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Abstract: We present a computationally efficient algorithm for using variations in the ambient
magnetic field to compensate for position drift in integrated odometry measurements (dead-reckoning
estimates) through simultaneous localization and mapping (SLAM). When the magnetic field map
is represented with a reduced-rank Gaussian process (GP) using Laplace basis functions defined
in a cubical domain, analytic expressions of the gradient of the learned magnetic field become
available. An existing approach for magnetic field SLAM with reduced-rank GP regression uses a
Rao-Blackwellized particle filter (RBPF). For each incoming measurement, training of the magnetic
field map using an RBPF has a computational complexity per time step of O(Np N2

m), where Np is
the number of particles, and Nm is the number of basis functions used to approximate the Gaussian
process. Contrary to the existing particle filter-based approach, we propose applying an extended
Kalman filter based on the gradients of our learned magnetic field map for simultaneous localization
and mapping. Our proposed algorithm only requires training a single map. It, therefore, has a
computational complexity at each time step of O(N2

m). We demonstrate the workings of the extended
Kalman filter for magnetic field SLAM on an open-source data set from a foot-mounted sensor
and magnetic field measurements collected onboard a model ship in an indoor pool. We observe
that the drift compensating abilities of our algorithm are comparable to what has previously been
demonstrated for magnetic field SLAM with an RBPF.

Keywords: simultaneous localization and mapping; Kalman filtering; localization; magnetic field

1. Introduction

Autonomous navigation using only onboard sensors is a desirable technology for
various applications. There is no stable access to GNSS signals indoors, underground, or
underwater, as they are blocked by building elements, earth and water, respectively [1–3].
In other environments, the use of GNSS signals for localization can also be challenging.
Surface vehicles in harbours can be close to containers, bridges, or other industrial ele-
ments that can cause multi-path effects on the GNSS (Global navigation satellite system)
measurements [4]. Autonomous navigation using only onboard sensors is challenging
because of the drift in the position estimate obtained from sensor measurements that are
independent of pre-deployed infrastructure [5]. Drift occurs when noisy measurements
from, for example, gyroscopes, accelerometers, Doppler velocity logs or wheel encoders
are integrated to estimate position without any absolute position measurements [6]. We
will refer to the position estimates and orientation estimates obtained when integrating
such noisy measurements as odometry. A range of other possible sensor readings may be
available in these scenarios. The scope of our research is limited to the investigation of
autonomous navigation using onboard odometry and magnetic field measurements.

Magnetic field simultaneous localization and mapping (SLAM) has been proposed
to compensate for odometry drift when there is access to magnetic field measurements
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in a magnetic field with stationary spatial variations [7]. It has been demonstrated
for indoor localization that magnetic field SLAM can be used to improve position es-
timates [8]. In environments with ferromagnetic structures, as for example in indoor
environments, the magnetic field has rich spatial variation due to the magnetization of the
metal [9]. Navigation using nonlinear variations in the ambient magnetic field has been
proposed for a range of applications, such as indoor localization [1,8,10–22], underwater
localization [23–31], and surface and aerial navigation [32,33]. Although [32] uses an ex-
tended Kalman filter (EKF) for localization in a learned magnetic field, the majority use
a particle filter [1,10–13,15–18,22,25,27]. A comparative study has demonstrated that the
particle filter is more accurate for underwater geomagnetic navigation in the case where
the initial position is not known, while the EKF is more computationally efficient [34].

Computationally tractable magnetic field SLAM in three dimensions was proposed
in [8], using a Rao-Blackwellized particle filter (RBPF) to simultaneously estimate the
position and orientation of a pedestrian as well as the ambient magnetic field. A set of
Np particles are used to represent the position and orientation [8]. The RBPF for magnetic
field SLAM proposed by [8] uses Gaussian process (GP) regression to combine knowledge
about the nature of the magnetic field from Maxwell’s equations with measurements of the
magnetic field to create a magnetic field map. To this end, they build the magnetic field
map for each particle using reduced-rank Gaussian process regression, which represents
the magnetic field map as a linear combination of Nm Laplace basis functions on hexagonal
domains, and which represents the magnetic field map uncertainty as a matrix with N2

m
entries. As each magnetic field map is represented with the weights of Nm basis functions
and the corresponding covariance of these weights, all of which require updating at each
time step, the computational cost of updating the magnetic field map is O(NpN2

m) [8]. In the
case where the particle filter is run on a parallelized architecture, such as FPGAs, the com-
putation time dependence on the number of particles can be reduced dramatically [35,36].
The scope of our research is limited to improving the speed of Magnetic field SLAM on
non-parallelized architectures. Magnetic field SLAM has also been demonstrated feasible
using an RBPF with Laplace basis functions defined on a single, cubic domain [22].

The contribution of this paper is an approach to magnetic field SLAM that is faster
and requires less storage compared to the approach proposed in [8], inspired by the goal
to run magnetic field SLAM in real-time on cheap carry-on units with low processing
power. A property of using reduced-rank Gaussian process regression for magnetic field
SLAM in a cubic domain is that the magnetic field map is given as a linear combination
of analytically described basis functions [37]. We can therefore use the spatial derivatives
of the closed-form solutions of the Laplacian to find the Jacobian of the magnetic field
map with respect to the position estimate. To reduce computational expenses, we propose
utilising the availability of analytical Jacobians of the reduced-rank Gaussian process
magnetic field maps to perform magnetic field SLAM using an extended Kalman filter.
This only requires building and updating a single copy of the magnetic field map at each
time instance. Figure 1 shows the learned magnetic field map and estimated trajectory
from our EKF algorithm for magnetic field SLAM, tested on magnetic field measurements
collected onboard a model ship. The resulting computational cost is O(N2

m) at each time
step, instead of O(N2

mNp). The use of the EKF is possible if the dynamic model and
measurement model are close to linear [38]. In the case of simultaneous localization and
mapping, the world frame coordinate system is defined relative to the initial body frame
coordinate system [8]. As there is no uncertainty in the initial position estimate due to
this definition [8], the position estimate initially has zero covariance. In cases where the
growth of the uncertainty of the pose estimate that comes from odometry drift is limited
by frequent enough visitations of previous areas, magnetic field SLAM remedies drift in
the position estimate, which means that the position estimation error no longer grows
without bounds, but stays limited [8]. When the estimated position is close to the actual
position, the magnetic field linearized about the estimated position provides a good local
approximation to the magnetic field itself, as the magnetic field even in environments with
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strong stationary disturbances can be assumed to have limited spatial variability [8,11,20,39].
A key assumption for several implementations of estimating the magnetic field with
GP regression is that the magnetic field in locations close to each other have a higher
correlation than the magnetic field in locations that are further away [8,11,20,39]. In
these implementations, how rapidly the correlation diminishes with increasing distance
is encoded in a hyperparameter in the GP prior describing the length scale of the spatial
variations in the magnetic field [39].
 

 

 

Figure 1. Learned magnetic field variations in test pool. The color corresponds to the estimated
norm of the magnetic field map, while the opacity is inversely proportional with the variance of
the estimate.

We illustrate with simulations that we can expect the EKF for a localization task to give
accurate estimates when the max norm of the covariance from the predictive distribution is
small relative to the length scale of the magnetic field anomalies. A requirement for using
GP regression to represent the magnetic field map in magnetic field SLAM is the prior
knowledge of hyperparameters describing the expected distribution of the magnetic field
potential [8]. These hyperparameters contain information about the expected length scale
of the magnetic field spatial variations [39]. Without adding any further assumptions to
the magnetic field SLAM formulation presented in [8], we can therefore assume to have
information available about how rapidly we can expect our learned magnetic field to vary
spatially. In SLAM, the uncertainty of the position estimate will grow when the sensor
moves through unexplored areas, as there is no map information available to correct the
estimated pose [8]. When the sensor re-enters an area where it has already built a map of the
local anomalies, our proposed algorithm can be expected to converge when the covariance
of the position estimate is small compared to the length scale of the learned magnetic field
map. We show with magnetic field data collected from a model ship in an indoor pool
(see Figure 1) and simulated odometry that our proposed algorithm converges when the
odometry noise is limited, for a trajectory when the time until the first revisitation of a
mapped area is constant. We also show with magnetic field measurements and odometry
obtained from an open-source implementation by [40] that our algorithm can compensate
for drift in position estimates based on accelerometer and gyroscope measurements in a
foot-mounted sensor.

The remainder of this paper is structured as follows. In Section 2, we define the
model for our magnetic field SLAM estimation problem. In Section 3, we derive an
EKF for magnetic field SLAM. In Section 4 we show the convergence properties of our
algorithms in a simulated navigation task, where we can control the ratio of our position
estimate uncertainty over the length scale of the magnetic field variations. In Section 5, we
demonstrate the drift-compensating abilities of the EKF-SLAM algorithm on a set of data
we collected with a model ship and on an open-source data-set from a foot-mounted sensor.
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Finally, in Section 6 we summarise our findings and discuss possible directions for future
work. Our Matlab-implementation producing all results found in this paper can be found
on https://github.com/fridaviset/EKFMagSLAM.

2. Modeling

Our simultaneous localization and mapping algorithm estimates the filtering distribution

p(xt|yb
1:t, ∆pw

1:t, ∆qb
1:t), (1)

where we denote the available magnetic field measurements by yb
1:t, the odometry describ-

ing the change in position and orientation ∆pw
1:t, ∆qb

1:t, and the state we wish to estimate at
each time step t as xt. For a vector xt, the set {x1, · · · , xt} is denoted x1:t for brevity. We
use the superscript b to denote the sensor’s body-frame, which is aligned with its sensor
axes. The superscript w refers to the world frame, which is defined as the inertial frame
that shares its origin with the body frame at time zero. The gravity field in this position is
aligned with the negative z-axis, and where the initial yaw-angle between the body and
world-frame at t = 0 is zero. As we wish to estimate both position, orientation and the
magnetic field map, we model our state as

xt = [(pw
t )
> (qwb

t )> m>]>, (2)

where pw
t denotes the position, qwb

t denotes the orientation transformation from the world
frame to the body frame, and m is a vector that describes our magnetic field map represented
with reduced-rank GP regression.

2.1. Measurement Model

We consider the case where we have access to measurements of the magnetic field in a
sensor attached to the object we aim to localize. The measurement equation is given by

yb
t = Rbw

t ∇p ϕ(pw
t ) + eb

m,t, eb
m,t ∼ N (0, σ2

mI3), (3)

where yb
t denotes the magnetic field measurement, eb

m,t denotes the measurement noise and
Rbw

t denotes the rotation from world to body frame, corresponding to the conjugate of the
quaternion qwb

t , expressed as a rotation matrix. See [41] for definitions of the quaternion
conjugate, and definitions of transformation from a quaternion to a rotation matrix. The
function∇p ϕ(pw

t ) is our model of the magnetic field. We model the magnetic field as in [42]
as the gradient of the function ϕ(pw

t ) with respect to the position pw
t , where ϕ : R3 → R is

a scalar potential distributed as a GP with prior

ϕ ∼ N (0, κSE(·, ·) + κlin(·, ·)), (4)

and where the kernel is defined by the functions

κSE(p, p′) = σ2
SE exp

(
−
‖p− p′‖2

2
2l2

SE

)
, (5a)

κlin(p, p′) = σ2
lin p>p′, (5b)

with σSE, σlin, lSE and σm being hyperparameters. The hyperparameter lSE refers to the
length scale of the spatial variations in the magnetic field potential that is represented by
the kernel [42]. The parameters σSE, σlin and σm define the presence of the nonlinear com-
ponents, linear components and measurement noise in the magnetic field respectively [42].
The linear component modelled by the kernel component κlin represents of the constant
underlying earth magnetic field, while the nonlinear disturbances caused by the modelled
by the nearby ferromagnetic structures is modelled by the kernel component κSE. Modelling
the magnetic field as the gradient of a scalar potential ensures that Maxwell’s equations are

https://github.com/fridaviset/EKFMagSLAM
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satisfied, under the assumption that no current passes through the domain where we con-
struct our magnetic field map [42]. We use a reduced-rank approximation to the GP similar
to the one used in [8] for mapping the indoor magnetic field for localization purposes with
the same kernel. Our approach is an application of the GP approximation presented in [37],
which is based on conditioning the GP prediction on a set of basis functions corresponding
to a subset of the eigenbasis of the negative Laplace operator in a finite domain, subject to
Dirichlet boundary conditions [37]. The reduced-rank approximation models the magnetic
field potential as a sum of basis functions defined as the solutions to the Laplace equations
over a finite domain Ω ⊂ R3{

−∇2
pφi(p) = λiφi(p), p ∈ Ω,

φi(p) = 0, p ∈ δΩ,
(6)

where φi is the i’th eigenfunction, and λi is the i’th eigenvalue [37]. We approximate
the GP with the first Nm basis functions solving the Laplace equations defined over a
cubical domain Ω = [Ll,1, Lu,1]× [Ll,2, Lu,2]× [Ll,3, Lu,3]. In this case, using the Nm first
eigenfunctions to represent the potential gives the approximation

ϕ(p) ≈ Φ(p)m, (7)

with Φ(p) being the matrix

Φ(p) =
[
p> φ1(p) . . . φNm(p)

]
, (8)

where φi is the i’th eigenfunction of the Laplace basis, and m ∈ RNm+3 is a vector deter-
mining the contribution of each linear components as well as each basis function to the
potential. Each eigenfunction φi(p) has a closed form expression given by

φi(p) =
3

∏
d=1

√
2√

Lu,d − Ll,d
sin
(

πni,d(pd + Ll,d)

Lu,d − Ll,d

)
, (9)

where the set (ni,1, ni,2, ni,3) is the set of three natural numbers that is different from the
sets (nj,1, nj,2, nj,3) defined for all j < i, that gives the corresponding eigenvalue

λi =
D

∑
d=1

(
πni,d

Lu,d − Ll,d

)2
, (10)

as large as possible. The basis functions in (9) and eigenvalues in (10) are identical to those
used in [22]. The vector m has a prior distribution given by

m ∼ N (0, Λ), (11)

where Λ is defined as

Λ = diag
[
σ2

linI3, SSE(
√

λ1), · · · , SSE(
√

λNm)
]
, (12)

with SSE(·) being the spectral density of the squared exponential kernel, as defined in [7].
This corresponds to the magnetic field potential ϕ(p) ≈ Φ(p)m having a prior distribution
given by (4) as Nm goes to infinity, and the size of the domain goes to infinity [37]. Inserting
this approximation to the magnetic field model gives the measurement model

yb
t ≈ Rbw

t ∇pΦ(pw
t )m + eb

m,t eb
m,t ∼ N (0, σ2

mI3), (13)

with the closed form expressions for ∇pΦ(pw
t ) given in Appendix A. This measurement

model is identical to the measurement model used in [8], with the exception of the basis
functions Φ(pw

t ), which are different as they are defined with respect to different domains.
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2.2. Dynamic Model

We assume access to noisy odometry measurements ∆pw
t and ∆qb

t of the change in
position and orientation at each time step. We model the change in position and orientation
according to the dynamic model

pw
t+1 = pw

t + ∆pw
t + ew

p,t, ew
p,t ∼ N (0, σ2

pI3), (14a)

qwb
t+1 = qwb

t � ∆qb
t � expq(e

b
q,t), eb

q,t ∼ N (0, σ2
qI3), (14b)

where ew
p,t and eb

q,t denote the position and orientation odometry measurement noise re-
spectively, � is the quaternion product and expq is the operator that maps an axis-angle
orientation deviation to a quaternion (see [41] for details on quaternion algebra).

3. Ekf for Magnetic Field Slam

We estimate our state with an EKF applied to the dynamic model in (14a,b) and the
measurement model defined in (13), with predictive and filtered estimates denoted p̂w

t|t−1,

m̂t|t−1, q̂wb
t|t−1 and p̂w

t|t, m̂t|t, q̂wb
t|t respectively. We initialise the magnetic field state estimate as

m̂0|0 = 0Nm×1 according to the reduced-rank GP prior in (11). We initialise the orientation
estimate according to the initial rotation q̂wb

0|0 = qwb
0 between the world and body frame as

defined in Section 2. We initialise the position estimate as p̂w
0|0 = 03×1, also according to

our definition of the world frame relative to the initial body frame from Section 2.
We represent the deviation between the true and estimated predictive state by an error

state ξt defined as

ξt = [(δw
t )> (ηw

t )> ν>t ]>, (15)

where δw
t = pw

t − p̂w
t|t−1 denotes the position estimation error, νt = m− m̂t|t−1 denotes the

magnetic field state estimation error, and where ηw
t denotes the orientation estimation error

parametrised as an axis-angle deviation according to

qwb
t = expq(η

w
t )� q̂wb

t|t−1. (16)

Similarly, we represent the deviation between the true and estimated filtered state by an
error state ξ̃t defined as

ξ̃t = [(δ̃w
t )> (η̃w

t )> ν̃>t ]>, (17)

where δ̃w
t = pw

t − p̂w
t|t, ν̃t = m − m̂t|t, and where η̃w

t denotes the filtered orientation
estimation error according to

qwb
t = expq(η̃

w
t )� q̂wb

t|t . (18)

Since we build our map relative to our initial position and orientation, the covariance of
our initial position and orientation estimates is zero. The covariance of the initial magnetic
field estimate is defined in (11) as the magnetic field map prior Λ. Hence, our initial error
state ξ0 has a covariance

P0|0 =

[
06×6 06×(Nm+3)

0(Nm+3)×6 Λ

]
. (19)

To perform the dynamic update, we propagate our filtered state estimate through the
nonlinear dynamic model (14a,b), giving the predictive updates as described in (26a,b).
As the magnetic field is assumed stationary, its estimate is unchanged by the dynamic
update defined in (26c). We derive the covariance update in the EKF by linearising about
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the filtered state estimate from the previous time step, with respect to the error state ξ̃t.
Inserting (15), (17) and (26a,b) into the dynamic model (14a,b) gives

p̂w
t|t−1 + δw

t = p̂w
t−1|t−1 + ∆pw

t + δ̃w
t−1 + ew

p,t (20a)

expq(η
w
t ) = expq

(
η̃w

t−1
)
� q̂wb

t|t−1 � expq(e
b
q,t)� (q̂wb

t|t−1)
C, (20b)

where (q̂wb
t|t−1)

C denotes the conjugate of the quaternion q̂wb
t|t−1. The linearization of the

dynamic model with respect to the error states gives the following propagation of the
error states

δw
t = δ̃w

t−1 + ew
p,t, (21a)

ηw
t ≈ η̃w

t−1 + R̂wb
t|t−1eb

q,t, (21b)

νt = ν̃t−1, (21c)

where R̂wb
t|t−1 denotes the rotation matrix corresponding to the rotation represented by the

quaternion q̂wb
t|t−1. This linearization is exact for the position, and it is a good approxima-

tion for the orientation error state in the cases where the orientation error is small [41].
Equation (21a,b) can equivalently be written as

ξt ≈ ξ̃t−1 + edyn,t, edyn,t ∼ N (0(Nm+9)×1, Q), (22)

where

Q =

 σ2
pI3 03×3 03×(Nm+3)

03×3 σ2
qI3 03×(Nm+3)

0(Nm+3)×3 0(Nm+3)×3 0(Nm+3)×(Nm+3)

. (23)

As the linearization of the error state propagation is given in (22), the covariance Pt|t−1 of
the predictive state error ξt is given by (26d).

For the measurement update, we apply an EKF measurement update to the measure-
ment model in (13). We linearise about the predictive state estimate, with respect to the
error state ξt. The linearized measurement model is given by

yb
t = R̂bw

t|t−1∇pΦ( p̂w
t|t−1)m̂t + Htξt + eb

m,t, eb
m,t ∼ N (03×1, σ2

mI3), (24)

where

Ht =


(
∇ppΦ( p̂w

t|t−1)m̂t

)>[(
∇pΦ( p̂w

t|t−1)m̂t

)
×
]>(

∇pΦ( p̂w
t|t−1)

>
)


>

(25)

with [v×] being the scew-symmetric matrix representing the cross product v× u between
two vectors v, u ∈ R3 as a matrix multiplication [v×]u (explicit expression for [v×] is
given in [41]), and ∇ppΦ(·) being the Jacobian of the basis functions, given in Appendix A.
Note that this Jacobian is a matrix with 3× 3× (Nm + 3) entries, and multiplying it with
the (Nm + 3)-dimensional state vector m therefore gives a 3× 3 matrix. Applying the
Kalman filter measurement update to this linearized measurement function gives the EKF
measurement update in (27a–e). This gives an estimate ξ̂t of the predictive state error ξt,
with a corresponding covariance. By concatenating the estimated predictive state error
to the predictive state, we obtain the filtered state estimates as defined in (28a–c). The
covariance of the filtered error state ξ̃t then becomes the same as the covariance of the
estimated predictive error state ξ̂t. Recursively applying the dynamic update, measurement
update and re-linearization step results in Algorithm 1.
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Algorithm 1: EKF for magnetic field SLAM

Input:
{

∆pw
t , ∆qb

t , yb
t
}N

t=1

Output:
{

p̂w
t|t

}N

t=1
,
{

q̂wb
t|t

}N

t=1
,
{

m̂t|t

}N

t=1
Initialisation: p̂w

0|0 = 03×1, q̂wb
0|0 = qwb

0 , m̂0|0 = 0(Nm+3)×0, (19)
1: for t = 1 to N do
2: Dynamic update

p̂w
t|t−1 = p̂w

t−1|t−1 + ∆pw
t (26a)

q̂wb
t|t−1 = q̂wb

t−1|t−1 � ∆qb
t (26b)

m̂t|t−1 = m̂t−1|t−1 (26c)

Pt|t−1 = Pt−1|t−1 + Q (26d)

3: Measurement update

zt =R̂wb
t|t−1yb

t −∇Φp( p̂w
t|t−1)m̂t|t−1 (27a)

St =HtPt|t−1H>t + σ2
mI3 (27b)

Kt =Pt|t−1H>t S−1
t (27c)

ξ̂t =Ktzt (27d)

Pt|t =Pt|t−1 − KtStK>t (27e)

4: Relinearization

p̂w
t|t = p̂w

t|t−1 + δ̂w
t (28a)

q̂wb
t|t = expq(η̂

w
t )� q̂wb

t|t−1 (28b)

m̂t|t =m̂t|t−1 + ν̂t (28c)

5: end for

4. Simulations

We study when Algorithm 1 for localization in a previously learned magnetic field
gives a converging pose estimate in a known nonlinear field depending on the position
uncertainty at time t. Since we assume the magnetic field map is know, we can replace m̂t|t
with the known msim everywhere in our algorithm. As a consequence of this, we can alo
skip (26c) and (28c), use P0|0 = 06×6 and

Ht =


(
∇ppΦ( p̂w

t|t−1)m
)>[(

∇pΦ( p̂w
t|t−1)m

)
×
]>

>

. (29)

We start the simulation at time t with a varying predictive position estimation error, and
set the standard deviation of our position uncertainty equal to the distance between the
actual and estimated position at the beginning of the simulation. This artificially introduces
a predictive position estimation error representing the estimation error that can accumulate
over time in magnetic field SLAM. Position errors can, for example, accumulate when the
sensor is moved for a long time through areas with no information about the magnetic field
available from previous measurements [8].
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We simulate positions pt along a square trajectory moving with constant velocity for
four laps, and simulate the odometry by adding sampled realisations of the white noises
ew

p,t and eb
q,t to (14a,b). We simulate a nonlinear field by drawing a sample from the reduced-

rank GP prior msim ∼ N (0, Λ), with σlin = 0, σSE = 0.1 and lSE = 0.2. We used 50 basis
functions to represent the magnetic field map. Using a domain that is 3 m× 3 m× 1 m. This
number of basis functions ensures that for a GP trained with 2000 sampled measurements
the root mean squared error (RMSE) between the approximate and the full GP predictions
in 1000 randomly selected locations is below the measurement noise. To prevent ill effects
from the boundary conditions we ensured that both the training and test data was at least
0.5 m away from the border. We then simulate magnetic field measurements by adding
white noise to the gradient of the nonlinear field in the ground truth position according
to (13), replacing m̂t with msim, and using σm = 0.03. We use the incoming magnetic field
measurements and the odometry to estimate the position and orientation using an EKF
and a particle filter. The EKF is implemented according to Algorithm 1, but reducing the
state-space to only contain the position and orientation, and inserting msim in place of m̂t
in (27a). We implement a particle filter for navigation in a magnetic field represented by
a field learned with GP regression according to Algorithm 1 in [20], with the difference
that we use the simulated reduced-rank map instead of a learnt full GP map, and that we
perform the prediction step using our odometry model in (14a,b).

In Figure 2, we can see two examples of PFs and an EKFs estimate of the position
filtered distribution, represented with a particle cloud and a mean and an uncertainty
interval, respectively. In Figure 2a, the initial uncertainty of the position estimate is so
large that the particle cloud becomes multi-modal, making it impossible for the EKF to
correctly approximate the true nature of the filtered distribution. The estimated position
is, therefore, far away from the true position. In addition, the uncertainty estimate of the
EKF does not reflect this, as it relies upon a linearization of the nonlinear magnetic field
about the predictive estimate. In Figure 2b, the position estimate at time t is still wrong,
but close enough that the particle cloud representation of the filtered distribution appears
uni-modal, and the EKF estimate of the filtered distribution is now closer to the estimate
from the particle filter. As we see in Figure 3a displaying the position estimation error at
the end of the trajectory estimates across the four laps, the position estimates from the EKF
are accurate across the entire trajectory if the predictive position error is lower than 0.3 m.
The particle filter on the other hand, is accurate even beyond these predictive position
accuracies when using 500 particles, while it is only slightly improving the prediction
accuracy over Algorithm 1 when using 100 or 200 particles. The accuracy is better for
200 particles than for 100 particles. For only 100 particles, the average prediction accuracy
is worse than for Algorithm 1 for a predictive position accuracy of 0.2 m, likely due to the
fact that the particle filter is a Monte-Carlo method, meaning that there is never a guarantee
for convergence [43]. In Figure 3b, the average estimation accuracy for varying length
scales of the simulated magnetic field is displayed. As in Figure 3a, the performance of
the particle filter improves with increasing amount of particles. Algorithm 1 is able to
compensate for odometry drift and achieve estimation error on average below 0.2 m for
length scales between 0.1 and 0.4 m, using a constant predictive position error of 0.1 m. For
length scales below 0.1 m, the linearization error becomes too big for the approximation
accuracy of our linearized model to give a good result. For length scales higher than 0.4 m,
the variations in the magnetic field are not rich enough to provide valuable information
about the position of the sensor. Therefore, as the length scale of the field increases, even
though the field becomes closer to linear and the linearization error continues to decrease,
the estimation accuracy does not improve—because the signal-to-noise ratio from the
magnetic field measurements also decreases. As we for the simulation results in Figure 3a
use a simulated magnetic field map with spatial variations of 0.3 m, this indicates that as
long as the covariance of the predictive distribution does not exceed the length scale of
the magnetic field, we can expect Algorithm 1 to have the same estimation accuracy as
particle-based methods.
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(a) (b)

Figure 2. Comparison of approximations of the filtered position distribution given measurements
from a simulated nonlinear field. The color indicates the norm of the simulated magnetic field. The
covariance ellipsoids indicate the 68% confidence interval of the EKF estimate. (a) Estimates of the
filtered distribution based on predictive estimates with error 0.40 m. (b) Estimates of the filtered
distribution based on predictive estimates with error 0.05 m.
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Figure 3. Simulation, investigating drift-compensating abilities given varying predictive position
estimation errors. Comparison of position estimation error at the end of the trajectory between
Algorithm 1 and a particle filter for localization in a known map with varying predictive position
errors at the initialisation of the simulation. The lines connect the average results after 100 Monte
Carlo repetitions with different realisations of the odometry noise, and the error bars represent one
standard deviation. (a) Estimation accuracies with varying predictive position error. (b) Estimation
accuracies with varying length scales lSE.

5. Experimental Results
5.1. Model Ship Experiments

We performed experiments to test Algorithm 1 on a model ship in a pool. The magnetic
field on the model ship was measured using an Xsens MTi-100 Inertial Measurement Unit
(IMU). We recorded the ground truth position and orientation using a motion capture
system with cameras and optical markers mounted on the model ship, as shown in Figure 1.
The motion capture markers and the IMU were rigidly attached to the ship. The IMU
measurements were collected on a computer onboard the ship. The magnetic field was
disturbed by metal railings and building structures near the pool. We steered the model
ship around in long loops in the pool, with a ground truth trajectory that is displayed in
red in Figure 4. The magnetic field measurements were collected in the IMU at 200 Hz, and
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down-sampled to 5 Hz. The odometry was simulated based on the ground truth position
and orientation, according to the odometry model in (14a,b), also at a frequency of 5 Hz (but
with some motion capture measurement dropouts due to pool reflections). We simulate
drifting odometry by computing the change in position and orientation at each time
step from the ground truth and adding a simulated white noise with standard deviation
σp = 0.01, σq = 0.001. For these experiments, we use real magnetic field data and simulated
odometry to investigate the effects of changing odometry noise on our algorithm. In
addition, we simulate a constant position odometry bias of [0.003 0.003 0] m/time step.
Our algorithm was not originally designed to compensate for constant position odometry
biases. However, as this often occurs in practice (for example, when the odometry sensors
are not perfectly calibrated), we chose to include it in our simulated odometry to test our
algorithms’ ability to compensate for a drift that consists both of integrated white noise
and a constant disturbance.
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Figure 4. Comparison of the model ship position trajectory estimates for a single realisation of
simulated odometry noise from a birds-eye view. (a) Comparing Algorithm 1 and the odometry to the
ground truth. (b) Comparison of the position estimates from the RBPF with 100, 200 and 500 particles
respectively to the ground truth.

In magnetic field SLAM, there is usually no possibility of optimising the hyperpa-
rameters for GPs prior to estimating the map, as there is no magnetic field data available.
This motivates us to choose hyperparameters prior to running Algorithm 1 [8]. The hy-
perparameters were set to lSE = 0.8, σ2

SE = 1, σ2
m = 0.01, σ2

lin = 1 and 50 basis functions.
The basis functions were defined with respect to a cubical domain Ω which is as small as
possible, and whose border is at least 1 m away from the closest ground truth position. We
confirmed empirically that 50 basis functions is sufficient to ensure that the RMSE between
the approximation and the full GP predictions in 1000 randomly selected locations in the
domain is below the measurement noise. We based the predictions on 2000 samples from
the full GP prior, sampled from randomly selected locations in the domain at least 1 m
away from the domain border. For the first set of experiments, we investigate and compare
the position estimation error of Algorithm 1 with the particle filter-based approach to mag-
netic field SLAM [8] for odometry noise levels of σp = 0.01, σq = 0.001. In Figure 5a, the
norm of the magnetic field measurements in locations where there were no motion-capture
dropouts are displayed. The norm of the measured magnetic field ranges between 0.46 and
0.83 (the Xsens MTi-100 provides unit-less measurements proportionatal to the magnetic
field strength). The spatial variations in the measured magnetic field norm are visible in
Figure 5a, and the magnetic field stays close to constant for position changes of less than
0.1 m, while it can change as much as from 0.46 to 0.83 when the position change is more
than 1 m. As the spatial variations in the magnetic field potential are the sources of the
spatial variations in the magnetic field norm [39], we expect that our assumed length scale
of 0.8 m is close enough to the actual length scale of the magnetic field variations to allow
for Algorithm 1 to compensate for position estimation drift in the odometry. Figure 5b
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shows the norm of the magnetic field map learned by Algorithm 1, and comparing to the
measured magnetic field norms in Figure 5a, we can see that the norm of the magnetic
field estimates and the estimated trajectory are similar, with the learned magnetic field
map prediction being more certain in and near the areas where there are more magnetic
field measurements available. In Figure 4a, the estimated trajectory from Algorithm 1 is
compared with the ground truth trajectory, as well as the dead reckoning position estimate
from the simulated odometry. The position estimate from Algorithm 1 compensates visibly
for the drift in the odometry.
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Figure 5. Measured and estimated magnetic field and position trajectories for the model ship. The
upper plot marks with circles the locations where magnetic field measurements were successfully
collected and matched with a ground truth position in the model ship, and the colors of the circles
correspond to the norm of the measured magnetic field. The lower plot displays the trajectory
estimate from applying Algorithm 1 in black. It also shows the learned magnetic field map, where
the color corresponds to the norm of the estimated magnetic field ‖∇pΦ(p)m̂N|N‖2, and the opacity
is inversely proportional with the trace of the covariance matrix of the magnetic field map estimate
in each location, Tr(∇pΦ(p)PN|N(∇pΦ(p))>). (a) Measured magnetic field norm in ground truth
positions. (b) The estimated magnetic field norm is displayed with the semi-transparent color map
and the estimated trajectory is displayed with the black line.

In Figure 6 the position estimation error of the odometry and Algorithm 1 can be seen
to increase at the beginning of the trajectory. After around 31 s, Algorithm 1 can use the
learned magnetic field map in combination with the incoming magnetic field measurements
to compensate for drift in the estimated position and orientation. In Table 1, the position
estimation RMSE values for 4 collected data sets of a similar shape as the one displayed
in Figure 4a is shown after repeated experiments with the same odometry noise and the
same constant drift in the xy-plane, showing that the reduction of RMSE is comparable
also for repeated experiments. The position estimation error of the dead reckoning can
increase potentially unbounded, while the position estimation error of Algorithm 1 remains
bounded when the ship revisits previously mapped areas. However, it will only remain
bounded if the quality of the map is good enough to provide information to the position
estimate. In Table 2, the runtime for each of the algorithms is displayed. The runtime of
the PF methods grows proportionally with the number of particles used. As can be seen in
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Table 1, the PF performs on average worse than the EKF. The trajectory of the highest-weight
particle from a single run of each of the PFs is shown in Figure 4b. From our simulation
results, given enough particles, the particle filter compensates for drift at least as well as
Algorithm 1. However, in contrast to our simulation results where we investigate how well
the particle filter performs localization given a previously learned map, in practice, the
particle filter has to rely upon magnetic field maps created conditionally on each particle.
From these results a standard implementation of the PF in [8] with cubic domain basis
functions and resampling at every timestep, with the same hyperparameter settings as
the EKF performs worse on our collected model ship data, even given 500 particles. In
general, the performance of the particle filter can depend on the resampling strategy, the
measurement noise and the process noise [44]. Another possible explanation why the
particle filter performs worse for the full SLAM scenario compared to the simulation case,
is the fact that for long trajectories, the resampling step can cause loss of diversity amount
the particles [45].
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Figure 6. Comparison of model ship position estimation errors from Algorithm 1, drifting odom-
etry and the PF with 100, 200 and 500 particles respectively for a single realisation of simulated
odometry noise.

The linearization of the measurement function in (13) is performed around the predic-
tive position estimate. The covariance of the estimate can grow when the sensor is moved
through an area where the map is previously unknown. The growth rate will depend on the
odometry noise. This is demonstrated in Figure 7b, where for 100 Monte Carlo simulations
with different odometry noise realisations, the max norm of the predictive estimate from
Algorithm 1 can be seen to increase with increasing odometry noise for the same trajec-
tory. In Figure 7a, it can be seen that if we increase the simulated odometry noise above
σ2

p = 0.002, the position estimation error of Algorithm 1 is no longer able to compensate
for drift in the dead reckoning. A higher odometry noise means more drift is likely to
accumulate to the predictive estimation error before revisiting a previously mapped area.
The inability of Algorithm 1 to compensate for drift caused by odometry noises above
σ2

p = 0.002, therefore, reflects how the assumptions of the measurement function being
locally linear no longer hold when the covariance of the predictive distribution becomes
large compared to the length scale of the magnetic field disturbances. For the experimental
results, for odometry noises above σ2

p = 0.002, we observe a predictive covariance max
norm of 0.15 m in the results in Figure 7b and an accumulated drift of 0.5 m, which is
combination is comparable in magnitude to our length scale lSE of 0.8 m. These results
are comparable to our simulation results in Section 4, where Algorithm 1 for localization
only converges when the position error is 0.3 m using a length scale of 0.2 m. In both cases,
when the order of the prediction error goes beyond the length scale of the magnetic field
variations, Algorithm 1 is no longer able to compensate for drift in the position estimate.
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Figure 7. Investigation of the effect of varying odometry noise on the model ship position estimate.
The lines connect the average results of the ship position estimation after 100 Monte Carlo repeti-
tions with different realisations of the simulated odometry for varying amounts of odometry noise.
(a) Model ship position estimation error at the end of the trajectory for varying amounts of odometry
noise. (b) The max norm of the predictive covariance of the estimate from Algorithm 1 depending on
varying odometry noise.

Table 1. Trajectory RMSE values in meters for the 4 collected data sets from the model ship. Values
are given as averages ± one standard deviation, after 100 Monte Carlo repetitions with different
realisations of the simulated odometry noise.

Trajectory RMSEs Data Set 1 Data Set 2 Data Set 3 Data Set 4

Algorithm 1 0.53 ± 0.15 0.58 ± 0.18 0.53 ± 0.24 0.98 ± 0.62

RBPF with 100 particles 0.85 ± 0.27 0.92 ± 0.26 0.95 ± 0.42 1.53 ± 0.53

RBPF with 200 particles 0.85 ± 0.22 0.89 ± 0.27 0.98 ± 0.47 1.48 ± 0.46

RBPF with 500 particles 0.87 ± 0.19 0.86 ± 0.24 1.00 ± 0.40 1.53 ± 0.50

Odometry 1.98 ± 0.54 1.52 ± 0.48 1.76 ± 0.52 1.65 ± 0.47

Table 2. Measured time to run the estimation algorithm (in seconds) for the 4 collected data sets
from the model ship. Values are given as averages ± one standard deviation, after 100 Monte Carlo
repetitions with different realisations of the simulated odometry noise.

Runtimes Data Set 1 Data Set 2 Data Set 3 Data Set 4

Algorithm 1 0.06 ± 0.01 0.05 ± 0.00 0.14 ± 0.01 0.05 ± 0.00

RBPF with 100 particles 12.85 ± 0.26 9.24 ± 0.10 21.55 ± 0.32 9.91 ± 0.14

RBPF with 200 particles 25.70 ± 0.49 18.44 ± 0.166 42.64 ± 0.27 19.72 ± 0.20

RBPF with 500 particles 64.24 ± 0.82 46.02 ± 0.20 106.93 ± 0.34 49.43 ± 1.29

5.2. Magnetic Field Slam for Pedestrians with Foot-Mounted Sensor

Using accelerometer and gyroscope measurements from an IMU mounted on the
foot of a pedestrian, it is possible to estimate the position of the pedestrian with high
accuracy on a short timescale using a zero-velocity-update (ZUPT) aided EKF [46]. The
estimate is obtained by integrating the change in orientation and velocity. In addition, the
assumption that when the foot is in the stationary part of the step, it has zero velocity is
used to reduce the drift of the position and orientation estimates [46]. The position and
orientation estimates are typically accurate at the beginning of a trajectory but can drift over
time if biases and/or white noise affect the measurements [47]. This filter was implemented
in an open-source implementation by [47].
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To test the capabilities of Algorithm 1 on measurements from a foot-mounted sensor,
we used magnetic field measurements present in the open-source data set used in [40],
to remedy the drift present in the position estimates obtained form their ZUPT-aided
EKF. The data set from [40] contains multiple measurement series from an IMU collected
in the same hallway, walking the same trajectory. Although the implementation in [40]
only used the accelerometer and gyroscope measurements from the IMU, magnetic field
measurements were also collected, and are included in the published data. We first ran
the open-source implementation from [40] of the ZUPT-aided EKF on the 12 available
measurement sequences that were made by collected while walking in a similar trajectory.
We ran the ZUPT-aided EKF independently on the 12 experiments and obtained 12 sets
of position and orientation estimates. We then concatenated the 12 estimated trajectories
by initialising each trajectory at the position and orientation where the previous trajectory
ended. This gave a drifting odometry estimate of the position of the pedestrian. The
drifting odometry is displayed in Figure 8b. This odometry has an increasing error in
position and orientation over time partly because the ZUPT-aided EKF will have some
position and orientation drift inherently and partly because of the assumption that the
foot-mounted sensor ends in the same orientation at the end of each collected data set as the
beginning of the next data set may not be exactly true. However, we can see that most drift
accumulates in a constant direction, and drift caused by wrong orientation initialisation
should cause twisting of the trajectory. It is, therefore, likely that most of the drift visible
in Figure 8b is present due to inherent drift in the ZUPT-aided EKF. To use the odometry
in Algorithm 1, we down-sampled the position and orientation estimates to 10 Hz and
computed the change in position and orientation between each time step. We then used the
changes in position and orientation as input odometry. As SLAM is performed in real-time,
we cannot know the hyperparameters a priori to running the algorithm. The magnetic field
measurements available in the open-source data set from [40] were without reported units
but had a norm that ranged between 0.2429 and 0.8584. We therefore selected the expected
nonlinear variations σ2

SE = 1. We assumed that the contribution from the constant earth
magnetic field had approximately the same order of magnitude and so selected σ2

lin = 1.
We set the length scale to lSE = 2 m, and we set the measurement noise to be σ2

m = 0.01. We
used 1850 basis functions to approximate the magnetic field map. We selected a domain
which was the smallest possible cube that was still at least 10 m away from the first lap of
the odometry. We found empirically that 1850 were a sufficient amount of basis functions
using the same approach as in Sections 4 and 5. The resulting position estimate from
Algorithm 1 compensates for drift in the odometry, as shown in Figure 8a.
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Figure 8. Trajectory and magnetic field map estimate for the foot-mounted sensor data. The estimated
trajectory obtained with Algorithm 1 is compared to odometry from the foot-mounted sensor data
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obtained via [40] implementation of the ZUPT-aided EKF using a foot-mounted accelerometer and
gyroscope. The color of the magnetic field map corresponds to the norm of the estimated magnetic
field, and the opacity is inversely proportional with the sum of the marginal variance for each of
the three estimated magnetic field components. (a) Learned magnetic field displayed with the semi-
transparent color map and estimated trajectory displayed with the black line with odometry from
foot-mounted sensor from a birds eye view. (b) Trajectory estimate from Algorithm 1 compared to
odometry from a birds eye view.

6. Conclusions and Future Work

We proposed using an EKF for magnetic field SLAM, which is computationally more
efficient and requires less memory than previously proposed methods for magnetic field
SLAM. Promisingly, we demonstrated that our proposed algorithm compensates for odom-
etry drift in a way that is comparable to previously proposed, more computationally
expensive methods. Using an experiment with magnetic field measurements collected
onboard a model ship and using simulated odometry, we ran Monte-Carlo simulations
investigating the capabilities of our algorithm to compensate for odometry drift for varying
amounts of odometry noise, illustrating that when the uncertainty of the estimate is small
compared to the length scale of the magnetic field variations, our proposed algorithm will
give a position estimate that compensates for drift in odometry. We also demonstrated
the abilities of our proposed algorithm to compensate for drift on an open-source data-set
collected with a foot-mounted sensor.

To employ our proposed algorithm in real-life applications such as indoor, surface,
underground or underwater navigation, it would be necessary to incorporate sources of
odometry information that are available in real-life scenarios, such as inertial sensors or
visual odometry from cameras. Another possible direction of future work could be to
implement an iterated EKF or another extended Kalman-filter based estimation method
that can handle larger non-linearities compared to the EKF [48], and investigate if this
improves the convergence of the method. Future research could also look into further
reducing the computational requirements associated with reduced-rank GP regression.
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Abbreviations
The following abbreviations are used in this manuscript:

SLAM Simultaneous localization and mapping
EKF Extended Kalman filtering
RBPF Rao-Blackwellized particle filter
GP Gaussian process
IMU Inertial measurement unit
ZUPT Zero-velocity upate
RMSE Root mean squared error
GNSS Global navigation satelite system

Appendix A. Analytical Jacobians

The gradient of the basis functions ∇pΦ(p) used in (13) (the basis functions Φ(p)
are defined in (8)) is a 3 × (Nm + 3) matrix. The first three columns are given by an
identity matrix

{∇pΦ(p)}1:3 = I3×3, (A1)

and the j + 3rd column is given by the gradient of the j’th basis function

{∇pΦ(p)}j+3 = ∇pφj(p) =


πnj(1)

Lu,1−Ll,1
c1s2s3

πnj(2)
Lu,2−Ll,2

s1c2s3
πnj(3)

Lu,3−Ll,3
s1s2c3

, (A2)

with sd and cd defined for the three spatial dimensions d = 1, 2, 3 as

sd = sin
(

πnj(d)
(pd − Ll,d)

(Lu,d − Ll,d)

)
1√

1
2 (Lu,d − Ll,d)

, (A3a)

cd = cos
(

πnj(d)
(pd − Ll,d)

(Lu,d − Ll,d)

)
1√

1
2 (Lu,d − Ll,d)

. (A3b)

The Jacobians of the basis functions used in (29) is a 3× 3× (Nm + 3) matrix. The first
3 entries along the third dimensions are all zero-matrices

{∇ppΦ(p)}1 = {∇ppΦ(p)}2 = {∇ppΦ(p)}3 = 03×3, (A4)

and the (j + 3)rd entry along the third dimension is given by
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