
NeuroImage: Clinical 28 (2020) 102499

Available online 11 November 2020
2213-1582/Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Progressive multifocal leukoencephalopathy lesion and brain parenchymal 
segmentation from MRI using serial deep convolutional neural networks 

Omar Al-Louzi a,b, Snehashis Roy c, Ikesinachi Osuorah b, Prasanna Parvathaneni a, 
Bryan R. Smith d, Joan Ohayon b, Pascal Sati a,e, Dzung L. Pham f, Steven Jacobson g, 
Avindra Nath d, Daniel S. Reich a,b, Irene Cortese b,* 

a Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA 
b Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA 
c Section of Neural Function, National Institute of Mental Health, Bethesda, MD, USA 
d Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA 
e Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA 
f Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA 
g Viral Immunology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA   

A R T I C L E  I N F O   

Keywords: 
Progressive multifocal leukoencephalopathy 
Magnetic resonance imaging 
Convolutional neural networks 
Deep learning 
Lesion segmentation 
Brain parenchymal fraction 

A B S T R A C T   

Progressive multifocal leukoencephalopathy (PML) is a rare opportunistic brain infection caused by the JC virus 
and associated with substantial morbidity and mortality. Accurate MRI assessment of PML lesion burden and 
brain parenchymal atrophy is of decisive value in monitoring the disease course and response to therapy. 
However, there are currently no validated automatic methods for quantification of PML lesion burden or asso
ciated parenchymal volume loss. Furthermore, manual brain or lesion delineations can be tedious, require the 
use of valuable time resources by radiologists or trained experts, and are often subjective. In this work, we 
introduce JCnet (named after the causative viral agent), an end-to-end, fully automated method for brain 
parenchymal and lesion segmentation in PML using consecutive 3D patch-based convolutional neural networks. 
The network architecture consists of multi-view feature pyramid networks with hierarchical residual learning 
blocks containing embedded batch normalization and nonlinear activation functions. The feature maps across the 
bottom-up and top-down pathways of the feature pyramids are merged, and an output probability membership 
generated through convolutional pathways, thus rendering the method fully convolutional. Our results show that 
this approach outperforms and improves longitudinal consistency compared to conventional, state-of-the-art 
methods of healthy brain and multiple sclerosis lesion segmentation, utilized here as comparators given the 
lack of available methods validated for use in PML. The ability to produce robust and accurate automated 
measures of brain atrophy and lesion segmentation in PML is not only valuable clinically but holds promise 
toward including standardized quantitative MRI measures in clinical trials of targeted therapies. Code is avail
able at: https://github.com/omarallouz/JCnet.   

1. Introduction 

Progressive multifocal leukoencephalopathy (PML) is a rare oppor
tunistic brain infection caused by the JC virus (JCV), a human polyoma 
virus. PML almost uniformly affects patients with significant immuno
compromise, such as HIV/AIDS, lymphoproliferative or myeloprolifer
ative disorders, inherited/acquired immunodeficiency, or drug-induced 
immunosuppression (Major et al., 2018). The estimated prevalence of 

PML has been reported to be between 0.07% for patients with hema
tologic malignancies, and up to 5% in patients with HIV/AIDS (Power 
et al., 2000). Magnetic resonance imaging (MRI) is considered the gold 
standard method for the identification and monitoring of PML lesions in 
vivo. On MRI, PML lesions appear as multifocal, patchy, and/or 
confluent areas of hyperintensity on T2-weighted sequences, often with 
corresponding hypointensity on T1-weighted images (Tan and Koralnik, 
2010). This infection is associated with a wide range of mortality rates 
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(dependent on the cause of the underlying immunosuppression), with 
substantial persistent morbidity and disability amongst PML survivors 
(Carson et al., 2009; Eng et al., 2006; Hadjadj et al., 2019). 

There are no approved therapies for PML to-date, however recent 
studies employing immunomodulatory strategies have shown promising 
results (Cortese et al., 2019; Muftuoglu et al., 2018). The development of 
novel treatments for PML would be facilitated by widely available tools 
that can accurately track PML lesion and global/regional brain volume 
loss that occurs as part of this condition. This information is valuable for 
clinical applications and has the potential to be incorporated as an 
outcome measure for future investigational studies. 

Despite the characteristic appearance of PML on MRI, a number of 
factors pose unique technical challenges when it comes to developing 
methods for automated lesion and brain volume segmentation, 
including the multifocal nature of PML and frequent involvement of 
infratentorial regions, an area prone to artifacts on commonly acquired 

MRI sequences (Fig. 1, Panels A and B). Many PML patients undergo 
brain biopsies as part of their diagnostic work-up, introducing further 
distortions to the cranium and outer aspects of the brain (Fig. 1, Panel 
C). Furthermore, the rarity of PML limits the availability of large, well- 
characterized imaging datasets for training and testing 
implementations. 

Earlier studies attempting to quantify PML lesion volume on MRI 
have utilized methods based on region growing and adaptive thresh
olding (Itti et al., 2001). These methods require manual input to set the 
seed point(s) and can work well with a limited number of lesions. 
However, this task can quickly become tedious when many discrete, 
non-contiguous lesions are present. This approach can also be particu
larly prone to image artifacts and brain- or lesion-shape irregularities, 
thereby limiting its generalizability to larger PML datasets. More 
recently, advances in supervised machine learning approaches for object 
detection and semantic segmentation have introduced significant 

Fig. 1. Illustration of the different challenges unique 
to progressive multifocal leukoencephalopathy (PML) 
lesion and brain segmentation on fluid attenuated 
inversion recovery (FLAIR) and T1-weighted MRI se
quences. Given the multifocal nature of PML, there is 
often a preponderance of infratentorial structure 
involvement, including the middle cerebellar pedun
cles (Panel A, red arrows). PML lesions are often 
associated with confluent areas of T1 hypointensity 
with overlying cortical thinning, as seen in the left 
anterior frontal lobe in Panel B (red arrowheads), 
which can be readily misclassified as cerebrospinal 
fluid by conventional methods. Many patients with 
PML undergo brain biopsies as part of their diagnostic 
work-up, resulting in further cranial and outer brain 
parenchymal distortions on imaging, as illustrated in 
the right parietooccipital cortex and subcortical white 
matter in Panel C (asterisk). (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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improvements in segmentation accuracy on brain MRI of lesions in 
various neurological disorders, such as multiple sclerosis (MS) lesions 
(La Rosa et al., 2020; Roy et al., 2018a; Valverde et al., 2017), HIV and 
human T-cell leukemia virus type 1 (HTLV-1) associated brain lesions 
(Selvaganesan et al., 2019), brain gliomas (Pereira et al., 2016; Yi et al., 
2016), and ischemic strokes (Guerrero et al., 2018), as well as of brain 
substructure segmentation (Wachinger et al., 2018). 

Currently, no specific deep learning approaches have been tailored 
for PML lesion segmentation or the measurement of concomitant brain 
atrophy, an important paraclinical marker of disease progression and 
neuronal loss. Therefore, we designed a 3D deep convolutional neural 
network (CNN) that can be employed for robust, fully automated PML 
brain parenchymal and lesion segmentation on MRI scans using a serial 
approach that we have dubbed ‘JCnet,’ named after the causative viral 
agent. In PML, as well as in the segmentation of brain pathologies in 
general, healthy tissue can be present in greater abundance than that of 
the pathological target in segmentation applications, resulting in voxel- 
level class imbalance. An important methodological contribution of the 
work presented here is the serial architecture employed, whereby the 
first CNN performs candidate extraction of brain parenchymal voxels as 
foreground and the meninges as well as cerebrospinal fluid (CSF) spaces 
as background, followed by a second CNN trained to perform PML lesion 
segmentation on the extracted foreground voxels. Our design helps 
address the issue of class imbalance by excluding voxels corresponding 
to structures not relevant to the lesion segmentation task (namely the 
meninges and CSF spaces), while simultaneously allowing the genera
tion of a brain parenchymal mask that can be utilized to track the degree 
of brain atrophy in PML, an important marker of neuronal degeneration 
and brain volume loss in neuroimmunological conditions (Rudick et al., 
1999). 

Given the lack of widely available methods specific to PML, we 
evaluate JCnet against several approaches designed for normal- 
appearing brain and MS lesion segmentation. In both cases, we show 
significant improvements of performance in PML with an accuracy that 
approaches that achieved by a trained human rater. We outline our 
approach in this paper in chronological order. In Section 2, we describe 
patient recruitment, MRI data acquisition, and preprocessing. In Section 
3, we describe the method, implementation, and training specifications. 
Experimental evaluation and results on the testing dataset are presented 
in Section 4, followed by a discussion of the proposed network archi
tecture in the context of unmet needs in PML and future directions in 
Section 5. 

2. Materials 

2.1. Study population 

Scans included in this analysis were selected via retrospective review 
of patients with PML who were seen at the NIH Neuroimmunology Clinic 
and evaluated under the Natural History Study of PML (ClinicalTrials. 
gov number, NCT01730131). The study protocol was approved by the 
NIH institutional review board, and all the participants provided written 
informed consent prior to study enrollment. Demographics and clinical 
characteristics were obtained through electronic chart review. Study 
participants underwent clinical evaluations, including neurologic ex
aminations and disability measurement at each study visit. PML diag
nosis was confirmed by the treating neurologists in accordance with the 
2013 American Academy of Neurology Neuroinfectious Disease Section 
diagnostic criteria (Berger et al., 2013). Scans from a total of 41 patients 
with PML were included in the final analysis. 

2.2. Image acquisition 

To improve the generalizability of the trained models, MRI scans 
acquired on either a Siemens Skyra 3T scanner equipped with a body 
transmit and a 32-channel receive coils, or a 3T Philips MRI scanner 

(Philips Medical Systems, Netherlands) equipped with an 8- or 32-chan
nel receive head coils were included in the analysis. Four whole-brain 
MRI sequences without gaps were used for training and testing imple
mentations: whole brain 3D T1-weighted magnetization-prepared rapid 
acquisition of gradient echoes (T1-MPRAGE), 3D T2-weighted fluid- 
attenuated inversion recovery (FLAIR), and multislice T2-weighted (T2) 
and proton density (PD) sequences (acquired via a dual-echo fast-spin- 
echo sequence). The MR acquisition parameters for these sequences per 
scanner are detailed in Table 1. 

2.3. Image preprocessing 

MR image preprocessing was undertaken using the FMRIB Software 
(FSL) and Advanced Neuroimaging Tools (ANTs) open source software 
libraries (Avants et al., 2011; Jenkinson et al., 2012). The T1-weighted 
images were initially rigidly registered to the Montreal Neurological 
Institute (MNI)-152 and International Consortium for Brain Mapping 
(ICBM) nonlinear symmetric 1x1x1mm atlas template that is publicly 
available for download (http://nist.mni.mcgill.ca/?p=904) (Fonov 
et al., 2009). The skull and extracranial tissues were removed using the 
MONSTR algorithm (Roy et al., 2017) and corrected for any in
homogeneity using the Multiplicative Intrinsic Component Optimization 
(MICO) method for bias-field estimation (Li et al., 2014). Subsequently, 
the other contrasts, i.e. FLAIR, T2, and PD images, were rigidly co- 
registered to the T1-weighted image in MNI space, skull-stripped with 
the same binary mask, and corrected by MICO in a similar fashion. 

3. Reference labeled mask creation 

To generate the ground truth brain parenchymal masks, we analyzed 
the T1-weighted and FLAIR images using the Lesion-TOADS (Topology- 
preserving Anatomy-Driven Segmentation) algorithm (Shiee et al., 
2010). The final brain parenchymal masks were generated by combining 
all the brain substructure labels into a single foreground label category 
and excluding the meninges, sulcal CSF, and ventricles by merging them 
with the background. All brain parenchymal masks were manually 
corrected by a single experienced rater (OA). These masks were subse
quently used to train the first stage of JCnet as described in detail below 
in Section 3.1. Ground truth PML lesion masks were manually delin
eated by two raters (IO and OA) using the publicly available ITK-SNAP 
software (Yushkevich et al., 2006). Inter-rater reproducibility was 
calculated on a subset of 3 subjects delineated by both raters. 

Table 1 
MR acquisition parameters for the sequences utilized in the study.   

3D-T1 MPRAGE* 3D-FLAIR 2D-FSE T2/PD 

Siemens Skyra 3T MRI scanner (16/41 scans)* 
Slice thickness (mm) 1 1 3 
Inversion time (ms) 900 1800 – 
Echo time (ms) 1.7 352–354 18, 82 
Repetition time (ms) 3000 4800 3000 or 5000 
Flip angle (deg) 9 120 150 
Number of repetitions 1 1 1  

Philips 3T MRI scanner (25/41 scans) 
Slice thickness (mm) 0.73 or 1 0.75, 1, or 1.117 3 
Inversion time (ms) 900 1600–1650 – 
Echo time (ms) 3.2 276–365 15.38, 100 
Repetition time (ms) 7 4800 3410–3763 
Flip angle (deg) 9 90 90 
Number of repetitions 1 1 1 

* A total of 6 scans on the Siemens Skyra were acquired using the T1-weighted 
MP2RAGE protocol (repetition time = 5000 ms, echo time = 2.9 ms, inversion 
time = 700 ms/2500 ms, flip angle = 4̊/5̊). 
Abbreviations: 3D = 3 dimensional; deg = degrees; FLAIR = fluid-attenuated 
inversion recovery; MPRAGE = magnetization-prepared rapid acquisition of 
gradient echoes; FSE = fast spin echo; ms = millisecond; PD = proton density; T 
= tesla; T2 = T2-weighted sequence. 

O. Al-Louzi et al.                                                                                                                                                                                                                                

http://nist.mni.mcgill.ca/%3fp%3d904


NeuroImage: Clinical 28 (2020) 102499

4

4. Methods 

4.1. Network architecture 

CNNs have emerged as a powerful tool in performing object detec
tion and semantic segmentation tasks on natural images in recent years. 
This is due to their ability to perform feature-extracting convolutions on 
images that are learned through iterative training cycles, obviating the 
need to design hand-crafted features as in classical machine learning 
approaches. This capability can be easily extended to medical image 
analysis, object detection, and lesion segmentation, where features are 
extracted from either multichannel 2D slices (Roy et al., 2018b) or 3D 
patches (Wachinger et al., 2018) sampled from the original input im
ages. As detailed in Guerrero et al. (2018), the network learns a mapping 
function that transforms voxel-level image intensities to a desired label 
classification or segmentation category through a series of convolutions 
followed by nonlinear activation functions, with each component of this 
series being referred to as a layer. Feature pyramid networks further 
exploit the hierarchical architecture of CNNs along their depth by 
combining low-resolution, semantically strong features (from deeper 
layers) with high-resolution, semantically weak features (from shallow 
layers) via a top-down pathway and lateral connections (Lin et al., 
2016). The feature map outputs of each layer in the convolutional 
pathway are then concatenated to predict a voxel-wise membership 
function of the patch. 

We implement feature pyramid networks in a two-staged approach, 
each consisting of 3D patch-based multi-view CNNs: the first stage aims 
at extracting the brain parenchymal voxels as foreground, while the 
second stage performs PML lesion segmentation. The output of the first 
stage can be used to exclude meningeal structures and CSF spaces, which 
are present in the skull-stripped input images, and allows the generation 
of a brain parenchymal mask to quantify parenchymal volume loss in 
PML. This strategy also mitigates class imbalance when used as input to 
the second network stage similar to the work presented by Wachinger 
et al. (2018). The overall structure of the stages for JCnet are illustrated 
in Fig. 2. 

The details of the network architecture for the CNNs used in each 
stage of JCnet are listed in Table 2. For each individual CNN, we adopt 
an FPN design with a ResNet-50 backbone as our baseline. We use deep 
residual learning given the improved optimization and training of 

deeper networks, as has been shown by He et al. (2016). We utilize a 
total of 4 ResNet levels with embedded residual bottleneck building 
blocks containing projection and identity shortcuts (He et al., 2016b). 
The residual blocks consist of a series of three sequential convolution 
operations, each followed by a batch normalization step to correct for 
internal covariate shift (Ioffe and Szegedy, 2015) and a rectified linear 
unit (ReLU) activation (Nair and Hinton, 2010), with the exception of 
the last convolution in each block where the ReLU activation is applied 
after the shortcut connection and element-wise addition. Aside from a 
single max pooling operation after the first ResNet layer, down-sampling 
in the network is otherwise achieved through strided convolutions in the 
3rd and 4th layers, as has been described by Springenberg et al. (2014) 
and implemented by He et al. (2016a). For all the other convolutions 
within the network, we use zero padding in order to have uniform input 
and output sizes for all filters. 

In contrast to the standard ResNet implementation, which uses a 
fully connected (FC) layer to generate label predictions, we employ a 
fully convolutional pathway to merge the feature maps across the 
bottom-up and top-down pathways in our FPN architecture, then 
append further convolutions to reduce aliasing effects from up- 
sampling, and subsequently predict the membership function across 
the patch (Table 2). This approach has been shown to reduce false 
positives in semantic lesion segmentation tasks and limit the total 
number of parameters in the model (Roy et al., 2018b). In addition, this 
also improves the prediction time of the network, as convolutions 
circumvent the need to perform voxel-wise predictions on each voxel of 
a new image during testing, which is the case with FC layers. We 
ensemble the outputs of the three CNNs after reorientation by averaging 
the voxel-wise probability memberships, which is then thresholded to 
obtain a hard segmentation of the brain parenchymal voxels (stage 1) 
and the PML lesional tissue (stage 2). The total number of parameters in 
our model is 4.1 M, with 7008 non-trainable parameters. This compares 
favorably with other types of ResNet-50 network models with preserved 
complexity, where the estimated number of parameters can approach 
~25 M (Hu et al., 2017). 

4.2. Class imbalance 

Class imbalance is an important topic to consider in classification 
applications and refers to when the distribution of the target classes is 

Fig. 2. Overview of the proposed two stage approach of JCnet. Three-dimensional patch samples are extracted from input skull-stripped contrast modalities, 
reoriented, and used to train three multi-view feature pyramid networks (FPNs) to identify the brain parenchyma as foreground, with meninges and cerebrospinal 
fluid spaces as background. The second stage utilizes a similar neural network architecture to perform PML lesion segmentation, illustrated in light red. Abbrevi
ations: FPNs = feature pyramid networks; orient = orientation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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skewed within the training dataset. The measures of voxel-level class 
imbalance across our entire PML dataset of 41 subjects pertaining to 
both stages are displayed in Table 3. When examining this data, a few 
trends become clear. First, class imbalance exists in the input datasets 
for both stages of JCnet. As expected in the first stage, this imbalance is 
skewed toward brain parenchymal voxels occupying a larger volume 
when compared to the background class (meninges and CSF spaces), 
whereas in the second stage the converse is true: PML lesions occupy a 
much smaller volume (~2–5% on average) compared to the brain pa
renchyma. Secondly, whereas classifying lesions on the brain paren
chymal foreground (instead of the entire stripped volume) helps correct 
the imbalance by 0.5–1%, this still does not nearly enough result in a 
sufficient reconciliation toward a balanced state. Therefore, we imple
ment other measures in our patch sampling and loss function specifi
cation to mitigate this issue, as described in more detail in the 
Supplement. 

4.3. Training implementation 

JCnet was implemented using Python version 3.6 (https://www.py 
thon.org/) and Keras version 2.2.4 (https://keras.io/about/), with 
TensorFlow as backend. For training purposes, 3D image patches were 

extracted from the available training dataset, yielding thousands of 
image samples and allowing for the sample-size necessary for training 
effective deep learning approaches. We split the 3D patches extracted 
from the training dataset (n = 31) into 80% used for training and 20% 
used for validation purposes. Adam optimization was used for training 
(Kingma and Ba, 2015), with an initial learning rate of 0.0001 and a 
decay factor of 0.5 if learning plateaued for more than 2 epochs. In 
addition, we specified early stopping criteria if validation accuracy 
failed to improve by more than 0.0001 over 4 epochs during training. 
These specifications were found to produce sufficient convergence 
without overfitting in most of our training procedures. All experiments 
were conducted using the computational resources of the NIH HPC 
Biowulf cluster (http://hpc.nih.gov), using nodes equipped with 4x 
NVIDIA V100-SXM2 GPUs (32 GB VRAM, 5120 cores, 640 Tensor cores). 
Training of our primary 80x80x80 patch model with 16 minibatches 
took approximately 20 hours to converge for all 3 multi-view models of a 
single JCnet stage. Testing JCnet on a single subject takes approximately 
15 min per stage. The implementation details and code for JCnet have 
been made available at: https://github.com/omarallouz/JCnet. 

4.4. Statistical analysis and comparison metrics 

Statistical analyses were performed using Stata software (version 13; 
StataCorp LP, College Station, TX). The Shapiro-Wilk test was used to 
assess the normality of distributions. Comparisons between training and 
testing subsets were performed using the two-sample t-test. For age, Chi- 
square test for sex, Wilcoxon signed-ranks test for PML duration, and 
Fisher’s exact test for PML risk factors and brain biopsy designation. For 
comparisons between the different patch size models, we used a one- 
way analysis of variance with repeated measures (i.e. different models 
applied to the same PML testing set scans repeatedly). 

We evaluated the accuracy of JCnet using Dice similarity coefficients 
(DSC), and absolute volume differences (AVD). For a manual segmen
tation (M) and an automated binary segmentation (A), DSC (Dice, 1945) 
is defined as: 

Table 2 
Network architecture details for the CNNs used in each stage of JCnet. The default input 3D patch size we used is 80x80x80 with 16 base filters. The network ar
chitecture is identical for the three multi-view CNNs in each stage. Given the large number of layers, we describe the aggregate of the convolution specifications across 
each residual block. Projection shortcut blocks contain a 1x1x1 convolution in the shortcut compared to identity shortcuts, which are empty and parameter-free.  

Level name Output size Layer components Specification(s) No. of 
parameters 

ResNet 1 80 × 80 × 80 ×
16  

• Input layer  
• Convolution  
• Batch normalization  
• ReLU activation 

– 
3 × 3 × 3 

– 
1744 
64 

ResNet 2 40 × 40 × 40 ×
32  

• Max pooling 3 × 3 × 3 pool size, stride 2 –  
• Projection shortcut block  
• Identity shortcut block 

1 × 1 × 1 → 3 × 3 × 3 → 1 ×
1 × 1 
1 × 1 × 1 → 3 × 3 × 3 → 1 ×
1 × 1 

30,336 
30,176 

ResNet 3 20 × 20 × 20 ×
64  

• Projection shortcut block*  
• Identity shortcut block 

1 × 1 × 1 → 3 × 3 × 3 → 1 ×
1 × 1 
1 × 1 × 1 → 3 × 3 × 3 → 1 ×
1 × 1 

120,064 
119,744 

ResNet 4 10 × 10 × 10 ×
128  

• Projection shortcut block*  
• Identity shortcut block × 6 

1 × 1 × 1 → 3 × 3 × 3 → 1 ×
1 × 1 
1 × 1 × 1 → 3 × 3 × 3 → 1 ×
1 × 1 

477,696 
2,870,592 

Fully convolutional 
concatenation 

All levels  • Convolutional merging of bottom-up and top-down up-sampled feature 
maps  

• Convolution appended on each merged feature map to reduce aliasing 
effect from up-sampling  

• Convolutional pathway to predict membership function of the patch 

1 × 1 × 1   

3 × 3 × 3   

3 × 3 × 3, sigmoid activation 

7360   

442,624   

6916 

* Denotes residual blocks that contain down-sampling convolutions with stride 2. 
Abbreviations: No. = number; ReLU = rectified linear unit. 

Table 3 
Class level voxel data for stages 1 and 2 of JCnet extracted from the manually 
labelled masks across both the training and testing sets.  

Dataset Training (n 
= 31) 

Testing (n 
= 10) 

Total (n 
= 41) 

Proportion of brain parenchymal voxels 
out of all nonzero voxels; mean % 
across volumes (SD) 

77.1 (5) 76.0 (3) 76.8 (5) 

Proportion of lesion voxels out of all pre- 
processed voxels; mean % across 
volumes (SD) 

4.2 (3) 2.0 (1) 3.6 (3) 

Proportion of lesion voxels out of brain 
parenchymal voxels; mean % across 
volumes (SD) 

5.3 (4) 2.7 (1) 4.7 (4)  
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DSC(M,A) =
2|M ∩ A|
|M| + |A|

(3) 

In cases where the target segmentation volume is small, DSC scores 
can be penalized more by absolute voxel disagreements between the 
manual and automated segmentations that may not necessarily be 
clinically significant. Therefore, we also compare AVD, defined as: 

AVD(M,A) = |M − A| (4) 

All statistical tests between cross-sectional comparison metrics were 
performed with a non-parametric paired Wilcoxon signed-ranks test. To 
measure the longitudinal lesion segmentation consistency and agree
ment of the method with manual delineations, we calculated intraclass 
correlation coefficients derived from three-level random intercept 
models: automated and manual lesion volume measurements (level 1) 
nested within timepoints (level 2), which are in turn nested within PML 
test subjects (level 3). The intraclass correlation coefficients describe the 
agreement of the automated and manual delineations relative to the 
variability seen between different timepoints of the same subject, and 
between different test subjects. Statistical significance was defined as p 
< 0.05. 

5. Results 

5.1. Clinical characteristics 

The cohort of 41 patients with PML included in the analysis was 
empirically divided into 31 training and 10 testing cases sampled at 
random from the entire set. The testing dataset was unseen by any of the 
trained networks and used solely to assess the performance of JCnet and 
the comparator methods. The demographics and clinical characteristics 
of the patient population by training/testing designation are presented 
in Table 4. The median number of months between PML symptom onset 
and image acquisition was 4.5 months (range 0.6–44.5 months), 
reflecting a wide spectrum of early and overt disease. The test group 
comprised a wide range of lesion size measurements with a mean of 
29.1 cm3 (SD 17, range 7.2–62.5 cm3). Excellent inter-rater reliability of 
PML lesion segmentation was noted on the sample of 3 scans that were 
segmented by both raters (mean DSC 0.95, SD 0.02, range 0.94–0.97). 

5.2. Impact of patch size selection 

To understand whether the accuracy of brain extraction or lesion 
segmentation was influenced by the input patch size, we compared three 
JCnet models that were trained on different input patch sizes of 
32x32x32, 64x64x64, and 80x80x80 voxels. As the patch size increased, 
the number of base filters was reduced from 64 to 32 to 16 base filters, 
respectively, to allow the data to fit into the available video random 
access memory (VRAM). Therefore, this decrement provides insight on 
the trade-off between patch size and the number of base filters in model 
hyperparameter selection. The output voxel-wise probability member
ship for each stage of JCnet was segmented at regular thresholds be
tween 0.1 and 0.9 (step size of 0.1), and the mean DSC were compared 
across models and hard segmentation thresholds keeping all other pa
rameters in training and testing constant (Fig. 3). 

For brain extraction, there was no apparent difference in perfor
mance between different patch sized models at thresholds of 0.5–0.6, or 
with the best-performing threshold for each model using a one-way 
analysis of variance with repeated measures for all pairwise model 
comparisons (p > 0.05). Interestingly, for the 80x80x80 patch size, there 
was a drop-off in accuracy at the tails of the membership distribution 
(particularly for voxels at the brain-sulcal CSF boundaries) indicating 
that the decrement in base filters during training may have impacted the 
accuracy of boundary voxel classification (Fig. 3, Panel A; purple curve). 
On the other hand, larger patch-sized models tended to outperform the 
smaller 32x32x32 one for lesion segmentation on average (Fig. 3, Panel 
B). After selecting the best performing threshold for lesion hard seg
mentation models, a one-way analysis of variance with repeated mea
sures showed an improvement of the 64x64x64 model DSC scores on the 
test dataset compared to the 32x32x32 model (mean DSC difference 
0.022; p = 0.01), but there were no significant differences between the 
80x80x80 and 32x32x32 models (p = 0.06) or the 64x64x64 and 
80x80x80 models (p = 0.49). 

5.3. Comparison to reference methods 

We compared the performance of JCnet on PML test cases with 
FMRIB’s Automated Segmentation Tool using FSL version 6.0.0 (FSL- 
FAST; Zhang et al., 2001) and FreeSurfer version 6.0.0 (Fischl et al., 
2002) for global brain parenchymal segmentation. For lesion segmen
tation, JCnet was compared with two methods designed for general T2/ 
FLAIR or MS lesion segmentation applied directly to the PML testing 
dataset: Lesion-TOADS (Shiee et al., 2010) and the lesion prediction 
algorithm of the Lesion Segmentation Tool version 3.0.0 (LST-LPA), 
which is an open source toolbox for SPM12 (Schmidt, 2017). Based on 
our initial testing, the LST-LPA performed better than its counterpart in 
the toolbox, the lesion growth algorithm (Schmidt et al., 2012), in PML 
lesion segmentation; therefore, LST-LPA was included for all subsequent 
analyses. It is important to note that the reference methods we used for 
comparison have not been developed or validated for use specifically in 
PML, but their utilization here is driven primarily by the lack of other 
validated methods for PML MRI analysis. The input specifications and 
parameter details used to apply the comparator methods on the PML 
testing dataset are specified in Supplementary Table 1. JCnet was also 
compared to another CNN-based method using U-Net architecture 
(Çiçek et al., 2016) trained on the same dataset as described in detail in 
Supplementary Fig. 1. 

The quantitative differences in PML brain extraction accuracy for 
JCnet, FSL-FAST, and FreeSurfer methods are described in Table 5 and 
Fig. 4 (Panel A). Given that the input contrasts differ between the 
comparator methods, we display equivalent JCnet models where the T2- 
and/or PD-weighted input contrasts were omitted during both training 
and testing. JCnet was associated with improvement in voxel-wise 
classification as measured by DSC and AVD compared to both FSL- 
FAST and FreeSurfer (Table 5). Qualitatively, this was in part driven 
by improved performance in areas of significant T1-hypointesity within 

Table 4 
Demographics and clinical characteristics of study participants. Disease duration 
was defined as the time between PML symptom onset and the acquisition date of 
the MRI scan.   

Overall 
n = 41 

Training 
set 
n = 31 

Testing 
set 
n = 10 

p- 
value 

Age, years; mean (SD) 55 (13) 54 (14) 57 (12) 0.62a 

Female; n (%) 18 (44) 12 (39) 6 (40) 0.24b 

PML risk factor category; n (%):      
• Hematological malignancy  
• HIV  
• Idiopathic CD4 lymphopenia  
• Medication-related  
• Other acquired 

immunodeficiency  
• No known immunocompromise  

• 15 
(37)  

• 8 (20)  
• 4 (10)  
• 4 (10)  
• 8 (20)  
• 2 (5)  

• 12 (39)  
• 6 (19)  
• 3 (10)  
• 2 (6)  
• 6 (19)  
• 2 (6)  

• 3 (30)  
• 2 (20)  
• 1 (10)  
• 2 (20)  
• 2 (20)  
• – 

0.88c 

PML disease duration, months; 
median (Q1-3) 

4.5 
(2–10) 

5.8 (2–10) 3.0 (1–8) 0.08d 

Underwent brain biopsy for 
diagnosis; n (%) 

12 (29) 10 (32) 2 (20) 0.69c 

a two-sample t-test. 
b chi-square test. 
c Fisher’s exact test. 
d Wilcoxon rank-sum test. 
Abbreviations: HIV = human immunodeficiency virus; MRI = magnetic reso
nance imaging; PML = progressive multifocal leukoencephalopathy; Q =
quartile; SD = standard deviation. 
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PML lesions (particularly near the cortical mantle), as well as in regions 
of biopsy-related changes (Fig. 5, Rows A-B). 

Fig. 6 shows the correlation between the manual PML brain paren
chymal masks and automatically generated ones using JCnet models 
with an equivalent number and type of input contrasts to FSL-FAST and 
FreeSurfer. In both cases, an improvement of 9–13% was noted in the R2 

values, reflecting the strength of linear association between automated 
and manual measurements. We further inspected the regions of voxel 
mismatch between the manual brain parenchymal masks and FSL-FAST/ 
FreeSurfer automated masks using binary mask subtraction, which 
showed that most voxel misclassifications occurred due to false positive 
voxels within sulcal CSF spaces near brain boundaries (Supplementary 
Fig. 2). 

Lesion segmentation comparisons in the unseen PML testing set were 
undertaken with both Lesion-TOADS and the LST-LPA algorithms, as 
presented in Fig. 4 (Panel B) and Table 6. JCnet achieved a 42–55% 
absolute improvement in DSC scores compared to either method, which 
was driven by an increased sensitivity in PML lesion detection and 
boundary segmentation (Fig. 5, Rows C and D). This is also illustrated in 
Fig. 7, which shows volume comparisons between manually delineated 
lesion masks and automated ones from JCnet, Lesion-TOADS, and LST- 
LPA. Bland-Altman plots comparing manual and automated values for 
each method included in the brain extraction and lesion segmentation 
analyses are displayed in Fig. 8 (Panels A and B respectively). 

When compared to a U-Net based model architecture with an 
equivalent number of input contrasts, base filters, and focal loss function 

Fig. 3. Mean Dice similarity coefficients and 95% confidence intervals of brain extraction and lesion segmentation displayed by input patch size across the PML 
testing set. For brain extraction, models with a variety of patch sizes performed similarly using a threshold range of 0.5–0.6, but a more rapid drop-off in accuracy at 
the tails of the membership distribution was noted for the 80x80x80 patch size model. For lesion segmentation at the best performing threshold for each model, the 
64x64x64 model performed better than the smaller 32x32x32 patch size model (mean DSC difference 0.022; p = 0.01). Otherwise, pairwise comparisons between the 
lesion segmentation models at their best performing threshold were not statistically significant. 

Table 5 
Brain extraction and lesion segmentation accuracy metrics between JCnet, FSL-FAST, FreeSurfer, Lesion-TOADS, and LST-LPA methods applied on the PML test 
dataset. The DSC and AVD scores were measured relative to the gold-standard manual delineations separately for each automated method. The DSC scores reflect the 
degree of overlap of each of the automated methods to that of the manual delineations, where 0 indicates no overlap whatsoever and 1 indicates exact voxel-wise 
agreement between both. Comparisons were conducted using methods with the same number and type of input contrasts using Wilcoxon signed-ranks test.  

Brain Extraction 

Comparison metric JCnet (T1 +
FL + T2 +
PD) 

JCnet (T1 
+ FL + T2) 

JCnet 
(T1 + FL) 

U-Net (T1 +
FL + T2 +
PD) 

FSL-FAST FreeSurfer p-value, 
JCnet vs U- 
Net 

p-value, JCnet (T1 
+ FL + T2 + PD) vs 
FSL-FAST 

p-value, JCnet2 
(T1 + FL) vs 
FreeSurfer 

Brain parenchymal 
volume, cm3, mean 
(SD) 

1080 (100) 1079 (99) 1080 (98) 1081 (100) 1159 
(108) 

1129 (91) 0.33 0.005* 0.009* 

DSC scores, mean (SD) 0.992 
(0.005) 

0.991 
(0.006) 

0.991 
(0.005) 

0.991 
(0.007) 

0.952 
(0.010) 

0.933 
(0.010) 

0.07 0.005* 0.005* 

AVD, cm3, mean (SD) 8.5 (15) 8.2 (16) 8.0 (13) 9.7 (17) 72.8 (36) 48.9 (27) 0.33 0.01* 0.02*  

Lesion segmentation 

Comparison metric JCnet (T1 +
FL + T2 +
PD) 

JCnet (T1 
+ FL + T2) 

JCnet 
(T1 + FL) 

U-Net (T1 +
FL + T2 +
PD) 

LTOADS LST-LPA p-value, 
JCnet vs U- 
Net 

p-value, JCnet (T1 
+ FL) vs LTOADS 

p-value, JCnet (T1 
+ FL) vs LST-LPA 

Lesion volume, cm3, 
mean (SD) 

29 (17) 29 (17) 31 (20) 30 (17) 7 (6) 12 (9) 0.037* 0.005* 0.005* 

DSC scores, mean (SD) 0.848 (0.14) 0.850 
(0.15) 

0.830 
(0.18) 

0.827 (0.15) 0.300 
(0.24) 

0.415 
(0.24) 

0.007* 0.005* 0.005* 

AVD, cm3, mean (SD) 2.4 (2) 1.8 (2) 3.1 (3) 3.0 (3) 21.7 (14) 17.1 (12) 0.3 0.005* 0.005* 

* p < 0.05. 
Abbreviations: AVD = absolute volume difference; DSC = Dice Similarity coefficient; FL = fluid-attenuated inversion recovery image; FN = false negative; FP = false 
positive; FSL-FAST = FMRIB’s Automated Segmentation Tool; LTOADS = Lesion-TOpology-preserving Anatomical Segmentation; LST-LPA = Lesion Segmentation 
Tool - Lesion prediction algorithm; PD = proton density image; T1 = T1-weighted image; T2 = T2-weighted image. 
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(Table 5 and Supplementary Fig. 1), there were no statistically signifi
cant differences in brain extraction DSC and AVD results using JCnet’s 
FPN architecture (mean DSC difference 0.001, p = 0.07; mean AVD 
difference 1.2 cm3, p = 0.33). However, a significant improvement in 
lesion segmentation DSC scores was noted utilizing the FPN design 
(mean DSC difference 0.02, p = 0.007). 

5.4. Longitudinal lesion segmentation performance 

Longitudinal lesion segmentation assessment across follow-up scans 
was performed on a total of 17 timepoints from a subset of 4 PML test 
subjects. Median number of timepoints per subject was 4 (range 2–7), 
spanning a median of 2.3 months (range 0.7 – 4.0). Manual lesion de
lineations were performed on all 17 timepoints, and the consistency of 
the automated methods was compared to the manual delineations at 
each timepoint, as discussed in sections 3.4 and 4.3 (Fig. 9). 

The intraclass correlation coefficients (ICCs) comparing the consis
tency of lesion segmentation between the manual delineations and 
different automated methods for the longitudinal PML subset are pre
sented in Table 6. Interestingly, between-subject variability in PML 

lesion volume accounts for only 58–64% of the total residual variance 
across the different methods, indicating that considerable variation in 
lesion volume occurs between different timepoints within subjects, 
highlighting the dynamic nature of PML lesions across time. JCnet 
showed an improved ability to track within-subject, between-timepoint 
variations in lesion volume segmentation, with 1% of the total residual 
variance being related to differences between manual and JCnet lesion 
volume measurements over time, compared to 36–40% for methods 
developed for general T2/FLAIR or MS lesion segmentation. 

5.5. Visualizing JCnet filter activation patterns 

To gain a better understanding of the classification process taking 
place within JCnet, we inspected the filter activation patterns using the 
gradient ascent in input space method (Chollet, 2017). This method 
enables the visualization of simulated patterns in input images to which 
filters in selected convolutional layers in the network respond maxi
mally (Fig. 10). At shallow layers, the simulated FLAIR input of the 
lesion segmentation network consisted of hyperfine texture patterns, 
which evolved into checker-like and polka dot patterns in intermediate 

Fig. 4. Box plots of Dice similarity coefficients 
(DSC) between JCnet with different input 
contrast specifications and the comparator 
methods for brain extraction (Panel A) and lesion 
segmentation (Panel B) across 10 PML subject 
test cases. The single outlier subject with a DSC 
< 0.5 using JCnet, and DSC < 0.05 on LST-LPA 
and LTOADS, had the smallest lesion size of all 
the test subjects (7.2 cm3). Abbreviations: FL =
fluid-attenuated inversion recovery image; FSL- 
FAST = FMRIB’s Automated Segmentation Tool; 
Lesion-TOADS = Lesion-TOpology-preserving 
Anatomical Segmentation; LST-LPA = Lesion 
Segmentation Tool - Lesion prediction algorithm; 
PD = proton density image; T1 = T1-weighted 
image; T2 = T2-weighted image.   
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layers, and finally more abstract patterns in deeper, more semantically 
rich layers. Such patterns bear some resemblance to confluent PML le
sions, meaning that the corresponding filters of these layers would 
respond maximally to signs of confluency in the input FLAIR volume. 

6. Discussion 

We describe a 3D patch-based, fully convolutional framework for 
brain extraction and lesion segmentation in PML. Accurate assessment of 
PML lesion burden and associated brain parenchymal atrophy is of 
critical importance for PML disease monitoring, assessing response to 
therapeutic measures, and obtaining a reliable MRI outcome measure 
for clinical trials of targeted therapies (Cortese et al., 2019). One of the 

important findings of the work presented is that the application of 
standard methods of healthy brain extraction in the context of PML may 
not be optimal and should be approached with caution, given the 
increased incidence of brain parenchymal classification errors within T1 
hypointense PML lesions and in the vicinity of biopsy-related changes. 
Similarly, we show that methods designed for lesion segmentation in MS 
are associated with an underestimation of PML lesion volume, particu
larly in patients with significant infratentorial disease burden (Figure, 
Row D). Collectively, these findings underscore the need for developing 
methods tailored to PML and capable of handling the unique morpho
logical and intensity-based changes occurring in the PML brain on 
standard MRI sequences. 

Generally speaking, CNNs have been implemented with varying 

Fig. 5. Visual depictions of the performance of the proposed and comparator methods on 2 PML test subjects. Rows A and B demonstrate T1-weighted images with 
binary brain parenchymal masks overlaid in green, whereas Rows C and D demonstrate FLAIR images with lesion segmentation results overlaid in light red. JCnet 
displayed improved brain extraction results in areas of underlying T1-hypointensity, particularly near the cortical mantle (Row A, red arrows). Similarly, regions of 
post-biopsy related signal changes, as seen in the left cerebellum in Row B, showed a reduction of false negative voxels within the biopsy bed compared to FSL-FAST 
and false positive voxels outside the meningeal folds compared to FreeSurfer (red arrowheads). An improvement in PML lesion delineation was seen across the 
spectrum of supratentorial and infratentorial lesions (Rows C and D, blue arrows). There was also a concomitant improvement in the detection of lesions that were 
entirely missed by the other methods (blue arrowheads). Abbreviations: FLAIR = fluid-attenuated inversion recovery; PML = progressive multifocal leukoence
phalopathy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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degrees of success in a number of medical and neuroimaging applica
tions, including automated motion detection (Fantini et al., 2018), 
anatomical brain segmentation (Wachinger et al., 2018), and accurate 
identification of pathologies such as ischemic strokes (Guerrero et al., 
2018) or MS lesions (La Rosa et al., 2020; Roy et al., 2018a; Valverde 
et al., 2017). In the context of PML, CNNs offer several unique advan
tages suited to the task of brain extraction and lesion segmentation. 

CNNs can be viewed as powerful feature extractors able to learn local, 
translation-invariant features, which makes them highly data-efficient 
at solving perceptual problems and ideal for the task of multifocal 
lesion detection, which is seminal for PML analysis. Additionally, the 
hierarchical spatial representation of the feature maps within CNNs al
lows for combining local or hyperlocal patterns into higher level con
ceptual views (Fig. 10). FPNs, in particular, exploit this hierarchy by 
merging higher-level semantic features at different scales (Lin et al., 
2016), therefore their implementation in PML can help the network 
address the combination of larger confluent or more complex PML le
sions as well as the smaller satellite lesions often encountered in prac
tice, sometimes even in the same scan (Fig. 5, Row C). In addition to the 
FPN architecture, we utilize residual learning blocks in our network in 
order to improve the training convergence speed while, at the same 
time, allowing the training of networks with increasing depth and 
resultant accuracy gains (He et al., 2016a). 

Class imbalance is a prevalent issue in medical image segmentation 
(Zhou et al., 2019), and we show in this work that PML datasets are no 
exception. Despite the larger size of PML lesions on average compared to 
those observed in MS, for example, there remains a significant voxel- 
wise imbalance, with PML lesions constituting only approximately 
3.6% of the total nonzero voxels in a skull-stripped volume (Table 3). 
This has important ramifications when it comes to network design, 
parameter selection, and data sampling. Prior studies have addressed 
this issue by proposing the use of specific loss functions, such as 
weighted or bootstrapped cross-entropy (Guerrero et al., 2018), or by 
modifying the data sampling process such that all labels are equiprob
able during sample (Kamnitsas et al., 2017). In our implementation, we 
utilized a comparable strategy for data sampling, but opted to use the 
recently described focal loss function, which downscales the loss values 

Fig. 6. Scatter plots of automated versus manual brain parenchymal volumes for JCnet with 4 input contrasts compared to FSL-FAST, and JCnet with 2 input 
contrasts compared to FreeSurfer. Solid black lines represent the identity lines. Dashed lines represent the linear regression fit for each method. Abbreviations: FL =
fluid-attenuated inversion recovery image; FSL-FAST = FMRIB’s Automated Segmentation Tool; PD = proton density image; T1 = T1-weighted image; T2 = T2- 
weighted image. 

Table 6 
Intraclass correlation coefficients (ICCs) of longitudinal lesion segmentation for 
17 timepoints of a subset of 4 PML test cases. Given a three-level nested model of 
two lesion measurements (manual and automated) nested within timepoints, 
nested within subjects, we can calculate the ICCs at the subject (level-3) and 
timepoints-within-subjects (level-2) parts of the model. The subject level ICC 
(level-3) estimates the total residual variance explained by between-subject 
differences (ignoring the nested timepoint structure), whereas the timepoints- 
within-subjects ICC (level-2) describes the total residual variance explained by 
differences between timepoints within the subjects. Any residual variance not 
explained by the level-2 part of the model (1- level 2 ICC) reflects the degree of 
disagreement between the manual and automated measures relative to the total 
residual variance.  

Automated 
method 

Subject 
level ICC 
(Level-3) 

Subject 
level 
ICC95% CI 

Timepoints- 
within-subjects 
ICC (Level-2) 

Timepoint 
level ICC 95% 
CI 

JCnet  0.64 0.21, 0.92  0.99 0.98, 0.99 
LST-LPA  0.58 0.20, 0.88  0.64 0.25, 0.90 
LTOADS  0.60 0.22, 0.89  0.60 0.22, 0.89 

Abbreviations: CI = confidence interval; ICCs = intraclass correlation coeffi
cient; LTOADS = Lesion-TOpology-preserving Anatomical Segmentation; LST- 
LPA = Lesion Segmentation Tool - Lesion prediction algorithm; MS = multiple 
sclerosis. 
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for easily classified observations and allows the network to focus on 
poorly classified examples, which are arguably more pertinent for 
training (Lin et al., 2017). Systematic comparisons between the use of 
different loss functions for PML lesion segmentation are out of the scope 
of the work presented but should be explored in future work to further 
assess which loss functions are better suited for lesion segmentation 
tasks. 

The collective application of these specifications in our network 
design resulted in a significant improvement of voxel-wise classification 
accuracy of 4–6% and 42–55% for PML brain extraction and lesion 
segmentation, respectively, compared to reference comparator methods. 
Furthermore, we show that CNNs trained on PML data are able to cap
ture the dynamic changes in PML lesions over time (using manual de
lineations as reference), and in a more consistent fashion compared to 
the comparator methods used in this study, with a level-2 ICC of 0.99. 
This is particularly important from the perspective of monitoring and 
clinical trials, where detection of change in lesion volume over time is of 
critical value. However, it is important to note that the comparator 
methods utilized here were not developed or validated for use in PML, 
but rather for segmentation of either normal-appearing brain tissue 
(FSL-FAST and Freesurfer) or T2-FLAIR hyperintense lesions in MS (LST- 
LPA and Lesion-TOADS). Their use in this context is primarily driven by 
the paucity of publicly available methods specific for PML. 

One of the limitations of the work presented is that we have limited 
our analysis to a single label for the foreground brain parenchymal 
voxels in order to preserve simplicity and a focus on achieving accurate 
PML lesion segmentation when used as the input for the second stage of 
the method. With better availability of PML ground truth datasets, 
including those with manual brain substructure delineations, future 
work could investigate the possibility of extending our framework to 

include deep learning-based segmentation of brain substructures. The 
ability to discriminate PML lesions from those seen with concomitant or 
other neurological disorders is outside the scope of the current study 
given our primary focus on quantifying and tracking lesions in PML 
patients who have already been diagnosed. In patients with longitudinal 
imaging available prior to PML onset, this can be accomplished by 
masking out pre-existing lesions on imaging obtained prior to PML 
onset. However, in patients where this imaging is lacking, this remains a 
challenging task and would be an interesting target for future studies to 
investigate. It is also important to keep in mind that, although we have 
included MRI data from several different protocols acquired on two 
scanners, this analysis does not encompass the vast spectrum of avail
able MRI scanners and protocols used in different medical centers. As a 
result, pretrained models should be applied with caution and rigorous 
quality control for imaging data acquired with different protocols or on 
different devices than those used in this study; alternatively, the models 
should be retrained. 

In summary, we present an end-to-end framework capable of per
forming robust brain extraction and lesion segmentation in PML using a 
consecutive CNN strategy. We demonstrate significant improvements 
over current state-of-the-art comparator methods designed for normal- 
appearing brain and MS lesion segmentation. By tracking quantitative 
measures of PML-related brain and lesional changes, this approach can 
provide a window for clinicians and scientists to more accurately 
monitor PML in vivo, track its response to therapeutic strategies, and 
introduce standardized, quantitative MRI markers for use as outcome 
measures in clinical trials. 

Fig. 7. Scatter plots of automated versus manual lesion masks comparing JCnet, LST-LPA, and Lesion-TOADS . Solid black lines represent y = x identity lines. Dashed 
lines represent linear regression fit for each method. Abbreviations: FL = fluid-attenuated inversion recovery image; Lesion-TOADS = Lesion-TOpology-preserving 
Anatomical Segmentation; LST-LPA = Lesion Segmentation Tool - Lesion prediction algorithm; PD = proton density image; T1 = T1-weighted image; T2 = T2- 
weighted image. 
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Fig. 8. Bland-Altman plots comparing manual delineations with all other methods included in our analysis for brain extraction (Panel A) and lesion segmentation 
(Panel B). The red horizontal line represents the mean of the differences and the black dashed horizontal lines represent the upper and lower limits of agreement, 
calculated as the mean ± 1.96SD. The dashed colored lines for each method represent the linear regression fit and 95% confidence intervals (shaded gray region), 
with the regression parameters and 95% confidence interval of the slope (i.e. β coefficient) included in the inset for each method. Abbreviations: FL = fluid- 
attenuated inversion recovery image; FSL-FAST = FMRIB’s Automated Segmentation Tool; Lesion-TOADS = Lesion-TOpology-preserving Anatomical Segmentation; 
LST-LPA = Lesion Segmentation Tool - Lesion prediction algorithm; PD = proton density image; T1 = T1-weighted image; T2 = T2-weighted image. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. Longitudinal lesion profile plots of 4 PML test subjects comparing the consistency of JCnet (purple), LST-LPA (blue), and LTOADS (orange) with those of 
manual delineations (black). Dynamic lesion volume changes over time were better captured using convolutional neural networks trained on PML cases (JCnet), 
compared to other methods developed for multiple sclerosis lesion segmentation (LST-LPA and LTOADS) which did not fully reflect the extent of lesion accumulation 
over time in Subjects 1, 2, and 4. Abbreviations: LTOADS = Lesion-TOpology-preserving Anatomical Segmentation; LST-LPA = Lesion Segmentation Tool - Lesion 
prediction algorithm; PML = progressive multifocal leukoencephalopathy. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 10. Examples of filter activation patterns within successive layers of increasing depth within the JCnet lesion segmentation convolutional neural network 
extracted from the midpoint slice of the 3D FLAIR input channel. Only 4 representative filters are displayed per layer from the entire set of available filters. In shallow 
layers, these resemble hyperfine texture patterns and then evolve to checker-like or polka-dot patterns in intermediate layers. In deeper layers (far right), more 
abstract visual patterns start to emerge, which arguably bear some resemblance to discrete or confluent PML lesions. Abbreviations: conv = convolutional layer. 
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