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Abstract: The growing number of female reproductive system disorders creates a need for novel
treatment methods. Tissue engineering brings hope for patients, which enables damaged tissue
reconstruction. For this purpose, epithelial cells are cultured on three-dimensional scaffolds. One of
the most promising materials is chitosan, which is known for its biocompatibility and biodegradability.
The aim of the following study was to verify the potential of chitosan-based biomaterials for pelvic
organ prolapse regeneration. The scaffolds were obtained under microwave-assisted conditions in
crosslinking reactions, using dicarboxylic acids and aminoacid as crosslinkers, including l-glutamic
acid, adipic acid, malonic acid, and levulinic acid. The products were characterized over their
physicochemical and biological properties. FT–IR analysis confirmed formation of amide bonds.
The scaffolds had a highly porous structure, which was confirmed by SEM analysis. Their porosity
was above 90%. The biomaterials had excellent swelling abilities and very good antioxidant properties.
The cytotoxicity study was performed on vaginal epithelial VK2/E6E7 and human colon cancer
HCT116 cell lines. The results showed that after certain modifications, the proposed scaffolds could
be used in pelvic organ prolapse (POP) treatment.

Keywords: chitosan; biomaterials; pelvic organ prolapse

1. Introduction

Disorders of the female reproductive system affect women not only during their perimenopausal
years, but also during their childbearing age. Depending on the procedure and treatment, there might
be physical changes to the urogenital organs, both internally and externally. These changes can have a
severe impact on the genitourinary tract, including sexual dysfunction. Currently available therapies,
such as laser treatments or administration of hyaluronic acid or serum, are neither sustainable nor
supported by clinical research. Therefore, there is a great need in designing a new material that is not
only safe but that can also provide structural corrections, while maintaining optimal vulvo-vaginal
aesthetics and allowing for a pain-free intercourse [1–4].
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Many recent studies strived to create an ideal tissue scaffold that can be clinically utilized in
various tissues. Developing an optimal scaffold biomaterial for surgical procedures would be a
breakthrough solution in regenerative medicine. Within the field of urogynecology, the production of
three-dimensional scaffolds and their potential application in treating damaged female organs remains
the goal of many clinicians [5].

Over the past 25 years, stress urinary incontinence and pelvic organ prolapse were treated by
implanting a poly(propylene) mesh that provided structural support [6]. However, there is a lot of
controversy regarding this procedure, since serious complications were reported in about 15% of
women who underwent mesh implantation. It appears that the safety of poly(propylene) mesh in
urogynecologic procedures was not studied adequately in the past [6–8]. Thus, while there are limited
reported complications from the application of the mesh in the abdomen, site-specific adverse reactions
occur when the mesh was implanted in the pelvic floor. These adverse effects could be explained by
the presence of a different microbial flora, mechanical properties, and blood supply in the paravaginal
organs [7,8].

In 2017, a newly designed estradiol-releasing electrospun poly-l-lactic acid mesh was developed
as a potential solution. The mesh closely resembled the healthy tissues in the pelvic floor organs
and released 17-β estradiol, which enhanced blood flow to the tissues, stimulated collagen synthesis
while inhibiting matrix metalloproteinases and inflammatory responses [9]. The authors of the study
observed increased metabolic activity as well as collagen content in adipose-derived mesenchymal stem
cells that were cultured on estradiol meshes, relative to control meshes. There was also a significant
increase in the vascularity of tissue that was grown on estradiol-releasing poly-l-lactic acid mesh.
This was explained by a dose-dependent ability of estradiol to stimulate endometrial endothelial cells
to release vascular endothelial growth factor [6]. As such, this newly designed mesh could not only
be used in urogynecology but also in other tissue-engineering procedures that focus on stimulating
angiogenesis [10–15].

Chitosan is a natural polymer composed of randomly arranged subunits made of β

(1→4)-d-glucosamine and N-acetyl-d-glucosamine. It is obtained from chitin, the building block
of the exoskeleton of arthropods and the cell walls of fungi, via the N-deacetylation reaction [16,17].
In this process, the amide group on C2 N-acetyl-d-glucosamine is cleaved, which generates a free
amino group. It can be carried out using sodium hydroxide or via enzymatic routes [16–19].

Most of the characteristics of this polymer, including its biodegradability, its biological functions, and
the physical properties of its solutions, determine its potential clinical applications. These characteristics
depend primarily on its deacetylation degree (DD) and on its molecular weight [16–19].

Due to its versatile properties, chitosan is utilized not only in tissue engineering but also in dietary
supplements, hydrogel wound dressings, hemostatic agents, cosmetics, antimicrobial mouthwash
products and environmental protection processes, such as wastewater treatment. Numerous studies
demonstrated that chitosan is biodegradable and biocompatible. In addition, it is considered relatively
safe, since it is biofunctional and lacks antigenic and toxic properties. Furthermore, the presence of
hydroxyl and amine functional groups allows the polymer to participate in numerous chemical and
enzymatic modifications. In turn, water-soluble chitosan derivatives can be isolated, and the polymer
can be used to immobilize ions and release therapeutic compounds [16–19].

In the biomedical field, the chemical properties of chitosan render it a safe component of
scaffolds and dressings, due its resemblance to natural extracellular matrix components, namely
glycosaminoglycans (GAGs). For example, the positive free amino groups on its surface interact
with the negatively charged surface of the intestinal or respiratory epithelium. In turn, intercellular
connections in the epithelium are weakened, which increases the absorption of administered compounds.
These features can provide future application in mucosal vaccines, as they would extend the antigenic
exposure and facilitate contact with M cells, which would augment the efficacy of vaccination [20–24].

In this article, an attempt was made to verify the potential of chitosan-based scaffolds in
urogynecology. The results showed that the proposed chitosan scaffolds have the potential to treat
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pelvic organ prolapse. However, they require certain modifications to eliminate the phenomenon of
local pH decrease, due to the release of acidic crosslinkers.

2. Results and Discussion

2.1. FT–IR Analysis of the Potential Scaffolds

There were four different samples subjected to the study, which varied by their chemical
composition (Figure 1). Figure 2 presents FT–IR spectra of the pure chitosan and crosslinked aerogels.
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Figure 1. Prepared samples (sample 1—chitosan crosslinked with adipic and malonic acid; sample
2—chitosan crosslinked with adipic and l-glutamic acid; sample 3—chitosan crosslinked with adipic,
l-glutamic and malonic acid; sample 4—chitosan crosslinked with adipic and levulinic).

The spectrum of pure chitosan exhibited bands that are typical to this polymer. Free hydroxyl
groups could be noticed at 3359 cm−1, and free amino groups were present in deacetylated mers at
1572 cm−1 and 1150 cm−1. Bands typical for amide bonds present in N-acylated mers appeared at
1651 cm−1. Bands typical for glycosidic bonds between chitosan units were visible at 1066 cm−1 and
bands characteristic of pyranose ring at 892 cm−1 were also visible. Additionally, bands typical for
aliphatic groups were noticeable at 2918 cm−1 and 2875 cm−1, as well as at 1423 cm−1 and 1376 cm−1,
respectively. FT–IR spectrum of the samples 1–4 showed some changes that confirmed the crosslinking
reaction. First, it could be noticed that after crosslinking under microwave-assisted conditions,
new carboxyl groups appeared, probably due to the slight surface degradation (sample 1—3072 cm−1,
sample 2—3064 cm−1, 3—3070 cm−1, and 4—3082 cm−1). Intense bands at 1647 cm−1 (sample 1) and at
1654 cm−1 (sample 3) proved formation of amide bonds between free amino groups and carboxylic
groups from the applied acids. On the other hand, one could observe that in the case of samples 2 and
4, the crosslinking process occurred between free hydroxyl and free carboxyl groups. This could be
confirmed by the presence of bands at 1691 cm−1 (sample 2) and 1700 cm−1 (sample 4), corresponding
to the newly formed ester bonds. More importantly, FT–IR spectra of all aerogels still showed bands
coming from amino groups of various intensity, which suggested that biomaterials are capable of
interaction with the cell membrane components of cultured cells. Additionally, bands typical for
aliphatic groups, glycosidic bonds, as well as pyranose rings were still present, which confirmed that
chitosan did not undergo decomposition during the reaction [25–29].



Molecules 2020, 25, 4280 4 of 15
Molecules 2017, 22, x FOR PEER REVIEW  4 of 15 

 

 
Figure 2. FT–IR analysis of the pure chitosan and obtained samples. 

2.2. Porosity and Density Study 

Biomaterials dedicated to tissue engineering must be characterized by low density and high 
porosity, which should be at least 90% [23]. Multiple pores with interconnecting channels provide 
nutrients and oxygen delivery and enable CO2 and metabolite removal. Such porosity is also needed 
for the new tissue formation in three dimensions as well as angiogenesis and neovascularization 
processes. Figure 3 shows that all samples met the aforementioned requirement of excellent porosity. 
It could be noticed that this parameter was correlated with density and was below 0.06 g/cm3, which 
is typical for aerogels. 

 
Figure 3. (a) Porosity of the prepared scaffolds; and (b) density of the prepared scaffolds. 

Figure 2. FT–IR analysis of the pure chitosan and obtained samples.

2.2. Porosity and Density Study

Biomaterials dedicated to tissue engineering must be characterized by low density and high
porosity, which should be at least 90% [23]. Multiple pores with interconnecting channels provide
nutrients and oxygen delivery and enable CO2 and metabolite removal. Such porosity is also needed
for the new tissue formation in three dimensions as well as angiogenesis and neovascularization
processes. Figure 3 shows that all samples met the aforementioned requirement of excellent porosity.
It could be noticed that this parameter was correlated with density and was below 0.06 g/cm3, which is
typical for aerogels.
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2.3. Swelling Capability Study

Scaffolds dedicated to regenerative medicine applications besides high porosity should exhibit
good swelling properties, in order to provide an appropriate environment for cells growth [24–29].
The constant access to culture medium is crucial for cell proliferation. Figure 4 shows the results
of the swelling ability study. It could be noticed that all samples had excellent sorption properties.
The highest swelling degree could be observed for sample 2, which could be assigned to the presence
of the highest number of free hydrophilic groups (hydroxyl, amino, carboxyl) as well as very high
porosity [29]. Therefore, it could be assumed that the prepared scaffolds could mimic the natural
environment of the cells.
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2.4. Morphology Study

An important feature of the scaffolds is their morphology, which affects cells attachment, migration
and the neovascularization process. Figure 5 shows the SEM microphotographs of the obtained
biomaterials. It could be noticed that they were all highly porous. Moreover, the pores were open
and interconnected. What is important, all pores had diameter above 50 µm, which would enable cell
migration inside the three-dimensional structure, as well as new blood vessel formation. In the case
of samples 1 and 2, surface microfolding was observed, which could positively affect cell adhesion.
The pore edges of samples 1 and 3 were quite smooth as compared to samples 2 and 4, whose pore
edges were a little bit sharp. The morphology provided in Figure 5 suggests that the scaffolds could
provide good conditions for cell attachment, proliferation, and migration, followed by the formation of
the new tissue in three-dimensions, along with the neovascularization process. Very high porosity
suggests that the scaffolds would be able to imitate the extracellular matrix at a high level [24,29].

The first stage of the three-dimensional cell culture is cell attachment to the scaffold and surface
proliferation [29]. Therefore, it is crucial to know its composition. FT–IR analysis provided information
about the chemical bonds and functional groups present in the biomaterials. XRF analysis (Figure 6)
presents the elemental composition of the external part of the scaffolds. It was observed that it
consisted of carbon, oxygen, and nitrogen. Additionally, some trace amounts of sulfur (all samples)
and aluminum (sample 3) could be observed. However, their quantity was negligible. Therefore,
it could be assumed that the surface of the scaffolds contained NH2 groups, which might interact with
the negatively charged cell membranes of various cells, resulting in their adhesion.
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and levulinic).

2.5. Antioxidant Activity Study

Materials for biomedical applications should be characterized by advanced properties, so as to
enhance cell growth and proliferation. Scaffolds with three-dimensional structure could protect cells
from the external environment and minimize temperature or humidity fluctuations. However, there are
other factors that could lead to cells apoptosis. Free radicals constitute a danger to cells. Chitosan is
known for its antioxidant properties [25,26]. Nevertheless, polymers dissolved in acidic medium show
the best ability for removing free radicals. Figure 7 presents the results of studying the properties
of antioxidants. It could be noticed that undissolved chitosan exhibited a low ability of free radicals
scavenging, contrary to the obtained scaffolds. Figure 6 shows that all evaluated samples had good
antioxidant properties. The best results were obtained in the case of sample 3. The ability of DPPH
radicals’ removal could be assigned to the presence of free amino groups, as well as glucopyranose
rings. Such results suggest that the scaffolds would be able to protect cultured cells from reactive
oxygen species (ROS), which could be generated inside the human body.
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2.6. Cytotoxicity Study

To determine the cytotoxicity of the scaffolds, proliferation studies were carried out on the
VK2/E6E7 epithelial vaginal cell line, as well as HCT116 colorectal carcinoma cell line. Surprisingly,
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none of the cultured lines (HCT116, VK2/E6E7) proliferated in the expected manner, even those coated
with fibronectin.

The HCT116 cancer cells adhered to each other rather than to the scaffold and created numerous
cell clusters (Figures 8 and 9). The number of living cells compared to the control (Figure 10),
was significantly lower.
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Figure 10. Standard cell culture of the HCT116 cells.

The VK2/E6E7 cells did not flatten and did not proliferate. Such results suggest that certain
ingredients in the media negatively affected the cell’s growth (Figures 11–16). The cells also did not grow
at the bottom of the well, where there was no scaffold present (small photo set in large photographs).

After plating the VK2/E6E7 cells on scaffolds, some cells were harvested after approximately 8 h
and were then plated in new wells with fresh medium. The cells grew in size, flattened, and started to
proliferate (Figure 16). However, the cultures were in a much worse condition, relative to the control.
Thus, it was likely that the components of the scaffold dissolved in the medium and negatively affected
the cellular growth. Rinsing the scaffolds in a large volume of PBS for a few days did not help. Figure 17
presents the VK2/E6E7 cells cultured in the presence of commercially used poly(propylene) mesh.
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It could be noticed that the cells did not growth on the mesh. However, the cells grew in an appropriate
manner on the bottom of the culture flask, which meant that the mesh was not cytotoxic to them.
Figure 18 presents VK2/E6E7 cultured under standard conditions. When comparing Figures 11–16
to Figure 18, it could be noticed that the amount of viable, flattened cells in the case of the cultures
carried out on the scaffolds was significantly lower.
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Figure 17. Cell culture of VK2/E6E7 cells on the poly(propylene) mesh—commercially applied
biomaterial for pelvic organ prolapse (POP) treatment. (a) Poly(propylene) mesh placed in the hole; 
and (b) VK2/E6E7 cells adhered to the bottom of the multi-hole plate. 

Figure 18. Control culture of VK2/E6E7 cells: (a) 1st passage, 5th day of the cell culture; (b) 1st passage, 
7th day of the cell culture; (c) 3rd passage, 7th day of the cell culture; and (d) 3rd passage, 7th day of 
the cell culture.

VK2/E6E7 cells were more resistant to external factors than primary cells. Therefore, the 
cytotoxic effect of the scaffolds was unexpected, especially as numerous studies confirmed the 
biocompatibility of the chitosan-based materials [27–31]. It could be observed that the cytotoxicity of 
the scaffolds was not correlated with their sterility. Additionally, it could be concluded that the 
application of ethylene oxide as a sterilizing agent did not significantly affect their chemical structure 
and did not affect the cell culture. Taking into consideration the cell culture studies, the synthesis
parameters, and the FT–IR and XRF analyses, it could be deduced that the crosslinking process did 
not occur with the 100% efficiency, leading to the presence of free acids inside them. In all probability, 
free acids that were not chemically bonded to the chitosan interacted electrostatically with the 
polymeric functional groups. Thus, they were very hard to wash out using distilled water and PBS. 
It could be assumed that these were slowly released during the cell culture, leading to a culture 
medium with a significant pH value decrease.

It is not very likely, that the crosslinked chitosan was cytotoxic by itself, since the previous study 
on the L929 cell line and MSC primary cells showed that it was not only non-toxic, but also had a 
positive impact on cell proliferation [25–28]. However, previously described chitosan scaffolds were 
prepared by using only one or two aminoacids at the time. In all probability, the combination of 
dicarboxylic acid, which are much more acidic than acid containing one carboxyl and one amino 
group, negatively affect the crosslinking process and in the future, the composition of crosslinkers
should be better adjusted and the ready products purification method should be refined. Otherwise,
their cytotoxic effect is comparable to the currently used polypropylene materials and their in vivo 
application might be associated with some serious side-effects, such as the emergence of 
inflammatory states, As compared to alternative solutions like biomaterials prepared from collagen 
or estradiol [8,9]. 

The scaffolds did not decompose after being stored in the medium in an incubator (37 °C), for a 
month, which meant that the materials were stable in the cell culture medium and could be 
potentially applied in a long-term cell culture, after certain modifications.

3. Materials and Methods 

3.1. Materials 

Figure 17. Cell culture of VK2/E6E7 cells on the poly(propylene) mesh—commercially applied
biomaterial for pelvic organ prolapse (POP) treatment. (a) Poly(propylene) mesh placed in the hole;
and (b) VK2/E6E7 cells adhered to the bottom of the multi-hole plate.
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3. Materials and Methods  

3.1. Materials 

Figure 18. Control culture of VK2/E6E7 cells: (a) 1st passage, 5th day of the cell culture; (b) 1st passage,
7th day of the cell culture; (c) 3rd passage, 7th day of the cell culture; and (d) 3rd passage, 7th day of
the cell culture.

VK2/E6E7 cells were more resistant to external factors than primary cells. Therefore, the cytotoxic
effect of the scaffolds was unexpected, especially as numerous studies confirmed the biocompatibility
of the chitosan-based materials [27–31]. It could be observed that the cytotoxicity of the scaffolds
was not correlated with their sterility. Additionally, it could be concluded that the application of
ethylene oxide as a sterilizing agent did not significantly affect their chemical structure and did not
affect the cell culture. Taking into consideration the cell culture studies, the synthesis parameters,
and the FT–IR and XRF analyses, it could be deduced that the crosslinking process did not occur with
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the 100% efficiency, leading to the presence of free acids inside them. In all probability, free acids that
were not chemically bonded to the chitosan interacted electrostatically with the polymeric functional
groups. Thus, they were very hard to wash out using distilled water and PBS. It could be assumed that
these were slowly released during the cell culture, leading to a culture medium with a significant pH
value decrease.

It is not very likely, that the crosslinked chitosan was cytotoxic by itself, since the previous study
on the L929 cell line and MSC primary cells showed that it was not only non-toxic, but also had a
positive impact on cell proliferation [25–28]. However, previously described chitosan scaffolds were
prepared by using only one or two aminoacids at the time. In all probability, the combination of
dicarboxylic acid, which are much more acidic than acid containing one carboxyl and one amino
group, negatively affect the crosslinking process and in the future, the composition of crosslinkers
should be better adjusted and the ready products purification method should be refined. Otherwise,
their cytotoxic effect is comparable to the currently used polypropylene materials and their in vivo
application might be associated with some serious side-effects, such as the emergence of inflammatory
states, As compared to alternative solutions like biomaterials prepared from collagen or estradiol [8,9].

The scaffolds did not decompose after being stored in the medium in an incubator (37 ◦C), for a
month, which meant that the materials were stable in the cell culture medium and could be potentially
applied in a long-term cell culture, after certain modifications.

3. Materials and Methods

3.1. Materials

Glucose, NaOH, HCl, FeSO4, NaCl, tetrahydrofuran, methanol, ethanol, acetone, acetonitrile, formic
acid, and tartaric acid were purchased from POCH, Gliwice, Poland. l-aspartic acid, Tris-HCl, sodium
acetate, diethylene glycol (DEG), N,N′-Dicyclohexylcarbodiimide (DCC), 4-Dimethylaminopyridine,
pyrogallol, rhodamine b, XTT assay, mouse fibroblasts (L929 cell line), Dulbecco’s Modified Eagle
Medium DMEM, streptomycin/penicillin (10%), trypsin, and PBS were purchased from Sigma-Aldrich,
Poznań, Poland. Molecular weight cut-off 500–1000 Da dialyzing membranes and filter membranes
(0.22 µm) were purchased from Bionovo, Zielona Góra, Poland. All reagents were of analytical
grade purity.

3.2. Methods

3.2.1. Chitosan Scaffolds Synthesis

For obtaining the chitosan scaffolds, each time 1.0 g of the biopolymer with 80% deacetylation
degree was dissolved in an aquatic solution of acetic acid (4%) on a magnetic stirrer and was left until
a homogenous mixture was obtained (1 h). In the next step, an appropriate amount of crosslinking
agents and 10 mL of propylene glycol were added to each sample. Then, the reacting mixtures were
placed in Prolabo Synthewave 402 microwave reactor. All syntheses were carried out in the field of
microwave radiation, in various synthesis conditions (Table 1). Obtained chitosan hydrogels were
washed out from the crosslinking agents’ residues, using distilled water. Finally, the hydrogels were
frozen and lyophilized.

3.2.2. Chemical Structure Analysis

Chemical structure of the products was evaluated by infrared spectroscopy. FT–IR/ATR analysis
was performed using IR Thermo Nicolet Nexus X 470 spectrometer (diamond crystal ATR) (Thermo
Fisher Scientific, Waltham, MA, USA). The range was between 400 and 4000 cm–1 with 32 scans and
4 cm–1 resolution.
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Table 1. Chitosan scaffolds synthesis parameters.

Sample Crosslinking
Agent, g

High Boiling
Solvent, mL Chitosan, g H2O, mL Reaction Time,

min

1 Adipic, 0.47
Malonic, 0.12 10 0.5 15 20

2 Adipic, 0.48
l-glutamic, 0.22 10 0.5 15 20

3
Adipic, 0.16
l-glutamic, 0.16

Malonic, 0.26
10 0.5 20 20

4 Adipic, 0.5
Levulinic, 0.5 10 0.5 20 20

3.2.3. Porosity and Density Study

The density and porosity of the obtained chitosan materials were determined by isopropanol
displacement because it did not wet the sample. The investigated biomaterials were placed into the
previously measured volume of isopropanol. After a fixed time (5 min), the change in volume of
the alcohol-impregnated aerogel was measured. Then, the studied chitosan scaffold was removed
from the isopropanol. In the last step, the difference in isopropanol volume was measured. Based on
this, the obtained data density (Equation (1)) and porosity (Equation (2)) was calculated using the
following equations:

d =
W

V2 −V3
(1)

p =
V1 −V3

V2 −V3
× 100% (2)

3.2.4. Swelling Capability Study

To determine the swelling properties of the obtained biomaterials, samples were weighed and
placed in distilled water. The samples were weighed after two time-periods (5 min and 24 h) and the
swelling degree [%] was calculated according to Equation (3). Experiments were repeated 3 times.

%SD =
Wt −W0

W0
(3)

where

%SD—swelling degree
Wt—weight of the investigated sample after time = t, g
W0—initial weight of the investigated sample, g

3.2.5. Scanning Electron Microscope (SEM) Analysis and X-ray Microanalysis

SEM analysis was performed using FEI QUANTA 650 FEG (ThermoFisher Scientific, Oregon,
USA). Microphotographs were taken under pressure of 50 Pa and HV of 10.00 kV. X-ray microanalysis
of the materials was performed using the energy dispersive spectroscopy method, using the FEI
QUANTA 650 FEG microscope, equipped with an EDS detector (Thermo Fisher Scientific, Portland,
OR, USA).

3.2.6. Antioxidant Activity Study

Antioxidant properties of the prepared chitosan scaffolds were investigated by a standard DPPH
method. For this purpose, a solution of DPPH in methanol was prepared so that the solution absorbance
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was 1.0 at 517 nm, using Aligent 8453 spectrophotometer. To determine the ability of free radical
scavenging, 0.10 g of each sample was placed in 5 mL of DPPH solution and left in darkness for 1 h,
with constant shaking. Then, the absorbance of each solution was measured at 517 nm. The percentage
of the free radicals removed was calculated using the following Equation (4):

%S =
As −Ac

Ac
(4)

where

%S—the % of the free radicals that were neutralized
Ac—the absorbance of the DPPH solution without the sample
As—the absorbance of the DPPH solution containing sample

3.2.7. Cytotoxicity Study

VK2/E6E7 and HCT116 cells were grown on the tested scaffolds. Control cultures were grown
under standard conditions. The cultures were grown on two types of scaffolds—one sterilized with
ethylene oxide and one non-sterilized. Prior to plating the cells, each scaffold was rinsed for about
24 h in PBS, while the non-sterilized scaffold was rinsed in PBS with the addition of antibiotics.
Next, the culture medium was added and placed in the incubator for about 24 h. The scaffolds were
additionally coated with fibronectin for 24 h. About 200,000 cells were plated on scaffolds. The cultures
were run on 6-well plates.

4. Conclusions

In this article, an attempt was made to obtain a novel chitosan-based scaffold dedicated to
urogynecologic regenerative medicine applications. We successfully prepared the new crosslinked
chitosan derivatives under microwave-assisted conditions. The crosslinking process was confirmed
by the FT–IR method. The biomaterials exhibited excellent porosity and swelling abilities. They also
had good antioxidant activity. However, surprisingly they appeared to be cytotoxic to both vaginal
epithelial (VK2/E6E7) and HCT116 colorectal carcinoma cells. Such results suggest that the combination
of crosslinking agents must be better adjusted and the purification process should be enhanced. In a
future study, we will focus on the preparation of scaffolds crosslinked with the bifunctional acids of
lower acidity, which would not negatively affect the cultured cells. Overall, it could be concluded that
the choice of the right crosslinking agent was crucial for the chitosan biocompatibility maintenance
and its effect on the chemical structure was superior to the porous morphology or swelling abilities.
Development of the chitosan-based scaffolds applicable in pelvic organ prolapse (POP) treatment must
be preceded by careful modifying agent characterization.
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