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Predicting IDH subtype of
grade 4 astrocytoma and
glioblastoma from tumor
radiomic patterns extracted
from multiparametric magnetic
resonance images using a
machine learning approach
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Shwetabh Sinha2,3, Archya Dasgupta2,3, Abhishek Chatterjee2,3,
Prakash Shetty2,5, Aliasgar Moiyadi2,5, Jaiprakash Agarwal2,3,
Tejpal Gupta2,3 and Jayant S. Goda2,3*

1Department of Radiodiagnosis, Tata Memorial Center, Mumbai, India, 2Homi Bhabha National
Institute, Mumbai, India, 3Department of Radiation Oncology, Tata Memorial Center, Mumbai, India,
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Background and purpose: Semantic imaging features have been used for

molecular subclassification of high-grade gliomas. Radiomics-based

prediction of molecular subgroups has the potential to strategize and

individualize therapy. Using MRI texture features, we propose to distinguish

between IDH wild type and IDH mutant type high grade gliomas.

Methods: Between 2013 and 2020, 100 patients were retrospectively analyzed for

the radiomics study. Immunohistochemistry of the pathological specimen was

used to initially identify patients for the IDH mutant/wild phenotype and was then

confirmed by Sanger’s sequencing. Image texture analysis was performed on

contrast-enhanced T1 (T1C) and T2 weighted (T2W) MR images. Manual

segmentation was performed on MR image slices followed by single-slice

multiple sampling image augmentation. Both whole tumor multislice

segmentation and single-slice multiple sampling approaches were used to arrive

at the best model. Radiomic features were extracted, which included first-order

features, second-order (GLCM—Grey level co-occurrence matrix), and shape

features. Feature enrichment was done using LASSO (Least Absolute Shrinkage

and Selection Operator) regression, followed by radiomic classification using

Support Vector Machine (SVM) and a 10-fold cross-validation strategy for model

development. The area under the Receiver Operator Characteristic (ROC) curve
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and predictive accuracy were used as diagnostic metrics to evaluate the model to

classify IDH mutant and wild-type subgroups.

Results: Multislice analysis resulted in a better model compared to the single-

slice multiple-sampling approach. A total of 164 MR-based texture features

were extracted, out of which LASSO regression identified 14 distinctive GLCM

features for the endpoint, which were used for further model development.

The best model was achieved by using combined T1C and T2W MR images

using a Quadratic Support Vector Machine Classifier and a 10-fold internal

cross-validation approach, which demonstrated a predictive accuracy of 89%

with an AUC of 0.89 for each IDH mutant and IDH wild subgroup.

Conclusion: A machine learning classifier of radiomic features extracted from

multiparametric MRI images (T1C and T2w) provides important diagnostic

information for the non-invasive prediction of the IDH mutant or wild-type

phenotype of high-grade gliomas and may have potential use in either

escalating or de-escalating adjuvant therapy for gliomas or for using targeted

agents in the future.
KEYWORDS
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Introduction

High-grade gliomas, especially grade 4 astrocytomas and

glioblastomas, are not only the most common primary

malignant brain tumors in the adult population but are also

associated with intrinsic heterogeneity and invasive properties

and are clinically associated with high morbidity and lethality

(1). With a better understanding of biology and the advent of

newer molecular techniques, researchers have been able to

develop unique biomarkers that could predict treatment

response and predict these tumors with a high degree of

accuracy, paving the way for a more personalized treatment

approach. The two molecular biomarkers of significant interest

that have translated into clinical practice are Isocitrate

Dehydrogenase (IDH) and MGMT (O (2)-methylguanine-

DNA methyltransferase), both of which are responsible for

epigenetic alterations in glioblastomas. The evaluation of these

biomarkers has now become the norm in tailoring therapy and

disease prediction.

Glioblastomas, although previously categorized under grade

4 gliomas, are now considered biologically and molecularly

distinct entities, namely, glioblastoma IDH-wildtype and IDH-

mutant grade 4 astrocytoma, based on ‘the present’ World

Health Organization classification of brain tumors. IDH

mutations are identified in approximately 5%–13% of

glioblastomas and are associated with a significantly better

prognosis, particularly when resection includes the non-
02
enhancing tumor component, which is traditionally left

unresected (3). Therefore, it is essential to distinguish the IDH

mutation status for planning the most appropriate management

strategies, as IDH-mutated tumors have more prolonged overall

survival and a higher chance of responding to chemotherapy or

radiotherapy (4, 5).

Current ly , IDH mutat ion status is assessed by

immunohistochemistry (IHC) or DNA sequencing techniques

of the tumor specimen, which is invasive, and given the

morphological heterogeneity and invasiveness of high-grade

gliomas, the full extent of intratumoral phenotypic/genotypic

heterogeneity may not be represented in the tumor specimen.

Additionally, the widespread use of these biomarkers remains a

challenge due to either a lack of expertise or cost issues

associated with their testing. For these reasons, accurate

preoperative assessment of the IDH mutation from

radiological images is important for prognostic evaluation and

optimizing therapy for high-grade gliomas (which in our study

are grade 4 astrocytoma, IDH-mutant, and glioblastoma,

IDH-wildtype).

Studies have demonstrated that certain quantitative image

features, like texture features, can be used to predict both IDH

mutations on preoperative imaging of gliomas (6). Tumor

radiomics based on texture analysis of MR images represent a

quantitative approach in which several individual imaging

features that are not easily perceived by the unaided eye are

processed using advanced algorithms to reveal measurable
frontiersin.org
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indices. Given the inherent tumor heterogeneity in

histopathological tissues and the universal availability of MRI,

we expected the use of machine learning classifiers of the tumor

texture features extracted from multiparametric magnetic

resonance imaging (MRI) in a large cohort of GBM patients to

subclassify them based on the IDH status as confirmed by

immunohistochemistry and/or gene sequencing as the gold

standard. The study aimed to explore the accuracy of MR-

based tumor radiomics and develop a robust model using a

machine learning approach to classify GBM into two distinct

molecular subgroups of IDH wild and IDH mutant types in a

fairly large cohort of patients.

In this retrospective single-center study, we developed a

simple radiomics model using a Support Vector Machine

algorithm, based on a minimal set of tumor features obtained

using a single and multislice tumor segmentation approach on

multiparametric MRI sequences for pretreatment prediction of

IDH1 status in high-grade glioma patients.
Materials and methods

Patient population

The study was initiated at a tertiary cancer care center

through an institutional intramural grant (Grant no. TRAC/

1016/1710/001) after obtaining due approval from the

Institutional Ethics Committee (IEC). All histologically

confirmed high-grade glioma patients, patients who had

complete clinical and pretreatment imaging data in Digital

Imaging and Communications in Medicine (DICOM) format,

and patients whose IDH status was determined by

immunohistochemistry and/or Sanger sequencing were

included in the study for radiomic feature extraction,

classification, and building the model for sub-classifying the

high-grade gliomas based on their IDH status.
Molecular subtyping

IDH mutant or wild phenotype was classified by initial

screening using immunohistochemistry (IHC) of the paraffin-

embedded tissue followed by DNA sequencing in cases where

IHC results were equivocal as per the institutional protocol. The

IDH R132H mutation was tested by IHC for all the glial tumors.

The antibody used for IDH immunohistochemistry was mouse

monoclonal anti-IDH1R132H, clone H09 from Dianova GMBH

(Hamburg, Germany). Tumors that stained for IDH antibody

were considered positive for IDH mutations, while tumors that

did not stain for IDH were subjected to Sanger sequencing,

considered the gold standard for detecting IDH mutations.

Sanger sequencing for IDH1R132 and IDH2R172 loci was

performed by PCR using specific primers from Sigma-Aldrich.
Frontiers in Oncology 03
On sequencing, other alterations besides the commonest R132H

were identified. If sequencing was negative, an absence of IDH

mutation was confirmed, and such tumors were deemed IDH

wild-type GBM. If IHC was negative and sequencing was

positive, such tumors were considered IDH mutant (2).
Radiomics pipeline

A visualization of the steps in the radiomics workflow is

depicted in Figure 1. Initially, the brain tumor images were

acquired from two different MRI machines (1.5 Tesla Philips™

and 3 Tesla General Electric™). The DICOM compatible images

were imported into the TexRad software™ and reconstructed. The

reconstructed images were preprocessed using spatial scaled filters

(SSFs) to reduce the background noise and increase the sharpness of

the tumor edges. The preprocessed images were used to contour the

region of interest (ROI). The segmented images were augmented to

increase the number of image data sets. Shape, first order (or

histogram), and second order texture (GLCM) features were then

extracted from the region of interest. The extracted features were

then scaled down using the LASSO regression method. Finally, the

data analysis step involved building a model from the selected

radiomic features to predict the endpoint of interest (IDH wild vs.

IDH mutant high-grade glioma).
Image acquisition protocol

Magnetic resonance imaging sequences of 100 patients were

obtained at our institution using Philips Ingenia 1.5T and GE

Signa 3T MRI with a pre-fixed standard scanning protocol for

brain tumor imaging. Axial T1 contrast (T1C) and T2W images

were obtained from the vertex to the skull base, encompassing

the whole brain, where the primary tumor is visible in its

entirety. These sequences were archived in the institutional

Picture Archival and Communication System (PACS) and

transferred to the radiomics (texture) analysis system

(TexRAD™). The radiological features on the T2W and

contrast-enhanced T1W MR images were evaluated and

discerned by an experienced neuro-radiologist, and the texture

features were extracted on the TexRad™ console.
MR image preprocessing, segmentation
(ROI generation), and augmentation

Magnetic Resonance Imaging of the brain was acquired on

two different MRI machines (1.5 Tesla Phillips™ and 3 Tesla

General Electric™). The acquisition details of the MR images for

the brain imaging protocol for both machines have been

explicitly described in Table 1. The resultant imaging protocol
frontiersin.org
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will result in some imaging heterogeneity. Therefore, before

segmentation and ROI delineation, image preprocessing was

performed using the Laplacian of Gaussian (LOG) bandpass

filters to remove the background noise (Gaussian filter) and

enhance the tumor edges (Laplacian filter). This allowed for the

extraction of specific structures corresponding to the filter width.

Spatial scale Filters (SSF) used filtration values of 0, 2 mm, 3 mm,

4 mm, 5 mm, and 6 mm in width (radius), representing the

increasingly coarser level of texture scales for first-order

statistics. The use of a filtration algorithm before radiomic

feature extraction helps in nullifying some of the effects of
Frontiers in Oncology 04
heterogeneous acquisition protocols and improves the

robustness of the feature selection by removing the features

affected by MR noise and imaging heterogeneity.

Tumor segmentation and region of interest (ROI)

delineation were performed manually with the freehand

drawing function (polygon tool) of the software. The ROI

contours and segmentation were separately verified by a

neuro-oncologist with 10 years of experience and a

neuroradiologist with 10 years of experience. The

segmentation was verified by them individually, and any

discrepancy was resolved by a consensus. For analysis, the
FIGURE 1

Radiomics study flow. The radiomic workflow involves MR brain imaging and data acquisition, followed by slice by slice image segmentation, data
augmentation by single slice multiple sampling technique, Image pre-processing by spatial scale filters which involve the use of LoG (Laplacian of
Gaussian) bandpass filter, extraction of first order, and second-order features from the texture analysis software, feature selection using LASSO
regression and statistical analysis and model development using Support Vector Machine (SVM) and a 10-fold cross-validation strategy.
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final contours as verified by the neuroradiologist were

considered. Two types of segmentation techniques were used,

i.e., whole tumor segmentation (volumetric) as well as single

slice with multiple sampling segmentation methods, which in

turn were used for data augmentation as described in prior

literature (7, 8). A total of 831 Axial T1C and 831 T2 image

datasets were obtained for analysis from the study population.
MR texture analysis

The radiomic features were extracted from the segmented

images using proprietary texture analysis research software

(TexRAD™ Research Version 3.10, TexRAD Ltd, Cambridge,

UK), and the machine learning algorithm (SVM) developed a

predictive model for molecular sub-classification of high-grade

gliomas and was blinded to molecular diagnosis. Eighty-two

radiomic features were extracted separately for T1W + C and

T2W images using the TexRAD tool, which included 36 first-
Frontiers in Oncology 05
order features at various SSFs (0, 2, 3, 4, and 6) (Figure 3).

Second-order features such as Gray Level Co-occurrence

Matrices (GLCM) and topographic features were extracted

without applying filters. Twenty GLCM features each for pixel

pairs spaced 1 pixel (GLCM1) and 4 pixels apart (GLCM4)

respectively, and 6 Shape features (Figure 2). The details of all

the texture features are provided in Table 2.
Radiomic feature selection

The least absolute shrinkage and selection operator (LASSO)

logistic regression algorithm was used for reducing the excessive

dimensionality of data and selecting the most significant features

in the training data set. Radiomic features with non-zero

coefficients were selected from the training data. The analysis

was performed using R™ software version 3.6.3, Vienna,

Austria, and R Studio™ version 1.2.5033, Boston, USA using

the “glmnet” package.
FIGURE 2

Representative multi-slice region of interest (ROI) of an IDH wild-type GBM done on axial T1 + C and T2 MR Images using slice-by-slice image segmentation.
TABLE 1 MR image acquisition protocol.

MRI Machine Sequences FOV (cm) Matrix NEX Slice thickness (mm):
Slice gap (mm)

GE Signa 3T Axial T2 24 320 × 224 1 5:1.5

Axial T1 + C 24 320 × 190 1 5:1.5

Philips Ingenia 1.5T Axial T2 23 (AP)
18.5 (RL)

448 × 304 2 5:1

Axial T1 + C 23 (AP)
18.5 (RL)

232 × 104 2 5:1
FOV, Field-of-view; NEX, Number of excitations; AP, Anteroposterior; RL, Right left.
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TABLE 2 Demographic, tumor and treatment profile of grade 4 IDH mutant astrocytoma and IDH wild type glioblastoma.

Overall
(Total N = 100)

IDH Wild
(N = 83)

IDH Mutant
(N = 17)

p-value

BASELINE CHARACTERISTICS

AGE

Median age 52 years 54 years 34 years < 0.001

Range 19–71 years 19–71 years 23–68 years

IQR 38–59 years 46–59 years 27–43 years

GENDER

Male 70 58 (69.9%) 12 (70.6%) 0.954

Female 30 25 (30.1%) 5 (29.4%)

CENTRICITY

Unicentric 94 78 (94%) 16 (94%) 0.982

Multicentric 6 5 (6%) 1 (6%)

LATERALITY

Right 37 33 (39.8%) 4 (23.5%) 0.450

Left 53 42 (50.6%) 11 (64.%)

Central/Bilateral 10 8 (9.6%) 2 (11.8%)

LOCATION

Cerebellum 2 2 (2.4%) 0 (0%) 0.479

Frontal 31 20 (24.1%) 11 (64.7%)

Insular 2 2 (2.4%) 0 (0%)

More than two 32 29 (34.9%) 3 (17.6%)

Occipital 2 2 (2.4%) 0 (0%)

Parietal 17 15 (18.1%) 2 (11.8%)

Temporal 14 13 (15.7%) 1 (5.9%)

HISTOPATHOLOGY

MGMT

Unmethylated 36 32 (48.5%) 4 (33.3%) 0.333

Methylated 42 34 (51.5%) 8 (66.7%)

Unknown 22

ATRX

Retained 73 71 (88.8%) 3 (17.6%) < 0.001

Lost 15 5 (6.3%) 10 (58.8%)

Non-contributory 8 4 (5.0%) 4 (23.5%)

Unknown 3

Overall

P53

Negative 2 2 (2.4%) 0 (0%) 0.518

Positive 98 81 (97.6%) 17 (100%)

Median Mib 1 index (%) 17.5
(IQR 4%–55.5%)

17.5
(IQR 13.5–22.5)

17.5
(IQR 8–23.75)

0.188

TREATMENT DETAILS

EXTENT OF SURGERY (n = 99)

Gross total resection 34 31 (37.8%) 3 (17.6%) 0.271

Near-total resection 26 20 (24.4%) 6 (35.3%)

Subtotal resection 39 31 (37.8%) 8 (47.1%)

RADIOTHERAPY

RT received Yes 88 72 (86.7%) 16 (94.1%) 0.451

No 12 11 (13.3%) 1 (5.9%)

Median RT dose 59.4 Gy, Range (56.5 Gy to 59.4 Gy) 59.4 Gy, Range (56.5 Gy to 59.4 Gy) 59.4 Gy, Range (56.7 Gy to 59.4 Gy) 0.781

(Continued)
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Radiomic feature classification
and modeling

The features selected by LASSO were used as a training set for

model development. A Support Vector Machine (SVM) classifier

with a 10-fold cross-validation strategy was used in the prediction of

the two main molecular subgroups. The performance of the model
Frontiers in Oncology 07
was assessed using the Area Under Curve (AUC). Multiple models

were sequentially evaluated by the system using a combination of

selected texture features to arrive at the best model. The SVM

analysis was conducted withMATLAB™ version 9.0 (R2016a), The

MathWorks, Inc., Natick, MA, USA. Standardization (z-score

normalization) was done on the extracted features before SVM

analysis as the predictors were of different scales.
TABLE 2 Continued

Overall
(Total N = 100)

IDH Wild
(N = 83)

IDH Mutant
(N = 17)

p-value

Median RT fractions 33 (IQR 30 to 33 fractions) 33 (IQR 30 to 33 fractions) 33 (IQR 31 to 33 fractions) 0.451

ADJUVANT TMZ (Temozolomide)

Adj. TMZ Received Yes 74 60 (72.3%) 14 (82.4%) 0.389

No 26 23 (27.7%) 3 (17.6%)

Median cycles of adjuvant TMZ 6 (IQR 4.25–11) 6 (IQR 4–6.50) 11 (IQR 6–12) 0.038
fronti
IQR, Inter quartile range; TMZ, Temozolomide; RT, Radiation Therapy; ATRX, Alpha-Thalassemia/Mental Retardation Syndrome, X-Linked; MGMT, O6-Methylguanine-DNA
Methyltransferase.
FIGURE 3

Representative image of the region of interest (ROI) contoured on a T2W MRI and corresponding filtered images using Laplacian of Gaussian
(LOG) bandpass filtration algorithm showing SSF-2 (fine texture), SSF 4 (Medium texture), and SSF 6 (Coarse texture).
ersin.org
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Statistical analysis

Quantitative variables were expressed as mean and/or median.

The Student t-test for independent samples was used for the

comparison of two different groups. In the case of variables that

werenotdistributednormally, theMann–Whitneyranksumtestwas

used. The diagnostic accuracy for IDH genotype prediction by

textural features was evaluated by analyses of receiver-operating

characteristic (ROC) curves using immunohistochemistry/gene

sequencing results as the gold standard. The area under the ROC

curve (AUC) was evaluated to assess the performance of the

developed model. The diagnostic metrics used to assess the model

were theAUC,sensitivity, specificity, andoverall accuracyasreported

in various literature studies investigating Machine Learning-Based

Radiomics Signatures for different types of cancers (9–11).
Radiomics quality assurance score
and the image biomarker
standardization initiative

Imaging data for extracting radiomic features have been used

as a tool for testing medical hypotheses. However, the radiomic

features extracted from the image data had high dimensionality,

requiring complex models to predict or correlate with the

endpoints of interest. This limits its usage for only research

purposes without real-world application in the clinics and guides

the clinical decision-making process, resulting in a huge

translational gap. Therefore, Lambin et al. developed a

standardized radiomic quality assurance score (RQS) for

evaluating the performance, reproducibility, and/or clinical

utility of radiomic biomarkers. The RQS is a reporting system

of metrics used to validate the robustness of radiomic studies

(12). The RQS comprises 16 components, as represented in

Supplementary Table 1.

Apart from the RQS, our study tried to adhere to the Image

Biomarker Standardization Initiative (IBSI) guidelines which

were initiated to address the challenges in utilizing radiomics

as an image-based biomarker (13) For this study, we evaluated

all the processing steps from image processing, segmentation,

and ROI delineation to the computation of radiomic features

were evaluated in this study (Supplementary Table 2).
Results

Baseline demographics and tumor
and treatment characteristics of the
study cohort

One hundred and thirty-three patients with a histological

diagnosis of high-grade gliomas (CNS WHO grade 4 of adult
Frontiers in Oncology 08
type diffuse gliomas) were screened for the radiomic study.

Based on the inclusion criteria, only a hundred patients were

eligible for the study. Seventeen patients had IDHmutations and

83 patients had IDH wild-type glioblastoma. The median age of

patients at presentation was 52 years (a range of 19 to 71 years)

and the majority of them were males (70%), The demographic

details of the study population are presented in detail in Table 2.

All but one patient underwent maximal safe resection of the

tumor, whereas one patient underwent only biopsy, followed by

risk-based adjuvant therapy incorporating both radiotherapy

and chemotherapy as deemed appropriate after discussion in a

joint multidisciplinary clinic Table 3.
Molecular subgrouping

Of the 100 patients who were studied, IHC for IDH1R132H

was done on all the cases. IDH1/2 sequencing was performed on

cases that were deemed negative on IHC for IDH1R132H but

showed loss of expression for ATRX. The cases which were

negative for IDH1R132H on IHC and showed retained

expression of ATRX were taken as IDH wild type (14). A total

of 13 patients (13%) were positive for IDH1R132H on IHC.
TABLE 3 Radiomic features extracted.

Texture Features Used

1st Order Features Mean
Standard Deviation
Mean of Positive pixels
Entropy
Skewness
Kurtosis

GLCM features Autocorrelation
Cluster prominence
Cluster shade
Cluster tendency
Contrast
Correlation
Dissimilarity
Homogeneity
Joint average
Joint energy
Joint entropy
Idm (inverse difference moment)
Diffentropy
Diffvariance
Idmn (inverse difference moment normalized)
Idn (inverse difference normalized)
Inverse variance
Sum entropy
Sum squares
Join tmax

Shape Features Perimeter
Area
Elongation
Sphericity
Long axis
Short axis
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Eighty-seven patients (87%) were negative for IDH1R132H on

immuno-histochemistry. Among the 87 patients, six showed loss

of expression of ATRX and underwent Sanger sequencing for

confirmation of IDH status. Of these six patients, four showed

IDHmutations on Sanger sequencing: two patients were positive

for IDH1R132C only, while one patient had an IDH1R132L

mutation and another patient showed an IDH1R132H

mutation. Two of the six patients showed no point mutation

for IDH1 or IDH2 and were considered IDH-wild type.

Therefore, of the 100 patients, 17 patients were considered

IDH mutant subtype, while 83 patients were IDH wildtype.
Performance of the binary
classification model

Out of a total of 82 texture features each in T1W + C and

T2W images, LASSO regression for feature selection elucidated

seven discriminant features for T1W + C images and seven

discriminant features for T2W images, which were used for

further model development.

A combination of LASSO selected first order texture features,

second order (GLCM) features, and topographic features were

used to create different models using both T1W + C and T2W

images in an attempt to arrive at the best SVM model Table 5.

Among various models evaluated, a combination of 14 GLCM

features from combined T1W + C and T2W images resulted in the

best classifier, as depicted in Table 4. The model based on a

CombinedMulti-slice Texture Analysis of T1 + C and T2 weighted

MR imaging using a Quadratic Support Vector Machine Classifier

and a 10-fold internal cross-validation approach, resulted in the

best performance in predicting the molecular subtypes with a

predictive accuracy of 89% and a Receiver Operator Characteristic

(ROC) analysis demonstrating an AUC of 0.89 for each IDH

positive and IDH negative subtype (Figure 4). Of the 83 IDH

negative cases, 80 tumors were true positive while three tumors

were false negative, resulting in a very high sensitivity of 96%, but

at the same time, the model specificity was 52.9%. This low

specificity is due to the unbalanced classification of IDH

subtypes. Similarly, for 17 IDH positive cases, nine tumors were

true positives while eight tumors were false negatives, resulting in a

sensitivity of only 53% but a high specificity of 96.4% as depicted in

the confusion matrix (Figure 5), Table 6.
Discussion

We developed a Support Vector Machine (SVM) based

classification model with satisfactory performance to probe the

genomic profile (IDH mutant vs. IDH wild type) of grade 4 adult

diffuse gliomas, based on MR image phenotypes. The SVM

classifier had an overall accuracy of 89% for predicting IDH

wild-type tumors from IDH mutants. Our results suggest the use
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of multiparametric MR radiomics along with machine-learning

models to classify the molecular subtype of grade 4 adult type

diffuse gliomas consistent with the new 2021 WHO classification.

By employing a specific ML classifier, several clinical applications

for the detection of IDH status in high-grade gliomas can be

achieved with or without histopathology of the tumor specimen.

IDH mutations are considered to be an early event in

gliomagenesis and are one of the most critical genetic biomarkers

for high-grade gliomas having prognostic implications (improved

survival with IDHmutant than wild-type glioblastomas {31 months

vs 15 months}) (15). Additionally, IDH1 mutation is sufficient to

establish the glioma hypermethylator phenotype, which is a

powerful determinant of tumor pathogenicity (16). Therefore,

having a preoperative assessment of IDH gene mutation status in

glioma may help in optimizing glioma therapeutics. While

immunohistochemistry is considered a routine screening method

for detecting IDH mutations in the majority of cases, Sanger

sequencing is considered to be a confirmatory test for identifying

IDH mutations. However, high-grade gliomas, especially

glioblastomas, show marked intratumoral heterogeneity in IDH

status. Pathological tissue biopsies from the different parts of tumors

may yield varied results regarding the IDH status as these high-

grade gliomas are considered to be heterogeneous. Therefore, a

non-invasive method like magnetic resonance imaging could be put

to effective use for objectively quantifying structural heterogeneity

within the tumor using image-based radiomic analysis. Radiomics is

a novel approach for the high-throughput extraction of quantitative

image features from a specified ROI (17). These quantitative

features (radiomic features) have been successfully used to

develop models using sophisticated machine learning algorithms

for identifying image biomarkers with the capability to predict the

genotype of a tumor (18). Published studies have leveragedmachine

learning classifiers to develop radiomic signatures to predict IDH

mutation status in gliomas (11, 19, 20). Within the framework of

radiomics, tumor texture features as extracted from MR images of

brain tumors are predefined and quantitative features are derived by

computational methods that describe the spatial variations in the
TABLE 4 A combination of LASSO selected features that resulted in
the best classification model.

T1W + C TEXTURE FEA-
TURES (N = 7)

T2W TEXTURE FEA-
TURES (N = 7)

KURTOSIS_0_T1C MEAN_0_T2

ENTROPY_2_T1C MPP_0_T2

KURTOSIS_2_T1C KURTOSIS_0_T2

MEAN_5_T1C MEAN_4_T2

KURTOSIS_5_T1C GLCM1_clusterShade_T2

SKEWNESS_6_T1C GLCM1_idn_T2

GLCM4_correlation_T1C GLCM1_sumEntropy_T2
GLCM 1, GLCM features of pair of pixels which are 1 pixel apart; GLCM 4, GLCM
features of a pair of pixels which are 4 pixels apart; T1C, Contrast-enhanced T1 weighted
images; idn, inverse difference normalized.
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intensity of the images along the entire cross-section of the tumor

that is beyond visual perception. These features have the potential to

yield additional information not only about the tumor biology but

also about the genomic profile. Thus, they allow the prediction of

the IDH genotype in glioma patients with a high degree of accuracy
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(21). The present study was done to investigate the feasibility of

using machine learning-based radiomic signatures to predict the

IDH subtype in high-grade gliomas in a high throughput setting.

Radiomics-based machine learning tools or deep learning

tools have been used for subclassifying various grades of gliomas
BA

FIGURE 4

ROC curves of the best model for prediction of the two molecular subgroups using combined multi-slice T1 + C and T2w GLCM features using
Quadratic SVM, (A) IDH positive and (B) IDH negative.
TABLE 5 Showing the molecular classification (IDH mutant and IDH wild type) of grade-IV GBM modeled by using Support Vector Machine as the
radiomics classifier on MRI-based sequences.

ImageSingle slice v/s
Multi slice

MRI
sequence

IDHClassification Radiomics
classifier

Diagnostic
Metrics

Validation Process

AUC Accuracy 10-fold internal cross-
validation

Hold
Validation

Single slice analysis T1C IDH –VE (694) Linear SVM 0.91 89.8% YES NO

IDH +VE (137) 0.91

T2W IDH –VE (689) Cubic SVM 0.84 86.9% YES NO

IDH +VE (149) 0.84

Multi-slice analysis T1C IDH –VE (83) Linear SVM 0.87 87% YES NO

IDH +VE (17) 0.87

T2W IDH –VE (83) Quadratic SVM 0.80 91% YES NO

IDH +VE (17) 0.80

T1C + T2W IDH –VE (83) Quadratic SVM 0.89 89% YES NO

IDH +VE (17) 0.89

T1C + T2W IDH –VE (83) Cubic SVM 0.81 90% NO YES
(90:10)

IDH +VE (17) 0.81
AUC, Area under the curve; SVM, Support Vector Machine.
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into IDH wild-type or mutant-type entities (22). However, the

literature on this subject is quite sparse (Table 7). A Taiwanese

group used radiomic features consisting of morphological,

intensity, and textural features to develop a prediction model

for IDH mutation (26) and textural features yielded the best

accuracy of 85%. Going further, the group used the same set of

patients to interpret the status of IDH status in glioblastomas

from transformed magnetic resonance imaging patterns (26). By

ranklet transformation of collected images from 39 patients (32

IDH wild and seven IDH mutant cases), three feature sets were

extracted, with each feature set having 14 GLCM textural

features. They achieved an accuracy of 90%, a sensitivity of
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57%, and a specificity of 97%. In contrast to the Taiwanese

group, our study used both axial T2 and axial post-contrast T1 +

C images, and unlike the largest single slice that was used in this

study, we incorporated tumor contours on each axial slice of

both the sequences wherever the tumor was present. This took

into account the heterogeneity present within the entire tumor

volume, which has an advantage over core biopsy methods,

which target only a l imited sect ion of the tumor

for histopathology.

Comparative models studying the predictive abilities of

radiomic features have been rarely performed in the literature.

A multicentric study compared various machine learning

classifiers to predict the genetics of GBM on different MRI

sequences. This study was done on 156 adult patients with a

pathologic diagnosis of GBM. Radiomic features were extracted

using various extraction tools like NET, CET, and NEC with a

custom version of Pyradiomics and selected through the Boruta

algorithm. The investigators used various radiomic classifiers

like AdaBoost (AB), Extreme Gradient Boosting (xGB), Gradient

Boosting (GB), Decision Tree (DT), and Random Forest (RF),

Logistic Regressor (LR), two stacking classifiers (ST, ST_ABC),

and K Neighbors (KN). It is used to classify IDH mutants from

the IDH wild subtype of GBM. Based on the results, the AB

classifier performed the best, with a reported accuracy for

classifying the IDH phenotype. (overall accuracy of 89% and

ROC-AUC of 87.7%) (27). The SVM classifier we used to predict

the IDH subtype performed relatively well (ROC-AUC of 89%

and overall accuracy of 89%, similar to the above study) (27).

Isocitrate dehydrogenase (IDH) mutations are quite

common in low-grade gliomas, unlike in higher grade gliomas.

Machine learning-based radiomic feature modeling has been
FIGURE 5

Confusion matrix of the best model for prediction of the two molecular subgroups using GLCM features of combined multi-slice T1 + C and
T2w images using Quadratic SVM.
TABLE 6 Performance of best classification model.

Diagnostic metrics IDH −VE
(n = 83)

IDH +VE
(n = 17)

AUC 0.89 0.89

TP 80 9

TN 9 80

FP 8 3

FN 3 8

Sensitivity 96% 53%

Specificity 52.9% 96.4%

FNR 4% 47%

PPV 90.9% 75%

NPV 75% 90.9%

Overall Accuracy 89%
AUC, Area under the curve;
TP, True positive; TN, True negative; FP, False positive; FN, False negative; FNR, False
negative rate; PPV, Positive predictive value; NPV, Negative predictive value.
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tried in various grades of gliomas (28). Sakai et al. in a

heterogeneous cohort of gliomas [n = 100 (grade-I I = 11;

grade-3 = 8 and grade IV: 81)] used MRI-based radiomic

features to predict IDH1 Mutation Status in Gliomas using a

gradient tree boost machine learning classifier. The best

performance was seen with a DWI-trained XG Boost model,

which achieved ROC with an Area Under the Curve (AUC) of

0.97, an accuracy of 0.90 on the test set. They used the same

machine learning classifier (XG boost) on the FLAIR-MR images

used as a test set and achieved a ROC with an AUC of 0.95 and

an accuracy of 0.90. Their results showed that the model that was

trained on combined FLAIR-DWI radiomic features did not

provide an increment in terms of accuracy. Using

multiparametric radiomic features derived from preoperative

MRI can predict IDH1 mutation status with approximately 90%

accuracy (28).

Although a single institutional study, the radiomic analysis

and model development were done on a relatively small sample

size. In our study, we used two approaches to analyze the texture

data: a volumetric approach and a single slice multiple sampling

approach. Analysis was done using a Support Vector Machine

classifier based on features selected by LASSO regression, which

selected the best of all the features. Support Vector Machine

utilizes the concept of a hyperplane, which is a plane that has the

maximum margin, and considers the furthest of the points

falling on either side of the hyperplane and is less vulnerable

to overfitting as compared to other simple classifiers like logistic
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regression. Moreover, outliers have less impact on the SVM as

opposed to other machine learning algorithms, especially when

in higher dimensional data. Various classifier models were used

and validation was done using 10-fold internal cross-validation

as well as hold-out validation at ratios of 9:1, 8:2, and 7:3, and the

latter yielded suboptimal results due to a lack of adequate sample

size. The texture features analyzed included first-order and

GLCM features. To overcome the limitation of the small

sample size, an augmentation strategy called the single slice

multiple sampling approach was evaluated. This approach

enabled us to reduce the potential overfitting of data, which is

known to happen in machine learning approaches, and this

approach also yielded appreciable results. Although the SVM

classifier has several advantages that have been elucidated, it

does have some limitations and uncertainties when it comes to

building models for very large data sets. Moreover, the algorithm

does not perform well for datasets where target classes are

overlapping. It also underperforms in situations where the

number of radiomic features for each data point exceeds the

number of training data samples. The SVMwill underperform in

these situations.

Our study was a single institutional study with a quality-

controlled central pathological laboratory and uniform radiology

and radiomic review. One of the strengths of the study was that

all the image delineation was verified by an experienced neuro-

oncologist with 10 years of experience, blinded to the results of

the molecular subgrouping. Being a tertiary cancer institute, it
TABLE 7 Literature review of studies using radiomics and or semantic features for glioblastoma molecular subgroup classification using various
diagnostic metrics.

No. Author
(year)
No. of
patients

MRI sequences Model used for subgroup
classification

AUC Sensitivity Specificity PPV

3 Hsieh et al.
(23)
(2020),
(n = 39)

Feature-based with use of ranklet transformation
on axial T1 + C MR images

KNN and
SVM

Test Cohort – 0.57 – –

Pasquini
et al. (24)
(2021),
(n = 100)

Featureless radiomics on MPRAGE, FLAIR, T1W,
T2W, DWI with ADC, PWI) with DSC sequence

4 block 2D-
CNN
architecture

Training and test
(80:20) set.

0.86 ± 0.05,
the highest

achieved using
rCBV maps

0.76 ± 0.05 – –

2 Calabrese
et al. (25)
(2020),
(n = 199)

Fully automated deep learning-based tumor
segmentations using T1W, T2W, T2W/FLAIR,
DWI, SWI, HARDI fractional anisotropy
(HARDI FA), ASL, and T1C.

Automated
dCNN
segmentation

10-fold stratified shuffle
split cross-validation
strategy with a train/
test split of 60:40

0.95 ± 0.03 0.93 ± 0.08 – –

4 Pashmina
et al.
(Present
study)
(n = 100)

Feature-based radiomics using axial T1 + C and
T2W MR images

LASSO
regression
and SVM

10-fold internal cross-
validation

0.89 0.96 for IDH
wild,
0.80 for IDH
mutant

0.53 for IDH
wild,
0.03 for IDH
mutant

0.91
for
IDH
wild,
0.75
for
IDH

mutant
frontier
SVM, Support Vector Machine; LASSO, Least absolute shrinkage and selection operator; CNN, Convolutional neural network; IDH, Isocitrate dehydrogenase; ADC, apparent Diffusion
Coefficient; DSC, Dynamic Susceptibility Contrast; PWI, perfusion-weighted images.
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catered to a large and diverse pool of patients. The use of the

single slice multiple sampling methods in this study not only

helped in data augmentation but also prevented data loss. The

main presumed weakness lies in the heterogeneity of MRI

acquisition parameters in the study population and the fact

that uniformity in image acquisition is necessary for radiomic

analysis was acknowledged (29). Regardless of the heterogeneity

in MR acquisition parameters, we were able to achieve a fair bit

of accuracy, suggesting that this would consequently have a good

implication if validated in a large cohort of patients in real-world

clinical practice. Additionally, the current methodology of using

internal cross-validation has the limitation of inflating the

performance metrics. However, with a limited sample size, we

thought that the internal 10-fold cross-validation would be the

best strategy to utilize for model development. We are accruing

more patients to evaluate the model on an external dataset, and

this will be done in future studies.

In addition to radiomics features, our study did not include

semantic features as those established by “The Visually

AcceSAble Rembrandt Images” (VASARI) project could have

potentially improved the performance of the model. Next, the

study was limited by its small sample size with a skewed

distribution of the various molecular subgroups. The relatively

small sample size of our study also limited the use of deep

learning algorithms, such as convolutional neural network

(CNN) analysis, which requires a massive number of image

datasets, which would not have been possible without the

pooling of image data from multiple institutions, which in

itself could have introduced a confounding factor of image

heterogeneity, resulting in variability and generalization gaps

in the predictive model. Although we did 10-fold internal cross-

validation, the lack of an external validation cohort limits its

robustness. These create future opportunities to incorporate

clinical parameters and semantics features to complement the

radiomic signatures to develop a more robust predictive model

with better diagnostic metrics to classify the molecular

subgroups of glioblastoma. The model developed in the

current study is planned to be tested on an independent

validation cohort and subsequently on a larger imaging dataset.
Conclusion

The results of the study affirm that a texture feature-based

radiomic model of multiparametric MR images can effectively

classify molecular subgroups of GBM with an acceptable degree

of accuracy using a machine learning approach. The proposed

image-based radiomic approach provides an alternative non-

invasive and efficient method to sub-classify the molecular

subgroup and can aid in optimizing the adjuvant therapy of

glioblastomas. Given that radiogenomics is rapidly evolving,
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machine learning approaches combined with clinical and

radiological semantic (VASARI) features may show superior

outcomes. The field of radiomics needs to be further researched

to translate findings into an interpretable format for presurgical

prediction of the molecular genotype of GBM.
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