In
conclusion, the low-risk group had higher Tumor infiltrating
lymphocytes (TILs), of which the prognosis was better, compared
with the high-risk group.

Genomic Mutation Analysis
Through the downloaded somatic mutation data, the mutation
frequency of the high-risk group and the low-risk group was
calculated, and the waterfall chart was drawn to confirm the
difference in the distribution of somatic mutations. It found that
169 of 198 (85.35%) BRCA samples in the high-risk group and
165 of 191 (86.39%) BRCA samples in the low-risk group
displayed genetic mutations, and missense mutation was the
most common variant classification. Moreover, in the high-
risk group, PIK3CA had high genetic alterations (25%), which
was just junior to the genetic alterations of TP53 (43%). In the
low-risk group, PIK3CA had the most genetic alterations (41%)
(Figures 10A,B). We also found that the TMB of patients in the
high-risk group was significantly higher than that in the low-risk
group (p < 0.001, Figure 10C), indicating that BRCA patients in
the high-risk groups may derive good outcomes from immune
checkpoint inhibitor treatments. The combined survival analysis
showed that the prognosis of low-risk and low TMB patients was
significantly better than that of high-risk and high TMB patients
(p < 0.01, Figure 10D). Mutations of the genes for constructing
the risk-scoring model and the genes with higher mutation
frequency in the high-risk group showed that mutations in
SLC35A2 and BST2 were mainly related to gene amplification,
while mutations in IGHA2, TP53, and TTNwere mainly related to
missense mutations. By the CBIOPORTAL database, the domain
where the mutations were located was defined, including
SLC35A2 mutations were localized in the nucleotide sugar
transporter domain, IGHA2 mutations were enriched in the
immunoglobulin domain, the majority of TP53 mutations
were centralized in the P53 DNA binding domain, and TTN
mutations were localized in the immunoglobulin I-set domain,
fibronectin type III domain, protein kinase domain, titin Z, and
PPAK motif (Figure 10E).

Analysis of Immunotherapy Response and
Drug Sensitivity
We explored the OS difference after immunotherapy between the
high- and low-risk group in the phase II trial, in which

FIGURE 8 | ESTIMATE algorithm calculates immune score. The violin
chart showed the comparison of stromal scores (A), immune scores (B),
ESTIMATE scores (C), and tumor purity (D) between the high-risk group and
the low-risk group (Wilcoxon test, p < 0.05).
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atezolizumab was treated with platinum-treated locally advanced
or metastatic urothelial carcinoma (IMvigor210). The patients in
the high-risk group had a better effect in receiving
immunotherapy (p < 0.05, Figure 11A). Although there was
no significant statistical difference, it was found that the
prognosis of the high-risk group was better than that of the
low-risk group after immunotherapy (p = 0.095, Figure 11B).
The better response to immunotherapy in the high-risk group
may be due to the relatively higher TMB that we had
demonstrated before. A similar correlation between TMB and
our risk scoring model was identified in TCGA BLCA
(Supplementary Figure S4). Then, TIDE was further used to
assess the potential immunotherapy effect in the high- and low-
risk groups. The high-risk group had a lower TIDE score, which
represented a lower possibility of immune escape, suggesting the
BRCA patients in the high-risk group could benefit more from
immune checkpoint inhibitor therapy (Figure 9D). Besides, the
low-risk group got a higher T-cell dysfunction score (Figure 9D).
Through further analyzing the drug sensitivity by comparing the

expression levels of model genes and drug response data from
CELLMINER, we obtained the drugs with the most statistical
significance (Figure 12A). The expression of SLC35A2 was
positively correlated with the sensitivity of two drugs
(Vismodegib and Abiraterone) (HR > 1, p < 0.05), in turn,
more sensitive in the high-risk group than in the low-risk
group. The three-dimensional structures of the two drugs were
obtained from the PubChem database, which provided potential
guidance for chemotherapy in high-risk BRCA patients (Figures
12B,C).

DISCUSSION

Breast cancer is the most common cancer in women, accounting
for nearly 25% of all cancer cases in women. It is also the leading
cause of cancer deaths among elderly women (Hadadi et al., 2020;
Siegel et al., 2021). The 5-year survival rate for patients with
metastatic or stage IV breast cancer is 22% (www.cancer.org). The

FIGURE9 | The relation between risk scoringmodel and the immunemicroenvironment (A) The plot showed the estimated proportion of 22 immune cell in the high-
and low-risk group (B) Box plot of differences in immune related ssGSEA scores between the two groups (C) Box plot of differences in the expression levels of immune
related including immune checkpoint genes between the two groups (D) The violin plot showed the difference in dysfunction, exclusion, MSI and TIDE signature between
two risk groups (Wilcoxon test, *p < 0.05, **p < 0.01, ***p < 0.001, ns, no significant difference).
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disease has heterogeneity and possesses a diverse mutational
landscape, suggesting differences in patients’ response to
treatments and lack of targeted treatment for patients in
specific breast cancer subtypes, which indicates the need to
improve the guidance for treatment strategies. In recent years,
with the progress of high-throughput sequencing and data
analysis, it has become a vital biomedical research tool, which
can be used for prognosis prediction, recurrence monitoring, and
clinical stratification (Z. Wang et al., 2009b; I. D. Kyrochristos
et al., 2019). Therefore, it is urgent to apply this tool to prevent
and treat breast cancer. Many shreds of evidence had shown that
aberrant glycosylation had multiple effects on cancer’s
occurrence, progression, invasion, and metastasis (T. D. Rao
et al., 2017; J. Cui et al., 2018). Potapenko et al. reported not
only that there are significant differences in the expression

characteristics of glycosylation-related genes in breast cancer
compared to normal breast tissue, but also that glycosylation
-related genes show significant differences in expression between
breast cancer subtypes and may be associated with patient
prognosis and suggested that alterations in glycosylation
pathways may occur at different time points in the
carcinogenesis process (I. O. Potapenko et al., 2010; I. O.
Potapenko et al., 2015). At present, there was still no
prognostic model based on glycosylation-related genes for
breast cancer. Given the critical impact of glycosylation on
tumors, we had developed a prognostic model based on three
glycosylation-related genes (BST2, IGHA2, SLC35A2).

Evidence showed that SLC35A2 belonged to the solute
carrier family SLC35 of human nucleoside sugar
transporters, and encoded an X-linked transporter that

FIGURE 10 | Mutation analysis in the high-risk group and the low-risk group (A,B). The waterfall chart showed the mutation frequency of the high- and low-risk
groups (C) The box plot reflected the correlation between the risk score and the TMB scores (Wilcoxon test, p < 0.05) (D) The Survival curve showed the joint effect of
TMB score and risk score on the prognosis of patients (log rank test, p < 0.05) (E) The plot showed the mutation type of key genes and functional domains where the
mutations were enriched.
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transports uridine diphosphate—galactose from the cytoplasm
to the lumen of the Golgi apparatus and endoplasmic
reticulum. Pathogenic variation was associated with
congenital glycosylation disorder characterized by epileptic
encephalopathy (D. Quelhas et al., 2021). However, rare
research had shown its relationship with cancer. Therefore,
exploring the mechanism of SLC35A2 is in high demand. In
our study, the established prognostic model showed that the
OS rate of patients in the high-risk group was significantly
lower than that in the low-risk group through Kaplan Meier
survival analysis (p < 0.001). Then, we testified the reliability of
the model by using the validation set and external independent
test sets. By comparing the risk score with other
clinicopathological factors with a ROC curve, it was found
that the risk model had a higher prognostic value than other
clinicopathological factors. We also constructed a nomogram
based on the age, TMN stage, and risk score to improve the

accuracy of clinical decision-making. The risk score and
nomogram had high reliability by calculating C-index and
decision curve analysis. Subsequently, we divided the samples
into multiple groups to demonstrate the application of the
model in specific categories. The risk model had an excellent
predictive value among age ≤65, ER positive, HER-2 negative,
M0, N0, N1-N3, Stage I-II, Stage III-IV, T1-2, T3-4, non-
TNBC subgroups (p < 0.05). In M1 and HER-2 positive
subgroups, although there was no significant difference
between the high- and low-risk groups, which might be
ascribed to the small number of samples and the short
follow-up time of patients in the subgroups, the survival
time of the low-risk group was higher than that of the high-
risk group. There was no difference in the ER negative and
TNBC subgroups, resulting from the small sample size. We
successfully validated the predictive value of the model in
HER-2 positive and TNBC subgroups by METABRIC.
Regarding the immunobiology of BRCA, TILs as an
important biomarker in predicting the efficacy and outcome
of treatment were worth exploring in depth. In breast cancer
patients, loss of the anti-HER-2 CD4+ Th1 immune response is
independently correlated with disease recurrence (J. Datta
et al., 2016). CD8+ TILs, Th1 CD4+ TILs can influence anti-
tumor immune response in breast cancer (A. Basu et al., 2019).
Several clinical trials have also shown an increased
pathological complete response associated with a high
density of TILs (Y. Issa-Nummer et al., 2013; C. Denkert
et al., 2015). We explored the relationship between model
grouping and scores of immune infiltrating cells. The results
showed that the low-risk group had a higher infiltrative
proportion of B cells naive, Mast cells resting, Plasma cells,
T cells CD4 memory resting, T cells CD8, T cells gamma delta,
which was in keeping with the previous investigations,
suggesting a correlation between glycosylation and TILs.
Therefore, impaired anti-tumor immune function may
account for the poor prognosis in high-risk patients.
Subsequently, we explored the differences in somatic
mutations between the high- and the low-risk groups. The
results showed that the TMB of the high-risk group was higher,
indicating that patients in this group were more likely to receive
the benefits of immune checkpoint inhibitor treatment (Steuer
and Ramalingam, 2018). Moreover, the high-risk group had a
lower TIDE score, which represented a lower possibility of
immune escape, suggesting the BRCA patients in the high-risk
group could benefit more from immune checkpoint inhibitor
therapy (P. Jiang et al., 2018). The combined survival analysis
showed that the prognosis of low-risk and low TMB patients
was significantly better than that of high-risk and high TMB
patients (p < 0.01). Then we analyzed chemotherapy based on
the key genes. Two drugs (Vismodegib, Abiraterone) were
expected to be validated and applied for the high-risk breast
cancer patients.

This study also has some limitations. First, as it is a retrospective
study derived from public data, it lacks some information such as
recurrence time and treatment records. Second, clinical trials are
urgently needed to confirm whether inducing glycosylation could
improve the efficacy of immunotherapy in human BRCA patients.

FIGURE 11 |High-risk scores predict immunotherapy response (A) Box
plot of the effect of the high- and low-risk groups after immunotherapy
(Wilcoxon test, p < 0.05) (B) Survival curve of the high- and low-risk groups
after immunotherapy. CR, complete response. PR, partial response. SD,
stable disease. PD, progressive disease (log rank test, p < 0.05).
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Furthermore, the specific molecular mechanism of the gene in the
risk-scoring model has not been fully explored.

CONCLUSION

In conclusion, a novel prognostic model integrating
glycosylation-related genes was firstly constructed. Through
verification in the validation set and external independent test
sets, the risk-scoring model has been proved to be an independent
prediction model for predicting the prognosis of patients, which
was correlated with immunotherapy effect and drug sensitivity.
Moreover, we established a prognostic nomogram to predict the

OS of patients with BRCA. The novel model might provide
insights for predicting the prognosis of BRCA patients and
suggestions to guide individual therapeutic strategies.
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