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Introduction

The worldwide COVID-19 pandemic, caused by the SARS-
CoV-2 virus, arrived in the midst of another epidemic: the 
opioid crisis. Opioid use disorder (OUD), a substance use 
and addictive disorder defined in part by the Diagnostic 
and Statistical Manual of Mental Disorders, 5th Edition 
(5th edition; DSM-5) as the desire to take opioids despite 
social and professional consequences, currently affects 
40.5 million people worldwide, but the opioid crisis was 
actually beginning to decline as more people were gaining 
access to effective treatment options.1–3

COVID-19 may reverse this trend, though, as people 
with OUD often experience significant challenges in health-
care that could be aggravated by the pandemic.1 For exam-
ple, quarantine and social distancing measures could disrupt 
both vital social support groups and medication for addic-
tion treatment, which is generally administered in person.4 
Those with OUD could also be more likely to contract 
COVID-19 due to cognitive impairment, lower awareness 

of risk, and diminished efforts regarding personal protection 
in patients, further disrupting treatment.5,6 Such premature 
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treatment cessation dramatically increases overdose rates. 
In addition, the rise in fear, anxiety, and depression caused 
by COVID-19, induced by medical and financial instabili-
ties, can be especially harmful to people with pre-existing 
mental health conditions and can cause relapses, worsening 
of these conditions, and increased substance usage.7,8 
Indeed, since the rise of COVID-19, the United States has 
seen an increase of 32% for non-prescribed fentanyl and an 
11% increase in drug overdose deaths in the first 4 months 
of 2020 as compared with those of last year.9

Although there is much discussion on the circumstantial 
ramifications of COIVD-19, SARS-CoV-2 infection itself 
might prove to be directly challenging for those with OUD, 
who generally show worse overall health and increased 
susceptibility to infectious disease complications.10

COVID-19 is primarily known to induce sequelae such 
as respiratory distress syndromes and multiple organ dys-
function syndromes, but clinical observations indicated 
that patients with more severe cases also developed neu-
rological and neuropsychiatric manifestations targeting 
the central nervous system (CNS), including dizziness, 
impaired consciousness, encephalitis, ataxia, acute cere-
brovascular disease, and taste/smell impairment.11,12 
Furthermore, long-term COVID-19-related psychiatric 
symptoms are still unknown; the significantly elevated 
prevalence of mental health issues  in survivors of SARS-
CoV, including posttraumatic stress disorder (PTSD), 
depression, and anxiety, took years to develop.13,14 These 
could further affect those with OUD who, in addition to 
addiction, typically suffer from comorbid psychopatholo-
gies such as depression, anxiety, and dizziness.15,16

Some of the neurological symptoms in the patients with 
COVID-19, such as encephalitis, may be caused by neuro-
immunologic responses that stimulate inflammatory dam-
age in the CNS.13 Similarly, opioids bind to various opioid 
receptors in the CNS to modulate the neuroimmune system, 
stimulating both high levels of pro-inflammatory and neuro-
toxic cytokines (IL-6, IL-1β, TNFα) and those that are anti-
inflammatory and neuroprotective (IL-10, TGF-β, and 
BDNF).17,18 In addition, risks of opioid-related respiratory 
depression are likely amplified by COVID-19.19 SARS-
CoV-2 infiltration in subcortical respiratory control centers 
could lead to observed hypoxia and respiratory distress.20 
Opioids also target the brainstem to cause dysregulation of 
respiratory and cardiac functions, leading to damaging 
hypoxic consequences in the brain and other tissues.21 
Moreover, the primary drugs prescribed for OUD treatment, 
methadone and buprenorphine, are partial opioid receptor 
agonists that could cause significant respiratory distress, the 
effects of which could be exacerbated by SARS-CoV-2 
infection, unanticipated drug-drug interactions with novel 
COVID-19 therapeutics, and recently imposed self-admin-
istration of these highly potent treatments.19,22–24

The potential physiological connection between OUD 
and COVID-19 has been implicated in peripheral immune 

function as well. Opioid usage can have differential 
immune system responses, causing both immunosuppres-
sive and immunostimulatory effects on cytokine secre-
tion and chemokine receptor activation.10,25,26 
SARS-CoV-2 demonstrates similar adverse effects on 
peripheral immune responses. It causes a lack in 
Interferon Type I/III (IFN-1/3) response while simultane-
ously inducing high levels of chemokines, suggesting 
COVID-19 severity is tied to a cytokine storm.27,28 These 
peripheral responses may also elicit neurological symp-
toms through precipitating neuroinflammatory responses 
or disrupting neurotransmission.13

Currently, our knowledge of how those with OUD may 
respond to COVID-19 is limited due to lack of research. 
However, based on the observations described above 
(Figure 1), we fear that sustaining COVID-19 and OUD 
could lead to especially serious complications and more 
complex interventions because of the effects that both have 
in compromising neuroimmunity and inducing hypoxia 
and respiratory distress. Our fears are not unfounded, as 
both COVID-19 and OUD patients with comorbidities 
have poorer prognoses and more severe cases.27,29–31

Animal models, important to study pathology, transmis-
sion, and host responses, have been used to investigate both 
SARS-CoV-2 infection32,33 and opioid addiction (Table 2). 
However, physiological differences among species pro-
voked speculation that established animal models lack of 
good correlates for SARS-CoV-2. Indeed, animal models 
have historically led to a particular failure in neuropsychi-
atric drug development.34–37 An animal model to study both 
OUD and COVID-19, though significant, would still bear 
both sets of limitations. Because human in vivo investiga-
tion is difficult due to ethical considerations, the safety of 
handling patients with SARS-CoV-2, and the limitation in 
identifying patients who have had both OUD and COVID-
19,35 human tissue-based models will provide critical vali-
dation steps to fill in our knowledge gap. A large portion of 
understanding both the individual and combined effects of 
OUD and COVID-19 on the brain will thus fall on these in 
vitro models that best mimic human physiology.38

Organoids, self-assembled three-dimensional (3D) 
aggregates generated from human induced pluripotent 
stem cells (iPSCs), most effectively recapitulate the cyto-
architecture and functional features of native tissues.39 
Researchers have recognized organoids’ superior ability to 
mimic viral pathophysiology and investigate pharmacody-
namics, and they have sprinted to develop in vitro orga-
noid models to evaluate the response and drug candidates 
in COVID-19 cases.40

In this mini-review, we will briefly describe brain orga-
noids and their advantages. We will then highlight the 
advances of brain organoids in neuropsychiatric and infec-
tious diseases to understand their role in investigating OUD 
and COVID-19, respectively. Last, we will discuss their 
potential to study COVID-19 infection in those with OUD.
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What are brain organoids?

Understanding the human brain, with both its vast number 
of specialized cell types and complex connectivity, has 
been historically challenging.41,42 Knowledge of the bio-
logical bases of neuropsychiatric disorders is unsatisfac-
tory, too, and human health continues to suffer.43 This 
reality is primarily due to our limited access to the healthy 
human brain; most of our knowledge is built on human 
pathological or post-mortem specimens, animal studies, 
and in vitro 2D culture models. These models, although 
invaluable, are unable to capture the full scope of the liv-
ing human brain, and they are limited by inherent species 
differences, concerns over tissue availability and manipu-
lation, and lack of cell diversity and structural organiza-
tion.34,36,41 Advancing neuroscience will require better 
human tissue-based models that can recapitulate the devel-
opmental and functional dynamics of human brain.

Recent advances in cellular reprogramming and stem 
cell culture techniques have enabled the in vitro generation 
of 3D brain organoids from an individual’s unique genetic 
background.44,45

Brain organoids are self-assembled 3D cellular aggre-
gates that are generated from embryonic stem cells (ESCs) 
or iPSCs to mimic the brain. These brain organoids, which 

contain a 3D-organized heterogeneous cell population, can 
partially recapitulate some of the brain’s structure, devel-
opmental stages, and functionality, such as synapse forma-
tion and intercellular signal transmission.46–48 In addition, 
brain organoids can model specific regions of the brain; a 
variety of protocols demonstrate the generation of brain 
organoids to model the development of cortex,49–52 hypo-
thalamus,51 midbrain,53–55 and cerebellum.56 To generate 
brain organoids, iPSCs can be derived via the reprogram-
ming of somatic cells. iPSCs can self-organize to form 
embryoid bodies (EBs). These EBs could then be cultured 
in the presence of neural induction molecules and region-
specific patterning factors to give rise to brain organoids 
modeling specific brain regions (Figure 2). Each protocol 
details a distinct cocktail of patterning molecules (e.g. 
SMAD inhibitor and WNT3A) and generates brain orga-
noids with cellular heterogeneity and spatial architecture. 
For instance, cerebral organoids consist of upper-layer and 
deep-layer neurons, radial glia cells, and neural progeni-
tors that display a rosette-like structure mimicking the 
subventricular-like zone.50

In addition, brain organoids can be easily accessed for 
live imaging of temporal and spatial changes, drug 
responses, electrophysiological activities, and high 
throughput transcriptomic and proteomic profiling.41,52,57–61 

Figure 1.  Illustration summarizing the circumstantial complications (right, patient) and SARS-CoV-2 infection complications (left, 
physician) that the COVID-19 pandemic can potentially have on those with OUD.
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The mechanics of certain mutations or disorders can then 
be understood by comparing control organoids to those 
bearing specific genetic modifications or originating from 
patients. With these strategies, in addition to the advan-
tages provided by a 3D platform, brain organoids hold 
promise as relevant and powerful tools to model human 
brain development and disease.

Brain organoid models for OUD and 
neuropsychiatric diseases

OUD is part of the wide range of neuropsychiatric disor-
ders in which neurodevelopmental features and neurologi-
cal functions have been comprised.62–64 OUD and other 
substance use disorders are usually compounded with 
additional neuropsychiatric disorders, such as depression, 
anxiety, schizophrenia, bipolar disorder, attention-deficit 
hyperactivity disorder (ADHD), psychotic illness, border-
line personality disorder, and antisocial personality disor-
der.65–68 Researchers have posed several reasons for such a 
high prevalence of comorbidity between OUD and other 
neuropsychiatric disorders: (1) they target similar brain 
regions (nucleus accumbens, ventral tegmental area, pre-
frontal cortex, hippocampus, amygdala) and neural cir-
cuitry (implicating the reward system, decision making, 
impulse control, stress response, and emotions)66–68; (2) 
they share common molecular mechanisms affected by 
various genetic, epigenetic, and environmental factors 
such as genetic mutations, stress, adversity, trauma, and 
drug exposure and/or access62,65–67,69–71; (3) there are 
numerous clinical similarities and overlapping symptoms 
with each other, and one disease may unmask or exacer-
bate the symptoms of the other.67 However, the precise 
mechanisms for many neuropsychiatric diseases, includ-
ing OUD, are unclear, and further investigation is crucial 
for a greater understanding of the nature of these diseases 
and their complex relationship.

Although OUD has yet to be investigated using brain 
organoids, many studies have been conducted on other 
neuropsychiatric diseases. These studies successfully 
investigated similar pathways and regions that would be 

relevant to OUD, suggesting that brain organoids can pro-
vide a viable framework for studying human brain disor-
ders and explore potential therapeutics. To show the power 
of brain organoids for OUD, we will first highlight several 
significant advances that brain organoids have made in a 
few kinds of neuropsychiatric disorders: neurodevelop-
mental, psychotic, mood, and neurodegenerative.

Neurodevelopmental disorders

The first neuropsychiatric disease to be studied using brain 
organoids was autism spectrum disorder (ASD), a devel-
opmental disorder impairing social interaction, communi-
cation, and behavior.72,73 ASD patient-derived telencephalic 
organoids recapitulated previously observed impaired  
neurodevelopment, increased inhibitory interneuron dif-
ferentiation, synaptic overgrowth, and cellular overpro-
duction.72,74–76 These organoids additionally demonstrated 
that inhibiting upregulated FOXG1, important for telence-
phalic development, rescued normal morphology. Later 
studies further revealed the specific temporal sequence of 
ASD-specific molecular and phenotypic abnormalities, 
additional genes and regulatory elements underlying ASD 
onset, enriched PI3K–AKT–mTOR signaling, and enlarged 
organoid sizes.73,77,78 Others found that chromodomain 
helicase DNA-binding protein 8 (CHD8) haploinsuffi-
ciency and RAB39b mutations, previously hypothesized 
to be top ASD candidate genes, was sufficient for provok-
ing ASD-like phenotypes in organoids.77,79–81

Other neurodevelopmental disorders were soon studied 
using brain organoids, too. Rett syndrome, which causes 
intellectual disability and ASD-like behavior, is character-
ized by mutations in the X-linked gene MeCP2 that gov-
erns microRNA regulation.82 Patient- and MeCP2 
knockdown-derived cerebral organoids yielded upregu-
lated miR-199/miR-214 expression and transcriptional 
dysregulation altering human neuronal development.83,84 
In addition, genetic pathways and pharmacological treat-
ments for chromosome 16p13.11 microduplication, which 
is associated with several neurodevelopmental disorders, 
were able to be assessed in cerebral organoids.85,86 Last, 

Figure 2.  Schematic representation of general brain organoid generation. Human iPSCs self-assemble into embryoid bodies, 
and then sequentially undergo induction, differentiation, and maturation to form brain organoids. These organoids can mimic 
specific brain regions and model corresponding functional studies. Neurobiological mechanisms of various brain disorders can be 
investigated using patient-derived or genetically mutated iPSCs, as well as with the appropriate brain region.
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the known imbalances in excitatory and inhibitory neuro-
transmission found in Down Syndrome were shown to be 
recovered by shRNA-mediated knockdown of OLIG2 in 
patient-derived forebrain organoids.87,88

Psychotic disorders

Schizophrenia is characterized by many symptoms, includ-
ing delusions, hallucinations, amotivation, anhedonia, and 
cognitive deficits, that are thought to arise from disrupted 
neurodevelopment.89,90 Patient-derived organoids con-
firmed the hypothesized impaired telencephalic neuronal 
development, attributing it to reduced FGFR1 expression, 
and also demonstrated aberrant immune response, mito-
chondrial function, increased TNFα and decreased Wnt 
signaling, and excitatory/inhibitory neurotransmission.91–95

In addition, mutations in DISC1(disrupted-in-
schizophrenia 1) have been established as a genetic risk 
factor for various psychiatric disorders including schiz-
ophrenia, but the mechanism of how DISC1 disrupts 
brain function is not well known.96,97 Cerebral orga-
noids suggested that disturbing the interaction between 
DISC1 and Ndel1/Nde1 impairs cell-cycle progression 
during mitosis.98 Organoids also revealed that the 
smaller rosette structures, elevated WNT signaling, dis-
organized layer specificity, and dysregulated cell fate 
could be rescued by correcting the DISC1 mutation or 
using a WNT antagonist.99,100

Mood disorder

Previous investigation into bipolar disorder (BD), a psy-
chiatric disorder that is characterized by recurring episodes 
of depression and mania, have implicated certain genes 
and impairments in BD patients.101–105 Forebrain organoids 
corroborated these findings and also exposed dysregulated 
nervous system development, differentiation, immune 
signaling, and electrical stimulation.

Neurodegenerative disorders

Alzheimer’s disease (AD), associated with severe age-
related memory impairments, is a neurodegenerative dis-
order characterized by amyloid plaques, neurofibrillary 
tangles, and tau pathology (taupathy).106 Raja et  al. first 
demonstrated that these AD pathologies could be repli-
cated in patient-derived organoids, and treatment of these 
organoids with β- and γ-secretase inhibitors, known AD 
therapeutics, significantly reduced amyloid and taupa-
thy.107 CRISPR/Cas9-altered organoids showed that orga-
noids with apolipoprotein E4 (APOE4), a known risk 
factor in AD, recapitulated multiple AD phenotypes.108,109 
More investigations revealed further mechanisms.110–117

Many other neurodegenerative disorders have been inves-
tigated with brain organoids, too. Midbrain organoids suc-
cessfully recapitulated the abnormal differentiation and 

increased cell death of dopaminergic neurons reminiscent of 
Parkinson’s disease (PD).118,119 A later study also identified 
that the LRRK2 G2019S gene mutation associated with PD 
causes α-synuclein accumulation, mitochondrial dysfunc-
tion, increased neurotoxicity, and impaired dopamine signal-
ing.120 In addition, cerebral organoids confirmed the role of 
p25/Cdk5 in human taupathy, characteristic of frontotempo-
ral dementia.121 Last, it has been suggested that Huntington’s 
disease, an inherited neurodegenerative disease caused by an 
expansion of CAG repeats in the huntingtin gene, is caused 
by earlier abnormal development.122,123 Huntingtin’s disease 
patient-derived cerebral organoids modeled this irregular 
neural development, demonstrating failure of neuroectoder-
mal acquisition, abnormal neural rosette formation, disrupted 
cell organization, impaired cortical fate differentiation, and 
terminal neuronal maturation.124 Molecular and pharmaco-
logical approaches targeting the huntingtin mutation restored 
striatal normalcy, suggesting that an early intervention may 
revert neurodegeneration later in life.

The above studies, summarized in Table 1, demonstrate 
the viability of using brain organoids to interrogate the dis-
ease biology for a wide range of neuropsychiatric disor-
ders. Although OUD itself has yet to be investigated with 
brain organoids, the approaches described in these studies 
provide a roadmap for future interrogation of OUD.

Molecular mechanisms of opioid exposure on the brain 
were revealed by transcriptome profiling and its downstream 
annotation analysis (Table 2). RNA sequencing (RNA-seq), 
along with downstream Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses, 
help find affected biological processes and pathways. These 
experiments have revealed common signaling pathways and 
biological processes shared between OUD and these related 
neuropsychiatric disorders. Brain organoids would provide a 
more nuanced understanding of these processes particular to 
OUD, including specific gene targets, morphological abnor-
malities, and therapeutic possibilities.

An example of a mutual biological process would be 
the dysregulated immune functioning and inflammation 
found in several neuropsychiatric disorder organoid stud-
ies, which is partially due to impaired IFNγ, NF-κB, and 
other signaling pathways.86,93,102,109 Karagiannis et al. sim-
ilarly found that acute and chronic opioid exposure impairs 
the antiviral gene program through genes related to IFN 
cell signaling,174 while others have shown that deviant pro- 
and anti-inflammatory cytokine generation is due to aber-
rant toll-like receptor (TLR) and NF-κB signaling.153,155,188 
It has further been observed that heroin-dependent patients 
(HDPs) exhibit lessened cytokine secretion due to the 
downregulation of TNFα signaling pathways.151,189,190

In addition, brain organoid studies have revealed imbal-
anced excitatory/inhibitory neurotransmission,72,73,88,93 
which could further elucidate how chronic opioid expo-
sure increases glutamatergic signaling.153,154 Furthermore, 
HDPs shared commonly upregulated genes with those 
who have PTSD, AD, PD, and HD, including those related 
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to oxidative phosphorylation and metabolic pathways 
(ATP5D, ATP5H, HSD17B10/NDUFB11, NDUFA8, 
NDUFB7).151 Opioid exposure additionally caused dys-
regulated programmed cell death, synapse organization, 
cell morphogenesis, brain volume, and neuron differentia-
tion,152,169,191 similar to several of the above brain organoid 
studies.72,73,83,86,91,93,98–100,124

Although these animal models and human postmortem 
opioid studies are revealing, these experiments were 
designed to study specific functions and are limited in 
investigating the effects of opioids. Brain organoids pro-
vide unique access to human tissue that could be manipu-
lated and assessed in order to expound on these effects of 
opioid exposure and inform on more precise mechanisms. 
Synthesizing the above opioid and brain organoid studies 
would be helpful to conduct further research on OUD.

To begin this further investigation, we tested the response 
to opioid exposure of niche cells in midbrain organoids, 
which were generated using previously described proto-
cols.53 Our preliminary analyses suggested that brain orga-
noids are a powerful model for recapitulating both human 
brain development and drug response. First, chronic opioid 
usage arrested the development of neural progenitors, delay-
ing the formation and maturation of the neuroblasts and 
neurons. This is comparable to the previous mouse studies 
that showed the inhibition of embryonic neurogenesis in the 
developing cortex due to morphine exposure, and a rebound 
increase in radial glial cell and neural progenitor prolifera-
tion and differentiation resulted from drug withdrawl.192–194 
Second, opioid exposure downregulated inflammatory 
responses, which is in line with its role in neuroinflamma-
tory responses in both peripheral and central nervous sys-
tems.195 Third, opioids led to alterations in neurotransmission 
and neural activity, which is consistent with their regulation 
of neurotransmitters through opioid receptors and down-
stream cAMP signaling pathways.196 Interestingly, our 
results suggested that opioid exposure effects organoids in a 
cell-type specific manner as well. For instance, compared to 
untreated midbrain organoids, genes associated with syn-
apse assembly and ion transport were more frequently 
altered in opioid-treated oculomotor and trochlear nucleus 
(OMTN) neurons, while genes associated with neuron 
development were less frequently altered in opioid-treated 
radial glia cells. These findings suggest that brain organoids 
are viable models for OUD and could further identify OUD-
specific neuronal pathways and biological processes, as 
well as screen for potential drug candidates.

This section has reviewed the literature demonstrating 
that brain organoids are viable models to investigate some 
key aspects of OUD and neuropsychiatric diseases. In addi-
tion, our group’s current project using midbrain organoids 
to study OUD has been encouraging. However, there is still 
much more to learn using these models, such as genetic 
variants prone to addiction, precise neuropathological 
mechanisms, and drug-drug interactions, in order to better 
understand both OUD and these complex diseases.

Brain organoid models for COVID-19 
and infectious diseases

Although COVID-19 has presented neurological symp-
toms, and SARS-CoV-2 has been detected in patients’ cer-
ebrospinal fluid (CSF), the precise mechanisms of 
neurological infection and its complications are largely 
unclear.197 The low expression of angiotensin-converting 
enzyme 2 (ACE2), a protein crucial for SARS-CoV-2 viral 
entry, in the CNS has evoked considerations that there are 
other mechanisms of action for neurological inva-
sion.11,198,199 Suggested mechanisms include retrograde 
neuronal transport, exosomal cellular transport, hematog-
enous routes, immune injury, and hypoxia dam-
age.11,12,198,200–203 Further studies, however, are required to 
determine both neuropathogenesis and neurotropism.

Brain organoids have successfully been used to study 
several infectious diseases and their effects on the human 
brain, giving hope for brain organoids to do the same for 
COVID-19.

The prime example for this is Zika virus (ZIKV), a 
virus that is associated with microcephaly and congenital 
brain malformations; during the global health emergency 
starting in 2015, brain organoids were essential to help 
determine its neuropathogenesis.204–206 ZIKV successfully 
infected brain organoids, which additionally demonstrated 
that it causes microcephalic phenotypes such as cell death 
and reduced organoid growth.51,125,126,142 Brain organoids 
were then used to suggest viral entry receptors that poten-
tially cause microcephaly.127,128,141 Many successive stud-
ies have since used transcriptomics and morphology to 
investigate ZIKV molecular pathways, neurotropism, and 
potential therapeutics.129–139 A recent study even found that 
ZIKV alters DNA methylation and could potentially cause 
delayed-onset neuropsychiatric complications.140

Other infectious viruses have been studied with brain 
organoids, too. La Crosse Virus (LACV) is an arthropod-
borne orthobunyavirus that causes many symptoms such as 
pediatric arboviral encephalitis, learning and memory defi-
cits, and seizures.207,208 Cerebral organoids inoculated with 
LACV showed increased apoptosis, where committed neu-
rons underwent apoptosis at a higher rate than neural pro-
genitors.143 The susceptibility to infection was found to be 
due to poor IFN-1 response in less mature neurons, and 
exogenous administration of IFN-1 induction rescued this 
cell viability. Japanese encephalitis (JE), a disease caused by 
the Japanese encephalitis virus (JEV) with no effective cure 
for infected patients, causes bleeding and inflammatory 
infiltration in multiple brain regions, as well as longer-term 
neurological sequelae.209,210 Telencephalon organoids found 
that JEV preferentially infects astrocytes and outer radial 
glial cells, stunts cell proliferation, and induces cell death.144 
Human Cytomegalovirus (HCMV) infection modulates 
intracellular calcium signaling and can result in infants born 
with a variety of symptoms, including hepatosplenomegaly, 
microcephaly, and developmental disabilities.211,212 
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Organoids revealed the mechanisms altering calcium sign-
aling and also demonstrated disrupted cortical neural layer-
ing, terminal differentiation, cell viability, and organoid 
growth.145–147 These studies also determined potential cel-
lular receptors relevant to HCMV infection, and demon-
strated that certain viral inhibitors and neutralizing 
antibodies could restore normal structural features. Neonatal 
herpes simplex virus type 1 (HSV-1), a member of the her-
pesviridae family, can cause various neurodevelopmental 
disabilities and necrotizing encephalitis that last well into 
adulthood.213,214 HSV-1-infected cerebral organoids con-
firmed that the virus impairs neuronal differentiation and 
cortical layering, as well as revealed the abnormal increase 
in microglial proliferation and specific inflammatory 
factors.148

Brain organoids have even been exploited to investigate 
non-virus pathogens. Sporadic Creutzfeldt-Jakob Disease 
(sCJD), a transmissible neurodegenerative disease target-
ing several brain regions and caused by infectious prions, 
was shown with cerebral organoids to increase metabo-
lism, LDH release, and cytokine release.149,215,216 
Toxoplasmosa gondii (TG), an intracellular protozoan 
parasite with no vaccine or effective treatment, can cause 
several CNS diseases and neurodevelopmental defects 
such as mental retardation, seizures, and microcepha-
lus.150,217,218 The unusual asexual life cycle of TG, which 
alternates between tissue cyst-forming bradyzoites and 
inflammation-inducing tachyzoites, requires a heterogene-
ous cell population for replication that has had under-
whelming results in 2D cultures.150, 218–220 Cerebral 
organoids were able to stimulate the complex TG asexual 
life cycle, including parasitophorous vacuoles that form 
cysts, and revealed that TG preferentially infects neuronal 
cells, astrocytes, and oligodendrocytes and primarily 
evokes an immune response from IFN-1.150

These studies have established brain organoids as a 
viable experimental infectious model, as summarized in 
Table 1. Because of this potential to also study SARS-
CoV-2 CNS viral entry, which requires ACE2 expression, 
researchers are sprinting to develop in vitro organoid mod-
els to evaluate tropism and drug candidates in COVID-19 
cases of tissues at risk (i.e., those that express 
ACE2).198,199,221,222 Since it has been shown that both brain 
tissue11,223 and brain organoids58,61,224 express ACE2, brain 
organoids have recently been identified to study the neu-
rotropism and neuropathogenesis of COVID-19, too. Very 
little is known with regards to SARS-CoV-2 neurotropism, 
but early results from several brain organoid studies have 
since provided some information.225–231

Although all studies have demonstrated that brain 
organoids were susceptible to SARS-CoV-2 infection, 
reports vary as to which specific cell types were indeed 
infected. One study reported that only cortical neurons 
were infected as opposed to neural progenitors, suggest-
ing that SARS-CoV-2 prefers more mature neuronal cell 
types (Figure 3(a)).225 Other studies, however, observed 

that SARS-CoV-2 infected other cell types, too, including 
neural progenitors, radial glia, dopaminergic neurons, and 
astrocytes.226–230 Upon observing that choroid plexus (CP) 
epithelial cells had a much higher tropism than neurons in 
cortical organoids, two studies developed CP organoids 
and demonstrated a heightened SARS-CoV-2 viral spike 
protein expression in CP epithelial cells (Figure 3(b)).227,231 
All together, these studies suggest that there is some 
degree of neurotropism in COVID-19.

These studies also investigated the connection between 
cell-specific tropism and ACE2 expression. RNA sequenc-
ing demonstrated that only small amounts of ACE2 were 
found in neurons, neural progenitors, and astrocytes, with 
much higher expression found in CP epithelial cells and 
especially in the CP organoids.225–228,230,231 However, 
immunofluorescence staining showed a more widespread 
expression of ACE2, indicating that ACE2 may be 
expressed on the cell surface and that mRNA levels were 
not necessarily the best representation of ACE2 amount 
(Figure 3(d)).226 Although some studies found an overlap 
between SARS-CoV-2 positive cells and ACE2 expres-
sion,227,231 others found no correlation between the 
two.226,228 In addition, some studies found that there was a 
time-dependent increase in SARS-CoV-2-positive cells, 
indicating that the virus was able to replicate in brain orga-
noids (Figure 3(a)),226,227,229,231 whereas other studies found 
that the virus could not productively replicate.225,227 
Regions with robust infection were also found to have syn-
cytia, caused by cell-cell fusion through the interaction 
between SARS-CoV-2 spike protein and ACE2 expressed 
on adjacent cells.227,229 Song et al. also found that SARS-
CoV-2 infection was inhibited by ACE2 antibodies (Figure 
3(d)).226 These results indicate that although ACE2 might 
be a critical cell entry receptor for CNS infection, it is 
likely that there are also other routes of infection that need 
to be further investigated. For example, cell-cell fusion 
was reported with SARS-CoV-2 infection of several cell 
types and was a major mechanism by which the virus 
spreads to adjacent cells.232–234

Brain organoids also revealed significant neurotoxicity 
caused by SARS-CoV-2 infection. TUNEL and cleaved 
caspase 3 immunolabeling demonstrated that SARS-
CoV-2 infection causes significant cell death as compared 
with control organoids (Figure 3(c)).225–227,229,230 Some 
observed this cell death even in uninfected cells adjacent 
to infected cells, suggesting that infected cells may induce 
adjacent cells to die through an extrinsic mechanism.226,227 
Several different mechanisms could have contributed to 
the observed neurotoxicity. SARS-CoV-2 impaired synap-
togenesis and induced a locally hypoxic environment in 
neuronal regions, which aids in lowering the threshold for 
tissue damage.226,230 In addition, cell-cell junctions of the 
epithelial cell layer of the choroid plexus, an integral part 
of the blood-CNS barrier that prevents the entry of patho-
gens, immune cells, and cytokines into the CSF and brain, 
were visibly damaged.231,235,236 Such barrier breakdown 
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could allow abnormal entry of immune cells and cytokines, 
leading to harmful neuroinflammation.

Furthermore, brain organoids were found to display tau 
missorting, where tau is mislocalized in the somatoden-
dritic region rather than on the axons of mature neurons, 
and tau hyperphosphorylation.225,237 Taupathy is reminis-
cent of AD and other neurodegenerative diseases, suggest-
ing that perhaps COVID-19 can cause chronic or long-term 
damage in the CNS.

Single-cell RNA sequencing, along with gene ontology 
analyses, further revealed the neuropathogenesis of SARS-
CoV-2, identifying dysregulated cell division, inflamma-
tory responses, cellular function, and metabolic processes 
(Figure 3(e)).226,227 In addition, pathways in both infected 
and uninfected cells were enriched, but in different ways, 
and dysregulated gene expression varies widely among 
various tissue organoids infected with SARS-CoV-2. This 
suggests unique responses in different cell types and high-
lights the need for diverse cellular model systems when 
studying the disease.

A few different therapies to inhibit SARS-CoV-2 infec-
tion were tested, too. Sofosbuvir, an FDA-approved anti-
hepatitis C treatment that suppresses viral families of 
single-stranded, positive-sense RNA viruses such as coro-
naviruses, successfully decreased the amount of neuronal 
cell death, viral accumulation, and synaptic dam-
age.230,238,239 In addition, SARS-CoV-2 infection was 
inhibited by both anti-ACE2 antibodies and CSF-
containing antiviral antibodies.226 Overall, brain organoids 
have provided a lot of information about SARS-CoV-2 
neurotropism, and these models are established as a viable 
method to continue further and necessary investigation.

Summary and perspectives

As outlined in the introduction, there are a lot of potential 
complications between OUD and COVID-19. Both pre-
sent neurological and psychiatric manifestations, cause 
respiratory depression, immune system dysfunction, and 
hypoxia, and are both aggravated by comorbidities.

Figure 3.  (a) Images of brain organoids revealing SARS-CoV-2 infection in both MAP2 mature neurons and SOX2 neural stem 
cells (top). Quantification shows increase in SARS-CoV-2 positive cells in the organoids, suggesting productive replication (bottom). 
Adapted with permission.226 (b) Images of telencephalic organoids immunostained for HTR2C choroid plexus epithelial cells and 
HuCD neurons. Staining for SARS-CoV-2 viral spike protein expression reveals a much higher infection in choroid plexus cells than 
in other cortical cells and neurons. Adapted with permission.231 Copyright 2020, MRC Laboratory of Molecular Biology. (c) Images of 
TUNEL-positive cells in control (top) versus SARS-CoV-2-exposed (bottom) organoids reveal SARS-CoV-2 positive cells experienced 
significantly higher cell death. Adapted with permission.225 Copyright 2020, The Authors. (d) Immunofluorescence staining of ACE2 
in brain organoids showed expression of ACE2 in MAP2-positive neurons (left). Immunofluroescence staining of organoids pre-
incubated with anti-ACE2 antibodies (right) and infected with SARS-CoV-2 showed ACE2 antibody inhibited SARS-CoV-2 infection. 
Adapted with permission.226 (e) Selected enriched GO terms for SARS-CoV-2 versus control organoids, including biological process 
(red), molecular function (green), and cellular components (blue). Adapted with permission.227  Copyright 2020, Elsevier.
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Brain organoid studies investigating OUD and COVID-
19, as well as related neuropsychiatric disorders and infec-
tious diseases, have revealed further potential complications. 
Our preliminary study of OUD using midbrain organoids 
demonstrated that opioid exposure impairs neuronal differ-
entiation and activity, as well as induces hypoxic and alters 
immune functioning in the CNS. It has been shown that 
SARS-CoV-2 infection, too, impairs neuronal viability and 
differentiation, while also stimulating a hypoxic and 
inflammatory CNS environment. In addition, the synaptic 
damage and tau pathologies associated with SARS-CoV-2 
are reminiscent of similar findings in neurodevelopmental 
and neurodegenerative disorders, arousing concern that 
COVID-19 could cause long-term CNS damage.

It would thus be prudent to investigate COVID-19 com-
plications in individuals with OUD through brain orga-
noids, which could be accomplished using one of the 
following approaches: (1) generate organoids with OUD 
patient-derived iPSCs, and subsequently inoculate them 
with SARS-CoV-2; (2) generate organoids with COVID-
19 patient-derived iPSCs, and subsequently expose them 

to opioids and recapitulate the effects of OUD; (3) gener-
ate organoids from control iPSCs and both inoculate them 
with SARS-CoV-2 and expose them to opioids. If the first, 
ideal option cannot be accomplished, the second and third 
options can also provide fundamental mechanistic insights.

Brain organoids can be used to investigate both the 
individual and combined effects of OUD and COVID-19 
on the brain. Each model can be characterized and vali-
dated using similar tactics to the ones we exemplified 
(Figure 4). For instance, high-throughput proteomic and 
transcriptomic profiling could identify affected neuronal 
pathways and biological processes on a single cell level, 
revealing the particular difficulties COVID-19 contributes 
to those with OUD. Additional cell-type specific SARS-
CoV-2 viral entry could also be tracked to develop novel 
COVID-19 drug candidates. Brain organoids hold poten-
tial to screen these candidates both individually and in 
conjunction with OUD therapeutics, such as methadone 
and buprenorphine.240 Histological analysis could further 
demonstrate the effects of these diseases on morphology, 
architecture, electrophysiological function, and cellular 

Figure 4.  Brain organoids as an experimental virology and opioid abuse model of human CNS to detect viral entry, identify 
affected pathways, and profile neural cells.
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heterogeneity. We suggest that brain organoids would 
reveal how COVID-19 leads to worsened phenotypes and 
more complicated interventions in those with OUD.

Although brain organoids are extremely helpful, limita-
tions do exist, such as incomplete cell maturation and het-
erogeneity, brain tissue architecture, transcriptional 
networks, and vasculature.34,47,48,241 With the rapid evolu-
tion of brain organoid technology, we expect that broader 
aspects of COVID-19 complications can be investigated. 
For example, using improved brain organoid generation 
protocols that promote the yield of microglia, astrocytes, 
and endothelial cells with ACE2 expression, more accurate 
viral pathology and mechanisms of infection could be 
investigated.225,241,242 In addition, since brain organoids 
more closely resemble the developing fetal brain than the 
mature adult brain, there may exist important differences in 
SARS-CoV-2 susceptibility between immature and mature 
cells.227 Organoids with better maturity and cell and tissue 
type diversity are paramount to a better understanding of 
the interactions between COVID-19 and OUD, along with 
the development of more efficacious interventions.

Challenges in understanding the complications of COVID-
19 is huge and urgent, especially to monitor long-term CNS 
consequences.228 It will need interdisciplinary efforts from 
both clinical and basic studies. Hopefully, brain organoid and 
other established modeling can provide complementary infor-
mation to improve our understanding and treatment of OUD 
in the wake of other viral infections and complications.
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