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Abstract 
Epigenetic changes frequently occur in human colorectal cancer. Genomic global hypomethylation, 

gene promoter region hypermethylation, histone modifications, and alteration of miRNA patterns are major 
epigenetic changes in colorectal cancer. Loss of imprinting (LOI) is associated with colorectal neoplasia. 
Folate deficiency may cause colorectal carcinogenesis by inducing gene鄄  specific hypermethylation and 
genomic global hypomethylation. HDAC inhibitors and demethylating agents have been approved by the 
FDA for myelodysplastic syndrome and leukemia treatment. Non鄄  coding RNA is regarded as another kind 
of epigenetic marker in colorectal cancer. This review is mainly focused on DNA methylation, histone 
modification, and microRNA changes in colorectal cancer. 
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Colorectal cancer (CRC) is the second most 
common malignant disease in developed countries, with 
1 million new cases and 500 000 deaths worldwide every 
year [1] , and it is the third leading cause of cancer­related 
death in both men and woman in industrialized countries [2] . 
The accumulation of gene mutations and epigenetic 
alterations may drive the initiation and progression of 
benign adenoma to malignant adenocarcinoma [3,4] . 

Epigenetics is defined as inheritable changes in gene 
expression without DNA sequence changes. The field of 
epigenetics includes DNA methylation, histone 
modification and non­coding RNAs. Increasing evidence 
shows that aberrant epigenetic changes play important 
roles in human cancer. Numerous DNA methylation and 
microRNA (miRNA) patterns have been regarded as 
tumor markers. Because of the reversible nature of 
epigenetic alterations, epigenetic associated agents are 
being developed [5,6] . In this review, we mainly focus on 
changes of DNA methylation, histone  modification and 
miRNAs in colorectal cancer, especially on the potential 
clinical applications. 

DNA Methylation 
DNA methylation is a normal procedure to maintain 

gene expression with normal patterns in mammalian 
cells. It is involved in the regulation of gene imprinting, 
X­chromosome inactivation and other biological 
activities [7,8] . Methylation of cytosine on DNA is well 
studied in epigenetics. CpG­rich regions constituted by 
CpG dinucleotides are known as CpG islands [9] . CpG 
islands in the gene promoter region are usually 
unmethylated, and the sporadic CpG sites in the gene 
body are normally methylated. However, during aging or 
carcinogenesis, the pattern will become global hypome鄄  
thylation and promoter region hypermethylation [10,11] . 

The proteins involved in epigenetic regulation are 
DNA methyltransferase (DNMT), methyl­CpG­binding 
protein (MBP), histone deacetylase (HDAC), histone 
acetylase (HAT), and histone methyltransferase (HMT) [12­14] . 
DNMT3A and 3B are  methyltransferases that 
function mainly to establish methylation patterns, 
whereas DNMT1 is a methyltransferase that maintains 
methylation patterns. Hence, these enzymes cooperate 
to regulate cellular DNA methylation patterns [11,15] . The 
other DNMTs are DNMT3L and DNMT2. DNMT3L is 
reported to be required for the methylation of imprinted 
genes in germ cells and has been found to interact with 
DNMT3a and 3b in  methyltransferase activity. 
Although the biological function of DNMT2 remains 
unclear, its strong binding to DNA suggests that it may 
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target specific sequences in the genome [16,17] . Methyl­CpG 
binding proteins (MBPs), including methyl­CpG binding 
protein 2 (MeCP2) and methyl­CpG binding domains 
(MBD1, MBD2, MBD3, and MBD4), may block 
transcription factor binding to DNA by recruiting 
chromatin remodeling corepressor complexes [18,19] . HATs, 
HDACs and HMTs are mainly responsible for histone 
modification and chromatin remodeling [20,21] . 

DNA hypermethylation in CRC 

Promoter region hypermethylation is found in a 
variety of cancers. Many of the affected genes are 
involved in cell cycle regulation, DNA repair, apoptosis, 
angiogenesis, invasion, and adhesion. The methylation 
profile varies in different types of cancer, but similar 
DNA methylation patterns were found in sporadic and 
inherited colon cancers [22] . 

Effective approaches are needed to screen 
premalignant adenomas and early stage cancers to 
reduce mortality of CRC. Epigenetic silencing of 
numerous tumor suppressor genes by promoter region 
hypermethylation has been found in a variety of cancers, 
including CRC [23,24] . Epigenetic changes were frequently 

found in precancerous lesions and adjacent tissues of 
CRC [25­28] . Growth­regulatory genes have been found to 
be epigenetically silenced in colonic mucosa in elder 
individuals, which may increase risk of cancer associated 
with aging [29] . Methylation of  was reported to 
be a late­stage event in CRC [30] , whereas hypermethylation 
of  is an early event of CRC [31] . Methylation of 

,  ,  ,  ,  ,  , and 
were regarded as plasma or serum detection 

markers [32­36] . DNA methylation may serve as diagnostic, 
therapeutic, or prognostic markers for CRC (Table 1). 

CpG island methylator phenotype in CRC 

Cancer classification was mainly based on 
microscopic morphology and immunohistochemistry. 
Molecular classification was recognized as an important 
tool in clinic. Some molecular markers have been 
applied for cancer prevention, prognosis and 
chemosensitivity. Gefitinib­sensitizing mutation is one of 
the examples. 

Fearon  . [37]  suggested in 1990 that most CRCs 
arise from adenoma and that multiple gene mutations 
were accumulated during carcinogenesis. One group of 
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CRC is characterized by high level DNA microsatellite 
instability (MSI­H), CpG island methylator phenotype­ 
high (CIMP­high), and  mutation. This type of cancer, 
which predominantly affects females and usually occurs 
in the proximal colon, arises in serrated polyps and not 
in adenomas [38­40] . The existence of CIMP was initially 
suggested by Toyota  . [24] , who reported that CRC fell 
into two categories: one group that shows rare 
methylation (CIMP­negative) and another group that 
shows aberrant methylation of several genes 
simultaneously (CIMP­positive). The five 野classic冶 CIMP 
markers,  ,  ,  ,  , and  , 
provide a simplified and representative approach in 
defining CIMP [24,41] . The mechanism underlying CIMP 
tumor development is unknown, however, it is known 
that sporadic CRC can be divided according to their 
degree of methylation of CIMP markers. It appears that 
cancers with high degrees of methylation (CIMP) 
represent a clinically and etiologically distinct group, one 
constituting 野epigenetic instability,冶 and seem to have 
distinct epidemiological, histological, and molecular 
features [40] . 

DNA hypomethylation, field defect, and LOI in 
CRC 

Global DNA hypomethylation in human colonic 
cancer was first reported by Feinberg  . [42]  in 1983. 
Recently, hypomethylation of  (P­cadherin) 
promoter was found in aberrant crypt foci (ACF) and 
CRC, with a potential field defect of 
hypomethylation in the adjacent epithelium of cancer. In 
another study, a significant association was found 
between aberrant demethylation of  and tumor site 
or Dukes stage. Promoter region hypomethylation is 
associated with induction of  expression in CRC [43] . 

The term  was used to describe the 
accumulation of genetic and epigenetic alterations in 
tissues with  normal appearance [44] . Promoter region 
hypermethylation was considered an evaluation marker 
for field defect in lung and colonic cancer. The discovery 
of field defect markers could be of great use in mucosa 
that appears normal, both for early detection and risk 
assessment for colon cancer (such as  promoter 
methylation in CRC) [25,45] . 

Genomic imprinting is an epigenetic modification of 
a specific parental chromosome in the gamete or zygote, 
leading to parental, origin­specific, differential expression 
of the two alleles of a gene in somatic cells of the 
offspring. In 1993, Rainier  . [46]  and Ogawa  . [47] 
simultaneously reported loss of imprinting (LOI) of 
in Wilms tumor, and later, similar observations were 
made in many other malignancies, including CRC [48,49] . Cui 

. [48]  analyzed LOI in 172 patients under colonoscopy 
and found a 4.7­fold increased likelihood of LOI among 
patients with CRC (past or present) and a 5.2­fold 

increased likelihood of LOI among patients with a 
positive family history of CRC among first­degree 
relatives. LOI is found in normal colonic mucosa of about 
30% of CRC patients, but it is found in only 10% of 
healthy individuals. These results indicate that LOI, 
which can be assayed with a DNA­based blood test, 
may be a valuable predictive marker of an individual爷s 
risk for CRC [50] . 

The effect of diet on DNA methylation in CRC 

Diet and lifestyle play important roles in cancer 
biology. Inappropriate diet may contribute to one third of 
cancer deaths [51] . Alcohol decreases folate absorption, 
alters its metabolism, increases its excretion, and 
therefore may interfere with both DNA methylation and 
thymidylate synthesis [52­54] . Several studies show an 
association between high alcohol intake and CRC, which 
suggests that the carcinogenic effect of alcohol in the 
colon is mediated through its adverse effect on folate 
status [55,56] . A few reports suggest that people who 
habitually consume high level of folate have a 
significantly reduced risk of developing colon polyps or 
cancer [57,58] . Folate maintains genomic stability by regulating 
DNA biosynthesis, repair and methylation (Figure 1). 
Folate deficiency may induce gene­specific DNA 
hypermethylation and global DNA hypomethylation [59] . 
The impact of certain micronutrients on DNA methylation 
adds to our current understanding of possible mechanisms 
linking diet to CRC. 

Histone Modifications 

Histone modifications, such as phosphorylation, 
acetylation, or methylation, in localized promoter regions are 
histone codes for chromatin packing and transcription [60] . 
In general, methylation of H3K4, H3K36, and H3K79 are 
linked to gene expression activation, whereas H3K9me2, 
H3K9me3, H3K27me3 and H4K20 are associated with 
gene repression [61­64] . The global pattern of histone 
modifications has been considered a predictor for the 
risk of recurrence of human cancers [65,66] . Histone 
acetyltransferases (HATs) and deacetylases (HDACs) 
are responsible for the addition and removal of acetyl 
groups from lysine residues. In cancer cells, disruption of 
the balance between HATs and HDACs contributes to 
transcriptional inactivation of tumor suppressor genes 
(TSGs). Cyclin­dependent kinase inhibitor  is 
repressed by promoter hypoacetylation in the absence of 
CpG island hypermethylation, and expression can be 
reactivated by inhibition of HDAC activity [67] . Interestingly, 
some TSGs with CpG island hypermethylation can also 
be re­expressed through inhibition of SIRT1, a class III 
HDAC that increases H4K16 and H3K9 acetylation at 
promoters, without affecting the hypermethylation status [68] . 
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Figure 1. Folate deficiency may decrease thymidylate syntheses, inhibit DNA 
repair, induce imbalance of DNA methylation, histone modification, and finally cause carcinogenesis. 

Similar to histone acetylation, histone methylation is 
dynamically regulated by both histone methyltransferases 
(HMTs) and histone lysine demethylases (HDMTs). 
Methylation takes place on both lysine and arginine 
residues and has different degrees, including mono­, di­, 
and trimethylation. H3K27­specific HMT (enhancer of 
zeste homolog 2, EZH2), catalytic subunit of 
polycomb­repressive complex 2 (PRC2), is overexpressed 
in human cancers, including colon cancer [69] . H3K27me3 
is also regulated by RAS signaling pathway and further 
affects cyclin D1 and E­cadherin expression. 
Overexpression of oncogenic RAS influences global and 
gene­specific histone modification during the epithelial­ 
mesenchymal transition (EMT) in Caco­2 CRC cells [70] . 

DNA methylation­mediated gene silencing is closely 
linked to histone deacetylation [71,72] . Histone methylation 
at key lysine residues has been shown to work in 
concert with acetylation and other modifications to 
provide a histone code that may determine heritable 
transcriptional states [73] . In lower eukaryotes, methylated 
H3K9 determines DNA methylation and correlates with 
transcription repression [74,75]  (Figure 2). DNA methylation 

maintains key repressive elements of the histone code at 
a hypermethylated gene promoter in RKO colon cancer 
cells.  , a mismatch repair gene, is often silenced 
by aberrant CpG island hypermethylation in colorectal 
cancers [76] . Deacetylated histone H3 (deacetylated histone 
H3K9 and H3K14) plus methyl­H3­K9 surround the 
hypermethylated and inactive  promoter, whereas 
unmethylated and active  promoter is embedded 
in methyl­H3­K4 and acetylated H3 (acetylated histone 
H3K9 and H3K14). Promoter demethylation, gene 
reexpression, and finally complete histone code reversal 
were induced only by inhibiting DNA methyltransferases, 
not HDAC [77] . 

HDACs, HDAC Inhibitors, 
and Demethylating Agents 

Alterations in HDACs are found in many human 
cancers including CRC [14,78] . The expression of HDAC1, 
HDAC2, HDAC3, and HDAC8 are reported to be 
increased in colon cancer [78­80] . Retinoblastoma (Rb) is a 
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tumor suppressor that represses gene expression by 
modulating the architecture of chromatin. Rb recruits 
HDAC to E2F and cooperates with HDAC1 to repress 
E2F­regulated promoter of genes encoding cell cycle 
protein cyclin E [81,82] . HDAC1 facilitates  the removal of 
highly charged acetyl groups from core histones, causing 
a tighter association between DNA and nucleosomes 
and preventing transcription factor from accessing to 
DNA. This repression is released when, on exposure to 
proliferative signals, G1 cyclin dependent kinases 
phosphorylate Rb [83] . Histone deacetylase inhibitors 
(HDACi), such as short chain fatty acid and butyrate, 
have been recognized and utilized to induce growth arrest, 
differentiation, and apoptosis for several decades [84,85] . 
Trichostatin A (TSA) was the first natural hydroxamate 
discovered to inhibit HDACs. Vorinostat (SAHA) is 

structurally similar to TSA and the first HDACi to be 
approved for clinical application [86,87] . A number of dietary 
factors with HDAC inhibitory activity and  antitumor 
effects in the colon have been described [85,88] . To date, 
several clinical trials of HDACi have shown a preferential 
clinical efficacy. Elucidation the  mechanism of HDACi 
may help to develop more effective therapeutic drugs [89] . 
HDACi are also potent  sensitizers of radiation therapy in 
multiple cell types, including colon cancer cells. 

DNA methylation is reversible under certain 
circumstances. It is possible to induce reexpression of 
silenced genes by demethylating agents in cancer cell 
lines. Two such agents, 5­azacytidine (Vidaza) and 
5­aza­2爷deoxycytidine (decitabine), have been approved 
for both myelodysplastic syndrome and leukemia [90,91] . 

Figure 2. Promoter region of tumor suppressor gene is unmethylated in normal cells and methylated in 
cancer cells. Filled cycles represent methylated DNA; unfilled cycles represent unmethylated DNA. Blue cylinder represents active histone 
modification; red cylinder represents repressive histone modification. 1, 2 and 3 represent exons 1, 2 and 3. HMT, histone methyltransferase; 
HAT, histone acetylase; DNMT, DNA methyltransferase; MBP, methyl鄄  CpG binding protein; HDAC, histone deacetylase; TF, transcription factors; CA, 
co鄄  activator; CR, co鄄  repressor; Ac, acetylation; 4M, H3K4 methylation. 
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MicroRNAs in Colorectal Carcinogenesis 

MicroRNA (miRNA) is a kind of non­coding RNA 
and the length is about 18­22 nucleotide. The major role 
of miRNA is regulation of gene expression [92­94] . miRNAs 
have been found to play an important role in cancer 
initiation and progression [95] . Furthermore, the patterns of 
miRNAs expression were considered diagnostic, 
prognostic, and chemosensitivity markers in various 
types of cancer. 

Loss of miR­133a and gain of miR­224 are 
associated with CRC tumorigenesis. Reduced 
expression of miR­143 and miR­145 were found in CRC 
and adenomatous polyps [96] . Chemically modified miR­143 
(miR­143BP) has improved nuclease­resistance and may 
serve as RNA medicine for the treatment of CRC [97] . The 
level of miR­92 and miR­17­3p has been reported to be 
significantly higher in the plasma of colon cancer patients 
compared with healthy controls, and is suggested as 
potential markers for CRC. Stool miR­17­92 clusters and 
miR­135 are also significantly increased in CRC 
patients [98,99] . MiR­31 is up­regulated in CRC, and 
suppression of miR­31 may increase sensitivity to 5­FU 
and inhibit cell migration and invasion  [100­103] . Plasma 
miR­141 is reported to be a novel biomarker in detecting 
metastatic colon cancer, and high level in plasma is 
associated with poor prognosis of CRC [104] . In stage II 
colon cancer, high level of miR­320 and/or miR­498 is 
correlated with progression­free survival [105] . MiR­21, 
miR­20a, and miR155 are also highly expressed in CRC. 
High level of miR­21 is associated with poor benefit from 
5­FU adjuvant chemotherapy in CRC [106­108] , and miR­21 
expression level was considered an independent 
predictor of colon cancer prognosis [109] . 

Epigenetic regulation of miRNAs expression, 
including DNA methylation and histone deacetylation, 
was found in CRC. Frequent methylation of miR­9­1, 
miR­129­2, and miR­137 was observed in CRC but not 
in normal mucosa. Methylation of miR­9­1 was more 
frequent in advanced cancer and was significantly 

associated with regional nodal invasion, vascular 
invasion, and metastasis. Expression of these miRNAs 
was restored after treatment with 5­aza­2爷­deoxycytidine 
(AZA, a DNA methyltransferase inhibitor) and 
4­phenylbutyric acid (PBA, a HDAC inhibitor) in CRC cell 
lines [110,111] . Loss of miR­127 expression was found in 
HCT116 cells, though expression could be restored by 
AZA and PBA in a dose­dependent manner [112] . MiR­124a 
expression was down­regulated by DNA methylation in 
HCT116 cells compared with DKO cells (double 
knockout of  and  in HCT116 cells) [113] . 

Conclusions 
Changes of DNA methylation may serve as 

diagnostic, prognostic, and chemosensitive markers in 
CRC. The reversibility of epigenetic changes makes it 
possible to treat CRC with DNA methyltransferase 
inhibitors and histone deacetylase inhibitors. However, 
the available demethylating agents are globally effective. 
It is great beneficial for cancer treatment to develop 
gene­specific demethylating approaches. MiRNAs 
expression patterns may associate with CRC, but further 
study is necessary to develop diagnostic and prognostic 
markers. The era is coming to apply epigenetic methods 
to CRC therapy. 
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