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Simple Summary: Cancer of the stomach, esophagus and colon are often fatal. Ways are being
sought to establish patient-friendly screening tests that would allow these cancers to be detected
earlier. Examination of the metabolomics results of cancer patient’s serum for certain metabolites
unique for a particular cancer was the goal of this review. From studies conducted within the past
five years several metabolites were found to be changed in cancer compared to non-cancer patients
for each of the three cancers. Further confirmation of what was discovered in this review coupled
with establishment of standard protocols may allow for cancer screening on patient blood samples to
become routine clinical tests.

Abstract: Three of the most lethal cancers in the world are the gastrointestinal cancers—gastric
(GC), esophageal (EC) and colorectal cancer (CRC)—which are ranked as third, sixth and fourth in
cancer deaths globally. Early detection of these cancers is difficult, and a quest is currently on to find
non-invasive screening tests to detect these cancers. The reprogramming of energy metabolism is a
hallmark of cancer, notably, an increased dependence on aerobic glycolysis which is often referred to
as the Warburg effect. This metabolic change results in a unique metabolic profile that distinguishes
cancer cells from normal cells. Serum metabolomics analyses allow one to measure the end products
of both host and microbiota metabolism present at the time of sample collection. It is a non-invasive
procedure requiring only blood collection which encourages greater patient compliance to have more
frequent screenings for cancer. In the following review we will examine some of the most current
serum metabolomics studies in order to compare their results and test a hypothesis that different
tumors, notably, from EC, GC and CRC, have distinguishing serum metabolite profiles.

Keywords: metabolomics; gastric cancer; esophageal cancer; colorectal cancer; Warburg effect;
metabolome

1. Introduction to Gastric Cancer

Gastric cancer (GC) is ranked third in cancer deaths world-wide. It is separated
anatomically into either gastric adenocarcinomas (non-cardia GC) or gastro-esophageal-
junction adenocarcinomas (cardia GC) and is further classified histologically into either
diffuse or intestinal types [1,2]. Genomic profiling of primary non-cardia GC has led to
the identification of four tumor subgroups: 9% positive for Epstein-Barr virus, 22% mi-
crosatellite unstable, 20% genomically stable and 50% chromosomally unstable tumors [1].
Each of these four types of tumors have specific histology and gene mutations associated
with them (Figure 1A) [1]. Helicobacter pylori infection is a major cause of sporadic GC due
to the contribution of the chronic inflammation induced by its colonization of the stom-
ach [3]. True hereditary GC accounts for about 1–3% of all GC mainly due to mutations in
Cadherin-1 (CDH1) and catenin alpha-1 (CTNNA1) mutations [4]. Environmental factors
that are thought to promote GC include, low consumption of fruits and vegetables, high

Cancers 2021, 13, 720. https://doi.org/10.3390/cancers13040720 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-3009-5875
https://orcid.org/0000-0002-3739-8994
https://doi.org/10.3390/cancers13040720
https://doi.org/10.3390/cancers13040720
https://doi.org/10.3390/cancers13040720
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13040720
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/13/4/720?type=check_update&version=2


Cancers 2021, 13, 720 2 of 22

intake of salt, nitrates and pickled foods, smoking, obesity and gastro-esophageal-reflux
(GERD) disease [5–7].

GC progression is often described by a sequence of events known as Correa’s Cascade
(Figure 1B) [8]. The cascade begins with non-active gastritis (H. pylori negative) (NAG-)
which then proceeds to chronic active gastritis (H. pylori positive) (CAG+)→ precursor
lesions of GC (PLGC) (atrophy, intestinal metaplasia, dysplasia)→ GC [8,9]. The prognosis
of GC is related to the stage at which it is diagnosed with the treatment being surgical
removal of the cancer tissue and resection. Currently, diagnosis relies heavily on invasive
techniques such as endoscopy with biopsy followed by pathological examination [10].
Early stages of GC are often asymptomatic [11] and therefore, the use of metabolomics
to detect serum biomarkers that would allow an earlier diagnosis of GC has become an
important area of ongoing research.
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Figure 1. (A) Molecular classification of gastric cancer. Four tumor subgroups have been identified: positive for Epstein-
Barr virus (EBV, 9%), microsatellite unstable (MSI, 22%), genomically stable (20%) and chromosomally unstable tumors
(CIN, 50%). Genomically stable tumors are ~73% correlated histologically with diffuse tumors. CIN tumors are mainly
gastro-esophageal junction adenocarcinomas (intestinal type tumor) and EBV tumors are found predominantly in either the
fundus or body of the stomach with 81% of these found in males. Women have more MSI tumors (56%, intestinal, antrum
location) [12]. CIN is characterized by DNA aneuploidy, translocation of chromosomes and mutations in proto-oncogenes
and tumor suppresser genes [13] while MSI tumors are characterized by DNA mismatch repair defects caused by epigenetic
events such as hypermethylation [14]. (B) Correa’s cascade. The progression of GC occurs via multiple precancerous
lesions and is often described by Correa’s cascade. The stepwise progression starts with superficial non-atrophic gastritis
(NAG) which can then advance to precursor lesions of GC (PCGL) which proceeds through multifocal atrophic gastritis,
intestinal metaplasia and dysplasia before it ultimately becomes GC. H. pylori infection occurs at all stages in the cascade.
Abbreviations: cadherin-1 (CDH1), claudin18 (CLDN18), CpG island methylator phenotype (CIMP), cyclin-dependent
kinase inhibitor 2A (CDKN2A, tumor suppressor), MUTL homolog 1 (MLH1, tumor suppressor), programmed death
ligand 1/2 (PD-L1/2, proto-oncogene), Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (PI3KCA,
proto-oncogene), ras homolog gene family member A (RHOA, proto-oncogene), rat sarcoma virus (RAS, proto-oncogene),
receptor tyrosine kinase (RTK), Rho GTPase activating protein (ARHGAP), tumor protein 54 (TP53, tumor suppressor)
Reference for microbiota involvement [15].
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2. Introduction to Esophageal Cancer

Esophageal cancer (EC) is classified into either esophageal squamous cell carcinoma
(ESCC) which arises from squamous epithelial cells in the esophagus or esophageal ade-
nocarcinoma (EAC) which originates from glandular cells located near the stomach [16].
Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal
cancer in Asian countries and it is ranked as the sixth leading cause of cancer death glob-
ally [17]. EAC is more prominent in the western world and is linked to obesity [18,19]. The
most established risk factors for EC are smoking, alcohol and reflux esophagitis, however,
they are not the only contributors [20]. In the United States, diets including fiber, vitamin
B6, β-carotene and vitamin C were inversely correlated with esophageal cancer, while
consumption of animal protein, cholesterol and vitamin B12 were directly associated with
esophageal cancer [20,21].

EAC usually starts with the formation of Barret’s esophagus, a metastatic condition
that involves replacement of the normal stratified squamous epithelium with simple
columnar epithelium. There are several theories as to how this occurs which is explained
in more detail in Figure 2A. The most current theory involves abnormal differentiation of
gastric cardia progenitor cells that migrate into the distal esophagus [19,22]. The reversion
to simple columnar epithelium makes the esophagus more resistant to chronic inflammation
due to acid-peptic damage [19]. Acid, bile and caudal homeobox (CDX) genes contribute
to the metaplasia. CDX genes can be expressed in response to conjugated bile acids
(BAs), tumor necrosis factor-α (TNFα), deoxycholic acid(DCA), interleukin-1β (IL-1β),
chenodeoxycholic acid (CDCA) and chronic acid exposure [23–26] GERD separates the
junctions among squamous cells allowing exposure of progenitor cells to BAs, acid and
inflammatory compounds which, in turn, induces the expression of CDX genes. Barrett’s
esophagus eventually evolves into EAC (Figure 2A) [22,24,26].
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expansion of these cells. (2) The red arrow indicates the inflammation driven migration of Krt-7+ squamous epithelial
cells at the SCJ junction to replace the normal Krt-6+ in the esophagus. (3) The blue arrow indicates what happens after
GERD damage opens up squamous cell junctions and allow acid damage of the basal cells. In response to damage the
basal cells express CDX1 and BMP to cause the basal cells to transform into metaplastic columnar cells along with further
increased damage due to inflammation. Once Barrett’s esophagus is established, further inflammation induced damage
of the columnar cells leads to cell mutations, notably, loss of tumor suppressor genes, TP53 and CDK2NA which in turn,
increases mutation of SMAD (leads to dysregulated cell growth) and the expression of AT-rich interactive domain-containing
protein 1A, ARID1A) (part of a protein complex responsible for activating genes normally silenced by chromatin structure).
The final result is chromosome instability (CIN) and malignant transformation to EAC [19]. Abbreviations: AT-rich
interactive domain-containing protein 1A (ARID1A), bile acid (BA), bone morphogenetic protein (BMP, growth factor),
caudal homeobox gene 1 (CDX1), chromosomal instability (CIN), cyclin-dependent kinase inhibitor 2A (CDKN2A, tumor
suppressor), esophageal adenocarcinoma (EAC), gastric acid esophageal reflux disease (GERD), interleukin (IL) (IL-1β,
IL-6, inflammatory cytokines), squamocolumnar junction (SCJ), tumor protein 54 (TP53, tumor suppressor) (B) ESCC
development. The development of esophageal squamous cell carcinoma (ESCC) begins with the ectopic expression of
Sox2 in basal cells. Sox2 is critical for maintaining self-renewal and appropriate proportion of basal cells in adult tracheal
epithelium. However, its overexpression gives rise to extensive epithelial hyperplasia. BA injury to basal cells leads
to more basal cell hyperplasia and inflammation. Increased levels of the inflammatory cytokine, IL-6, and increased
levels of activated P-Stat3 results in malignant transformation to ESCC. Abbreviations: Signal transducer and activator of
transcription 3 (STAT3), SRY (sex determining region Y)-box 2 (Sox2) Reference for microbiota involvement [15].

ESCC is characterized by basal cell hyperplasia and dysplasia. The key initiator of
ESCC is the transcription factor, SRY-box transcription factor 2 (Sox2) which has been found
to cooperate with phosphorylated signal transducer and activator of transcription 3 (Stat3)
to transform foregut basal keratin 5 positive progenitor cells (Figure 2B) [27,28]. Increased
levels of phosphorylated Stat3 and Sox2 have been shown to closely correlate with poor
outcomes in ESCC patients [27,28].

3. Introduction to Colorectal Cancer

Colorectal cancer (CRC) is the third most common cancer and the fourth most common
cause of cancer-related death globally. It is strongly associated with western diet and
lifestyle with higher incidence in North America and Europe [29,30]. CRC usually develops
slowly (over 10 years) in an environment of chronic inflammation which is often initiated by
environmental factors such as bacterial or viral infection. The infection activates an immune
response that leads to a chronic cycle of repeated ulceration of the intestine followed by
re-epithelialization with increasing production of aneuploid cells [31]. There are two major
types of CRC, sporadic and colitis-associated CRC that are distinguished by their histologic
presentation and the timing/sequence of cellular mutations (Figure 3A) [29,31]. CRC has
also been classified into four consensus molecular subtypes (CMS) based on the genes
and metabolic pathways associated with them. They are microsatellite instability (MSI)
immune [CMS1], canonical [CMS2], metabolic [CMS3] and mesenchymal [CMS4] [1,32,33].
Sidedness has a key role in CRC (Figure 3B) with right-sided CRC (cecum, ascending colon,
hepatic flexure) having overall a worse prognosis than left-sided CRC (splenic flexure,
descending colon, sigmoid, rectosigmoid) due to right-sided tumors being more resistant
to chemotherapy [33,34]. The major risk factors for developing CRC include, male gender,
increased age, inflammatory bowel disease, smoking, alcohol, obesity, red meat, and family
history [33]. Gut microbiota commonly found in CRC include Fusobacterium nucleatum
and Escherichia coli (pks+) which were found to be positively correlated with production
of biomarkers for damaged intestinal epithelium including, diamine oxide, D-lactate and
lipopolysaccharides (LPS) [35].
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Figure 3. (A) The molecular pathogenesis of CRC. There are two broad classifications of CRC based on differences in
the sequence of mutations leading to the cancer as well as their histological presentation. Sporadic CRC (SCRC) (top)
develops from dysplasia of 1 or 2 discrete foci of the colon. The primary event in the formation of early adenomas is the
loss of APC protein function. The APC protein is a negative regulator of beta-catenin that helps to control how often a
cell divides and is the product of the tumor suppressor gene APC. Early adenoma is also accompanied by expression
of the mucin-associated carbohydrate antigen, sialyl-Tn [36], miRNA dysregulation dysregulation and progression to
an intermediate stage of adenoma that is characterized by activation of the oncogenic k-ras gene and COX-2. COX-2
induction leads to production of the pro-inflammatory prostaglandin PGE2 which in turn binds to EP1-4 leading to several
important pathways (shown in the figure) that promote CRC progression from early to intermediate adenoma stages [37].
The intermediate adenoma stage is also characterized by SRC overexpression and subsequent promotion of CRC cell
proliferation and survival [38]. The loss of the tumor suppressor genes DCC and DPC4 often occur in the progression from
intermediate to late adenoma [39]. The advancement to CRC from late adenoma is characterized by loss of p53 as the final
mutation event. Colitis-associated CRC (CCRC) first presents as dysplastic lesions that are polyploidy, flat, localized or
multifocal and which are the product of chronic inflammation. Rather than distinct polyps (adenomas) there is instead a
large spreading region that often indicates removal of the entire colon and rectum [40]. There are some major differences in
the timing and sequence of mutations from those seen for SCRC. Rather than adenoma stages there are instead varying
degrees of epithelial dysplasia in the staging of the disease. Abbreviations: sporadic CRC (SCRC), colitis-associated CRC
(CCRC), adenomatous polyposis coli (APC), microsatellite instability (MSI), Kirsten rat sarcoma viral oncogene homolog
(k-ras), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), dependence receptor in colorectal cancer (DCC), deleted in
pancreatic cancer-4 (DPC4), proto-oncogene tyrosine protein-kinase Src 5 (SRC). (B) CRC differences in left vs. right-sided
colon. The molecular features of left-sided (distal) colon cancers are different from right-sided (proximal) colon cancers.
Based on the different gene expressions in CRC, four consensus molecular subtypes (CMS, 1-4) have been identified; MSI
immune (CMS1), canonical (CMS2), metabolic (CMS3), and mesenchymal (CMS4). The left-sided cancers have better
prognosis because they are less resistant to chemotherapy (CMS2, 4). Sidedness is particularly relevant during metastasis
and is predictive of drug response [34].
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For more information about gut microbiota and CRC, the reader is referred to the
recent review article “Gut microbiota alterations are distinct for primary colorectal cancer
and hepatocellular carcinoma” [41].

4. Metabolomics as a Potential New Way to Diagnose and Classify Cancer

The reprogramming of energy metabolism is a hallmark of cancer, notably, an in-
creased dependence on aerobic glycolysis which is often referred to as the Warburg effect.
This switch from oxidative phosphorylation to glycolysis allows cancer cells to meet the
anabolic demands that result from their dysregulated cellular growth and altered differ-
entiation. Ultimately, cancer cells develop a unique metabolic profile that distinguishes
them from normal cells [42–45]. If this idea is pursued a bit further, one may hypothesize
that different tumors arising in different tissue types may each have a cancer metabolite
profile that is distinct from that of another tumor type. From our discussion thus far, it can
be seen that at the molecular level, gene mutations are distinct and impact the phenotypes
of these tumors. Therefore, genomic re-programming in each cancer type influences its
metabolome.

Metabolomics analyses allow one to measure the end products of both host and
microbiota metabolism thus affording a snapshot of the current biochemical status of the
subject at the time of sample collection. It is a non-invasive procedure requiring only blood
or urine collection which encourages greater patient compliance to have more frequent
screenings for cancer [46]. In the following review we will examine some of the most
current studies using LC-MS and GC-MS metabolomics platforms in order to compare their
results and test our hypothesis that different tumors, notably, from EC, GC and CRC, have
distinguishing serum metabolite profiles. The specific criteria used to select papers for this
review are the following: (1) human studies, (2) serum/plasma studies only (with the view
of minimizing result variability due to different sample type handling techniques and to
exploring applications to the clinic), (3) LC-MS or GC-MS studies (to eliminate variable
results due to use of different platforms) and (4) papers that were published within the
past five years only. The studies selected were both untargeted and targeted metabolomics
studies and this is indicated for each study. In papers where both discovery and validation
cohorts were employed, results from the discovery set were used for our analysis.

5. The Metabolomics Profile of Gastric Cancer

In this section, we will begin by examining recent GC cancer metabolomics papers
and extracting data regarding the most significantly different metabolites between GC and
healthy controls found in blood. Table 1 summarizes three individual studies plus the
findings of a meta-analysis for nine GC studies in blood [2,10,47,48]. Metabolomics studies
have also been performed in urine [49] but as we are comparing three different cancers (GC,
EC, CRC), only one sample type (blood) was used for the comparison. The main reason
for choosing blood over urine samples is that 24 h urine samples need to be collected in
order to get accurate metabolite detection and quantification. This is often inconvenient for
the patient making complete compliance more difficult, whereas a fasting blood sample
is much easier to obtain. The goal here was to examine potential metabolite profiles that
could discriminate between the three cancers based on findings from recent studies. One
study has also been performed to distinguish between blood metabolites found in patients
with precancerous GC lesions and these are summarized in Table 2 [10].

Table 1. Description of patient cohorts and study types used in GC studies.

Reference [46] Reference [10] Reference [2] Reference [48]

184 GC/208 HC
Unmatched

Case control study
Untargeted metabolomics

20 GC/19 HC
Unmatched

68/43 GC/HC mean age
8 F/12 M (GC)

Targeted metabolomics panel of 216
metabolites

84 GC/82 non-GC
Unmatched

28–79 age GC
25–82 age non-GC

45 M/39 F (GC)
Targeted metabolomics
panel of Amino acids

104 GC/50 HC
Unmatched
Untargeted

metabolomics
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Table 2. Differential metabolites (GC vs. non-GC) for gastric cancer.

Metabolite [47]
(Meta-Analysis n = 9) Metabolite [10] Metabolite [2] Metabolite [48]

(Xiu)

Glycine ↑ Glycine ↓
Tyrosine Tyrosine ↓ Tyrosine ↓

Phenylalanine Phenylalanine ↓
Alanine Alanine ↓ Alanine ↑ Alanine ↓

Threonine Threonine Threonine ↓
Isoleucine Isoleucine ↓
Histidine Histidine ↓ Histidine ↓ Histidine ↓
Taurine Taurine

Arginine Arginine ↓ Arginine ↑
Leucine Leucine ↓

Methionine Methionine Methionine ↓
Valine Valine ↑

Serine ↑ Serine ↑
Tryptophan Tryptophan ↓ Tryptophan ↓ Tryptophan ↓
Fumarate

Cystine ↓
Asparagine Asparagine ↑ Asparagine ↑ Asparagine ↓

Lysine Lysine Lysine ↑ Lysine ↓
Propanoic acid

Pyruvic acid
Glutamate ↓

Glutamine Glutamine ↓ Glutamine ↓
Citrulline Citrulline Citrulline ↓

Spermidine Spermidine ↑
3-Hydroxypropionic acid

Metabolite [47] Metabolite [10] Metabolite [2] Metabolite [48]
(Xiu)

Anthranilic acid
Ornithine Ornithine ↑ Ornithine ↑
Sarcosine Sarcosine
Creatinine

2-Hydroxybutyrate
3-Hydroxyisobutyric acid

Erythro-isoleucine ↑
Symmetric dimethylarginine ↑

hydroxytetradecadienylcarnitine↑
Methionine sulfoxide ↑
Tetradecanoylcarnitine

Hexadecadienylcarnitine ↑
Octadecanoylcarnitine ↓

Xanthurenic acid Xanthurenic acid
Phenylacetylglutamine ↑

Octadecenoylcarnitine
N-formylkynurenine

Uric acid
D-Glucose
Melatonin
Serotonin

2-aminobenzoic acid
L-Kynurenine

Kynurenic acid
Tryptamine

3-Indoleactamide
(Indol-3-yl)acetamide

Indolacetic acid
6-Hydroxymelatonin
5-Methoxytryptamine

Indolelactic acid
Tryptophanol
Propionic acid
Quinolinic acid

Niacinamide
Homocysteine ↓

The arrows indicate reported increasing or decreasing trends relative to non-GC controls.
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The first study was a meta-analysis of nine plasma metabolomics studies published up
to 2018 [47]. This study was counted as only one study because older data were embedded
in the list of differential metabolites. Table 1 is a description of the patient cohorts used in
all four studies.

Correa’s Cascade was pioneered by Pelayo Correa [50] and is a detailed histological
classification of all of the histological changes that occur in the gastric epithelium that start
with infection with Helicobacter pylori, proceeds to the formation of precancerous lesions
and eventually culminates in GC. Table 3 above represents a summary of the differential
metabolites from GC from an isolated recent study which looked at patients in various
stages of Correa’s Cascade and did a metabolomics study on their serum [10]. Those which
were deemed the most discriminatory were quantified and the ratio of the precancerous
state/GC values are also listed in the table. Next, looking back at Table 2, the metabolites
that were reported unanimously as well as those which were reported three out of four
times as being differential between non-GC and GC patients are listed in Table 4 below. As
these results were generated in different labs on different days and in some cases, different
years, they can be considered as fairly reproducible although the number of studies is small.
If one compares the metabolites in Table 4 with Table 3 one observes that four out of the
five metabolites in Table 4, alanine, histidine, tryptophan and asparagine, show changes
over the course of the precancerous stage of the disease relative to GC, This provides some
evidence that these metabolites could be useful for early detection of precancerous stages
of GC. If we then take the metabolites in Table 4 and enter them into the MetaboAnalyst
program, one can find out the metabolic pathways that incorporate the listed metabolites.
This information has been added to Table 4.

Table 3. The metabolite profile of GC across Correa’s cascade [10].

NAG/GC Ratio CAG/GC Ratio PLGC/GC Ratio

Alanine 1.32 ↑ Alanine 1.36 ↑ Alanine 1.39 ↑
Asparagine 1.12 ↑ Asparagine 1.08 ↑ Asparagine 1.10 ↑
Histidine 1.22 ↑ * Histidine 1.18 ↑ * Histidine 1.14 ↑ *

Erythro-isoleucine 1.03 ↑ Erythro-isoleucine 0.96 ↓ Erythro-isoleucine 0.96↓
Ornithine 0.91↓ Ornithine 0.82 ↓ Ornithine 0.64↓

Symmetric dimethylarginine 0.79 ↓ Symmetric dimethylarginine 0.84 ↓ Symmetric dimethylarginine 0.70↓ *
Hydroxytetradecadienylcarnitine 0.87 ↓ Hydroxyteradecadienylcarnitine 0.82↓ * Hydrocytetradecadienylcarnitine 0.85↓ *

Methionine sulfoxide 0.93 ↓ Methionine sulfoxide 0.83↓ * Methionine sulfoxide 0.81 ↓ *
Sarcosine

Spermidine 0.92 ↓ Spermidine 0.88 ↓ Spermidine 0.94 ↓
Tetradecanoylcarnitine

Hexadecanoylcarnitine 0.88 ↓ Hexadecanoylcarnitine 0.85 ↓ Hexadecanoylcarnitine 0.88 ↓
Octadecanoylcarnitine 1.33 ↑ Octadecanoylcarnitine 1.50 ↑ * Octadecanoylcarnitine 1.50 ↑ *

Xanthurenic acid
Phenylacetylglutamine 0.33 ↓ * Phenylacetylglutamine 0.45 ↓* Phenylacetylglutamine 0.45↓*

Tryptophan 1.63 ↑ * Tryptophan 1.36 ↑ * Tryptophan 1.31 ↑ *
Lysine

Methionine
Threonine

N-acetylornithine
Hydroxyhexadecanoylcarnitine

Octadecenoylcarnitine
N-formylkynurenine

Taurine

* Indicates statistical significance (p < 0.05). The arrows indicate the trend relative to GC.

Table 4. Metabolites reported by all studies and three out of four studies listed in Table 2 and their associated metabolic path-
ways.

Metabolite [47]
(Meta-Analysis n = 9 Metabolite [10] Metabolite [2] Metabolite [48]

(Xiu) Matched Pathways

Alanine Alanine ↓ Alanine ↑ Alanine ↓

Aminoacyl-tRNA biosynthesis
Alanine, aspartate, glutamate
metabolism
Selenocompound metabolism
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Table 4. Cont.

Metabolite [47]
(Meta-Analysis n = 9 Metabolite [10] Metabolite [2] Metabolite [48]

(Xiu) Matched Pathways

Histidine Histidine ↓ Histidine ↓ Histidine ↓
Aminoacyl-tRNA biosynthesis
Histadine metabolism
B-alanine metabolism

Tryptophan Tryptophan ↓ Tryptophan ↓ Tryptophan ↓ Aminoacyl-tRNA biosynthesis
Tryptophan metabolism

Asparagine Asparagine ↑ Asparagine ↑ Asparagine ↓
Aminoacyl-tRNA biosynthesis
Alanine, aspartate, glutamate
metabolism

Lysine Lysine Lysine ↑ Lysine ↓
Aminoacyl-tRNA biosynthesis
Biotin metabolism
Lysine degradation

Tyrosine Tyrosine ↓ Tyrosine ↓

Aminoacyl-tRNA biosynthesis
Phenylalanine, tyrosine, tryptophan
biosynthesis Ubiquinone and
terpenoid-quinone biosynthesis
Phenylalanine metabolism
Tyrosine metabolism

Threonine Threonine Threonine ↓
Aminoacyl-tRNA biosynthesis
Valine, leucine, isoleucine biosynthesis
Glycine, serine, threonine metabolism

Arginine Arginine ↑ Arginine ↓
Aminoacyl-tRNA biosynthesis
Arginine biosynthesis
Arginine and proline metabolism

Methionine Methionine Methionine ↓ Aminoacyl-tRNA biosynthesis
Cysteine, methionine metabolism

Glutamine Glutamine ↓ Glutamine ↓

Aminoacyl-tRNA biosynthesis
Arginine biosynthesis
Alanine, aspartate, glutamate
metabolism
Glutamine and glutamate metabolism
Nitrogen metabolism
Glyoxylate and dicarboxylate
metabolism
Pyrimidine metabolism
Purine metabolism

Citrulline Citrulline Citrulline Arginine biosynthesis

Ornithine Ornithine Ornithine
Arginine biosynthesis
Arginine and proline metabolism
Glutathione metabolism

The arrows indicate reported increasing or decreasing trends relative to non-GC controls.

Another output from the MetaboAnalyst software is the impact map for the various
metabolic pathways resulting from the pathway enrichment analysis (Figure 4). It can be
seen that Phe, Tyr and Trp biosynthesis has been rated as important (indicated by dark
red color), has several differential metabolites in the pathway (indicated by the size of the
circle) and has the greatest impact (indicated by the x-axis).

The metaboloites listed in Table 4 are highyly relevant to cancer metabolism.It is well-
known that oxidative phosphorylation of glucose is impaired in the mitochondria of cancer
cells as a result of the Warburg effect and thus, the number of the acetyl-CoA molecules
derived from glucose is significantly reduced. Instead, cancer cells rely on upregulation of
amino acid biosynthesis and metabolism to replenish TCA cycle intermediates to generate
ATP [2,51] Trp catabolism is important for the production of Acetyl-CoA for use in the TCA
cycle and both His and Trp are used for the anabolism of one-carbon units for the synthesis
of nucleotides for DNA and RNA biosynthesis [52]. Kynurenine, a major metabolite of
Trp via the enzyme indoleamine-2,3-dioxygenase (IDO1), induces immunosuppression by
binding to and activating the transcription factor aryl hydrocarbon receptor (AhR) [53,54].
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This inhibits the ability of immune-tolerant dendritic cells (DCs) and regulatory T cells to
target and eliminate cancer cells [55,56].

Cancers 2021, 13, x 11 of 24 
 

 

acid that is consumed the most by cancer cells and inhibition of glutaminase which con-
verts Gln to Glu, by CB-839 is in pre-clinical and clinical trials [63,64]. The enzyme gluta-
mate dehydrogenase is responsible for the bioconversion of Glu to α-ketoglutamate for 
use in the TCA cycle and inhibition of this enzyme has been used to inhibit tumor growth 
[65]. Asparaginase, an injectable enzymatic drug that degrades asparagine in the plasma 
and is used as a treatment for acute lymphoblastic leukemia. The lack of Asn in cells cause 
apoptosis [66] Kinase inhibitors such as, imatinib and dasatinib, which act on receptors 
that bind Tyr containing proteins have been used successfully for treatment of GI cancer 
[67]. IDO1 inhibitors are actively being evaluated in clinical trials [59] The IDO1/Kynur-
inine/AhR pathway is also being investigated for its therapeutic potential [68]. Figure 4 is 
a diagram of the pathway impact for the discriminating metabolites just discussed. 

 
Figure 4. Pathway analysis performed using the altered metabolites from metabolomics data for 
gastric cancer. Each filled circle corresponds to a metabolic pathway. The x-coordinate (Pathway 
Impact) indicates the extent of pathway influence by the perturbed metabolites. The point size is 
related to the diversity of the pathway, based on the number of metabolites contained in the path-
way. The ordinate represents the negative logarithm of the p-value obtained from the enrichment 
analysis done by the MetaboAnalyst software. The p-value (measure of pathway importance) is en-
coded in the color of the circles with red being the highest p-value. 

In summary, although differences in study design and assay conditions resulted in 
many non-reproducible differential metabolites between the various studies there were 
still some which were reported consistently. Pathway enrichment analysis was performed 
on those metabolites and their significance to cancer and some therapeutic opportunities 
were discussed. In the next section we are going to use the same approach to examine the 
metabolomics of EC. 

6. The Metabolomics Profile of Esophageal Cancer 
Using the same technique used for GC we are now going to examine the recent serum 

metabolomics findings for esophageal cancer (EC). In the interest of saving space, the long 

Figure 4. Pathway analysis performed using the altered metabolites from metabolomics data for gastric cancer. Each filled
circle corresponds to a metabolic pathway. The x-coordinate (Pathway Impact) indicates the extent of pathway influence by
the perturbed metabolites. The point size is related to the diversity of the pathway, based on the number of metabolites
contained in the pathway. The ordinate represents the negative logarithm of the p-value obtained from the enrichment
analysis done by the MetaboAnalyst software. The p-value (measure of pathway importance) is encoded in the color of the
circles with red being the highest p-value.

Glu is also used by cancer cells in the TCA cycle and it can be biosynthesized by
the transamination of His and Arg and/or by the deamination of glutamine [51,57]. Thr
catabolism via Thr dehydrogenase produces Gly and acetyl-CoA which can also feed the
TCA cycle [58]. Met can also enter the Met-folate cycle to produce 1-carbon units for
nucleobases [59]. All of the abovementioned amino acids were found to be reduced in the
serum of GC patients possibly due to the upregulation of these metabolic pathways in
the tumor. The Arg-Ornithine-polyamine pathway may be used to synthesize polyamines
that promote the proliferation of cancer cells. Ornithine can be converted to citrulline in
the urea cycle to replenish Arg supplies as Arg is decreased in most tumors [57,60,61].
Tyr is important for integration into proteins that activate important oncogenic signaling
pathways such as Kras [62].

There is much interest in targeting amino acid metabolism to treat cancer. The alanine-
serine-cysteine transporters 2 (ASCT2, encoded by SLC1A5 has been spotlighted as a
therapeutic target because it is the primary glutamine transporter [57]. Gln is the amino
acid that is consumed the most by cancer cells and inhibition of glutaminase which converts
Gln to Glu, by CB-839 is in pre-clinical and clinical trials [63,64]. The enzyme glutamate
dehydrogenase is responsible for the bioconversion of Glu to α-ketoglutamate for use in
the TCA cycle and inhibition of this enzyme has been used to inhibit tumor growth [65].
Asparaginase, an injectable enzymatic drug that degrades asparagine in the plasma and is
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used as a treatment for acute lymphoblastic leukemia. The lack of Asn in cells cause apop-
tosis [66] Kinase inhibitors such as, imatinib and dasatinib, which act on receptors that bind
Tyr containing proteins have been used successfully for treatment of GI cancer [67]. IDO1
inhibitors are actively being evaluated in clinical trials [59] The IDO1/Kynurinine/AhR
pathway is also being investigated for its therapeutic potential [68]. Figure 4 is a diagram
of the pathway impact for the discriminating metabolites just discussed.

In summary, although differences in study design and assay conditions resulted in
many non-reproducible differential metabolites between the various studies there were
still some which were reported consistently. Pathway enrichment analysis was performed
on those metabolites and their significance to cancer and some therapeutic opportunities
were discussed. In the next section we are going to use the same approach to examine the
metabolomics of EC.

6. The Metabolomics Profile of Esophageal Cancer

Using the same technique used for GC we are now going to examine the recent serum
metabolomics findings for esophageal cancer (EC). In the interest of saving space, the long
table listing all of the differential metabolites for EC vs. non-EC patients has been moved
to a Supplemental File as Table S1. Only the shorter tables listing those metabolites most
consistently reported is given below in Table 5.

Table 5. Description of patient cohorts and study types used in EC studies.

Reference [69] Reference [70] Reference [71] Reference [72]

24 EC/21 HC
Matched

19 M/5 F EC
47 M/4 F HC
48–86 age EC
45–86 age HC

Untargeted
GC/MS

80 EC/80 HC
Unmatched

53 M/27 F EC
45 M/35 F HC
59 EC/51 HC

Mean age
Untargeted

Two discovery phase cohorts
30 EC/30 HC x 2

Matched
63 EC/63 HC mean age

90% M for both EC and HC
Untargeted

77 EC/84 HC
40–69 age range

All subjects
No gender info given

Untargeted

Using the same reasoning as for GC, Table 5 is a shortened list of differential metabo-
lites based on reproducibility of reporting by different labs. There were four studies so as
before we will allow reporting of a metabolite at least three times to count as a biomarker.
Again, based on the results tabulated in Table S1, there were many differences found in the
results overall with some labs detecting many more changes in lipids. This disparity in re-
sults is reasonably due to the differences between labs in sample handling, chromatography
(GC vs. HPLC) or detection techniques. However, once again there was good agreement
between the labs for five differential metabolites as shown in Table 6. Both Tyr and Trp
were detected for GC but for EC, three lipids, linoleic acid, oleic acid and palmitoleic acid
were found three out of 4 studies.

Table 6. Metabolites reported by at least three out of four studies listed in Table S1 and their associated metabolic pathways.

Metabolite [69] Metabolite [70] Metabolite [71] Metabolite [72] Matched Pathways

Tryptopha n ↓ Tryptophan ↓ Tryptophan ↓ Tryptophan ↓ Aminoacyl-tRNA biosynthesis
Tryptophan metabolism

Tyrosine ↑ Tyrosine ↓ Tyrosine ↓ Tyrosine ↓

Aminoacyl-tRNA biosynthesis
Phenylalanine, tyrosine and tryptophan biosynthesis
Ubiquinone and other terpenoid-quinone biosynthesis
Phenylalanine metabolism
Tyrosine metabolism

Linoleic acid Linoleic acid Linoleic acid Biosynthesis of unsaturated fatty acids
Linoleic acid metabolism

Oleic acid ↑ Oleic acid↑ Oleic acid ↑ Biosynthesis of unsaturated fatty acids

Palmitoleic acid ↑ Palmitoleic acid ↑ Palmitoleic acid ↑ No pathways matched in MetaboAnalyst

The arrows indicate reported increasing or decreasing trends relative to non-GC controls.
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One metabolic alteration in cancer is the accumulation of free fatty acids (FFAs) which
enhances proliferation [73]. Fas-associated actor-1 (FAF1) contains a binding motif for
unsaturated FAS but not for saturated FAs such as palmitic acid. FAF1 is a protein that
facilitates the degradation of β-catenin [74]. Oleic acid and linoleic acid were both found
to bind to FAF1 in various cancer cells lines and stabilize β-catenin, a transcriptional co-
activator that stimulates expression of genes that drive cell proliferation [75]. Palmitoleic
acid is an unsaturated FA which can also be biotransformed to palmitic acid which can
then be used to produce more oleic acid [72] Palmitoleic acid can also be produced from
palmitic acid by ∆9 desaturase [76]. Increased expression of β-catenin has been observed
in ESCC and was correlated with a poor patient prognosis [77]. Elevated linoleic acid
metabolism has been previously reported in EC patients [78]. Figure 5 is the pathway
impact diagram that was generated from the pathway enrichment analysis done on the
differential metabolites listed in Table 6.
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esophageal cancer (EC) (refer to the legend of Figure 4 for the diagram explanation).

From the Impact map generated by Metaboanalyst, one can see that the pathway with
the highest impact rating is linoleic acid metabolism consistent with previous reports [78].
In the next section we are going to examine CRC in the same way as done for GC and ESCC.

7. The Metabolomics Profile of Colorectal Cancer

The last cancer we are going to use in our comparison analysis is CRC. As was done
for EC, the long table listing all differential metabolites by each of the studies has been
moved to the SI File as Table S2. Table S2 is a listing from six different recent studies of
the differential metabolites of CRC vs. non-CRC patients. The first reference listed was a
meta-analysis of CRC studies published up to 2018 and the metabolites listed were found
to be the most significant blood biomarkers (reported 5+ times) [47]. The meta-analysis was
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counted as a single study in our analysis because it incorporated some older papers. Table 7
summarizes the information provided for the participants in the six studies. As before, our
sole purpose is to examine those metabolites that were measured and determined to be
differential for cancer the most reproducibly.

Table 7. Description of patient cohorts and study types used in CRC studies.

Reference [47] Reference [79] Reference [80] Reference [81] Reference [82] Reference [76]

1870 CRC
1857 HC

Mixture of matched
and unmatched

gender not specified
for all studies

Ages not given
Case control with
Some nested-case

studies
Untargeted

22 CRC/15 M/7 F
45 HC/31 M/14 F

Age and sex
Matched

Age range
49–84

Untargeted

320 CRC
201 M CRC
119 F CRC
148 M HC
106 F HC

Age/sex matched
Mean age
66 CRC
62 HC

Untargeted

30 CRC
18 M/12 F

Mean age 54
30 HC

18 M/12 F
Mean age 55

Matched
Untargeted

56 CRC
28 M/28 F

Mean age 70
60 HC

30 M/30 F
Mean age 68

Age/sex matched
Untargeted

282 CRC
170 M/112 F
Mean age 67

291 HC
178 M/113 F
Mean age 67

Age/sex matched
Unknown if targeted

or untargeted

As one see from Table S1, the complete list of differential metabolites for CRC vs.
non-CRC patients, there was not one metabolite that was unanimously detected by all of
the studies. However, if we consider at least four out of six to be a possible biomarker,
we will now examine those metabolites by pathway enrichment analysis for our final
comparison to EC and GC cancers. Table 8 is a list of those metabolites reported by at least
4 out of 6 studies.

Table 8. Metabolites reported by at least four out of six studies listed in Table S2 and their associated metabolic pathways.

Metabolite [47] Metabolite [79] Metabolite [80] Metabolite [81] Metabolite [82] Metabolite [76] Matched Pathways

Glutamic acid Glutamic acid Glutamic acid Glutamic acid

Aminoacyl-tRNA biosynthesis
Glutathione metabolism

Ala, Asp, Glu metabolism
Nitrogen metabolism
Gln, Glu metabolism
Arginine biosynthesis
Butanoate metabolism
Histidine metabolism

Porphyrin and chlorophyll
metabolism

Glyoxylate, dicarboxylate
metabolism

Arginine and proline
metabolism

Phenylalanine Phenylalanine Phenylalanine Phenylalanine
Aminoacyl-tRNA biosynthesis

Phe, Tyr, Trp biosynthesis
Phe metabolism

Alanine Alanine Alanine Alanine Alanine
Aminoacyl-tRNA biosynthesis

Ala, Asp, Glu metabolism
Selenocompound metabolism

Lactic acid Lactic acid Lactic acid Lactic acid Lactic acid Pyruvate metabolism

Cysteine Cysteine Cysteine Cysteine

Aminoacyl-tRNA biosynthesis
Glutathione metabolism

Thiamine metabolism
Taurine, hypotaurine

metabolism
Pantothenate and CoA

biosynthesis
Glycine, Ser Thr

Metabolism
Cysteine and methionine

metabolism
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Table 8. Cont.

Metabolite [47] Metabolite [79] Metabolite [80] Metabolite [81] Metabolite [82] Metabolite [76] Matched Pathways

Tyrosine Tyrosine Tyrosine Tyrosine

Aminoacyl-tRNA biosynthesis
Phe, Tyr, Trp biosynthesis

Phe
Metabolism
Ubiquinone,

terpenoid-quinone
biosynthesis

Tyrosine metabolism

Tryptophan Tryptophan Tryptophan Tryptophan Aminoacyl-tRNA biosynthesis
Tryptophan metabolism

The metabolites which we have not been discussed and are distinct for CRC are Phe,
Cys and lactic acid. Phe is important for the biosynthesis of Tyr whose importance to cancer
cells has already been discussed extensively in the section related to GC [57]. Significant
amount of ROS are generated in cancers due to their increased proliferation and oxidative
stress and can cause cell death. Therefore, cancer cells must have increased antioxidant
defenses to neutralize their increased ROS production. Glutathione is essential in maintain-
ing redox balance in all subcellular compartments [59]. Production of glutathione requires
Glu, Gly and Cys with Cys being the most critical component because of its thiol group.
Inhibiting cysteine uptake has been shown to reduce cancer cell viability which was caused
by uncontrolled oxidative stresses [83]. Cysteine can be imported into cells either directly
or in its oxidized form, cystine, through the cystine/glutamate antiporter system xc−
(xCT) [59]. Studies have looked at the efficacy of xCT inhibitors for cancer treatment [84,85].
Lactic acid is the end-product of glycolysis and would be expected to raise higher for cancer
patients than HCs [57,76]. CRC Patients with higher serum Lactic acid levels were found
to have poor prognosis, especially for metastatic CRCb [86]. Exogenous lactate derived
from metabolism of lactic acid producing bacteria in the gut can serve as a fuel source for
oxidative cancer cells and cause upregulation of monocarboxylate transporter 1 (MCT1).
Therefore, lactate is considered as a tumor promoting metabolite as it can influence angio-
genesis, amino acid metabolism, histone deacetlyases and immune escape contributing to
cell migration [87]. Figure 6 is the pathway impact diagram generated by Metaboanalyst
from the pathway enrichment analysis done on the differential metabolites listed in Table 8.
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8. Comparative Analysis of the Metabolomes for GC, EC and CRC Along with Their
Metabolic Pathways

We have finally reached a point where we can compare the altered metabolomes of
EC, GC and CRC based on our data analysis of the current metabolomics literature. Table 9
indicates which altered metabolites are shared by the three cancers.

Table 9. Comparison of the three cancers, GC, EC and CRC based on their respective altered metabo-
lites.

GC EC CRC

Alanine Alanine
Histidine

Tryptophan Trptophan Tryptophan

Asparagine
Lysine

Tyrosine Tyrosine Tyrosine
Arginine

Methionine
Glutamine
Citrulline
Ornithine

Linoleic acid
Oleic acid

Palmitoleic acid
Phenylalanine

Lactic acid
Cysteine

Glutamic acid

Examination of the Table 7 reveals that both tryptophan and tyrosine are altered
metabolites for all three of the cancers. Alanine perturbation is shared between GC and
CRC but other than tryptophan, tyrosine and alanine, all other metabolites are distributed
individually among the three cancers indicating a unique metabolome for each cancer.
If you input the metabolites for a particular cancer into the MataboAnalyst software, an
impact diagram is generated as shown in Figures 4–6. Each filled circle corresponds to a
metabolic pathway. The x-coordinate (Pathway Impact) indicates the extent of pathway
influence by the perturbed metabolites. The point size is related to the diversity of the
pathway, based on the number of metabolites contained in the pathway. The ordinate
represents the negative logarithm of the p-value obtained from the enrichment analysis
done by the MetaboAnalyst software. The p-value (measure of pathway importance) is
encoded in the color of the circles with red being the highest p-value. One also is given
a list of the matched metabolic pathways for each metabolite entered into the program.
These pathways are compared between the three cancers in a heatmap (Figure 7). showing
that many pathways are shared between the three cancers which may be due to the overlap
of different metabolite involvement in the various pathways.

Although many metabolic pathways are shared there are a few which are assigned to
only one cancer type. Shared pathways are important for designing therapeutics because a
drug that targets a shared pathway can have an effect on more than one cancer type. On
the other hand, targeting the unshared pathways could provide an opportunity for fewer
side effects as the drug would be more selective. Unshared metabolites and pathways are
more useful as biomarkers and diagnostic tools than those which are shared. However,
going back to Figures 4–6, the impact of the shared pathway, Phenylalanine, tyrosine,
tryptophan biosynthesis ranks as EC < GC < CRC and thus although shared, targeting this
pathway may have different effects on different cancer types. In contrast, the tyrosine and
tryptophan metabolism pathways appear to have an equal impact on all three cancers.
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Figure 8 is an example of another type of data output from the MetaboAnalyst program.
Every pathway which is mapped as a circle on the Impact diagram can be mouse clicked
and the pathway will be displayed. Mouse clicking on each square of the pathway gives
you the name of the compound as shown in Figure 8 where these have been typed in
separately. Figure 8 also shows some of the metabolic intermediates of tryptophan in bold
red. These are metabolites that have been reported as differential by the studies presented
in this review article at least once. The multiple branches in the diagram also allows one
to hypothesize that one could target one branch of a pathway and not completely inhibit
the functions of a metabolite such as tryptophan. An example would be inhibition of
formylkynurenine to block production of kynurenine and allowing synthesis of serotonin,
an important neurotransmitter to occur (Figure 8). It has been previously reported that
high enzyme activity of the kynurenine pathway is associated with immune escape, tumor
progression and migration [87]. It has also been demonstrated that kynurenine inhibits
T-cell proliferation and induces T-cell apoptosis, leading to immune tolerance and a tumor
progression/metastatic microenvironment [88].

Although there has been inconsistency in the detection of tryptophan metabolites, at
least one attempt has been made to develop a targeted metabolomics assay for tryptophan
and some of its metabolites [89]. A follow-up study utilizing this assay was done and
five metabolites (i.e., tryptophan (TRP), kynurenine (KYN), 5-hydroxytryptophan (5HTP),
5-hydroxyindole-3-acetic acid (5HIAA), 5-hydroxytryptamine (5HT)) were quantified and
compared between healthy controls, ESCC and metastatic ESCC patients. Their results
showed that the ratios of KYN/TRP, 5HTP/TRP, 5HIAA/TRP and 5HT/TRP exhibited a
similar up-regulated tendency among healthy controls, ESCC and mESCC patients and
that the ratios of KYN/TRP and 5HTP/TRP were significantly different between metastatic
ESCC and ESCC patients [90].
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9. The Role of Gut Microbiota Produced Metabolites in GI Cancer

Increases in certain microbial metabolites also play a role in GI cancer. As we have just
pointed out for CRC, increased amounts of lactate derived from lactic acid producing bac-
teria are able to cause upregulation of the MCT1 transporter to allow increased amounts of
lactate into the cancer cell where it acts a tumor promoting substance [91]. Lactate-derived
pyruvate can stabilize hypoxia-inducible factor-1 (HIF-1) by inhibiting HIF polyhydroxy-
lases which in tumor endothelial cells, stimulates angiogeneisis [92]. Lactate also mediates
M2-like polarization of tumor associated macrophages contributing to immunosuppression
and immune escape of cancer cells [93].

While butyrate has been shown to have beneficial effects, in the context of APC mu-
tations as is found in nearly all of CRC, butyrate was shown to promote proliferation of
aberrant epithelial cells contributing to increased cancer polyp formation [94]. Acetalde-
hyde, especially in saliva is mainly of microbial source and contributes to upper GI cancer
by causing molecular damage and mutagenesis [95]. The esophageal microbiome is a
reflection of the oral microbiome [96] and oral pathogens have been implicated in CRC as
well [97].

Secondary and tertiary bile acids (BAs) are bacterial metabolites that have been im-
plicated in GI carcinogenesis [98]. In a recent study of human BA reflux gastritis, it was
found that in patients with BA reflux gastritis that there were higher amounts of conjugated
primary and secondary BAs, notably, glycocholic acid (GCA), glycochenodeoxycholic acid
(GCDCA), glycodeoxycholic acid (GDCA), taurodeoxycholic acid (TDCA), taurocholic
acid (TCA) and taurochenodeoxycholic acid (TCDCA) in their gastric juice In contrast,
normal and gastritis patients without BA reflux had equal amounts of conjugated and
unconjugated BAs in their gastric juice [99].
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10. Summary and Perspectives

In this review we sought those biomarkers that were present in most of the studies.
If a differential metabolite was reported ≥70% of the time by different labs in different
parts of the world in different years, then we felt this could not be a coincidence. All
of the biomarkers which were selected by our technique were highly relevant to cancer
metabolism which was highlighted in a discussion following each cancer section of the
review. Metabolomics shows promise for cancer screening but a more cooperative effort
between labs must be established to standardize assays and study designs for this technique
to be used in the clinic such that on any given day in any part of the world a patient will
receive an accurate assessment of his health. The fact that very different types of metabolites
were detected by different labs with relatively low reproducibility is a good indication that
assay conditions were very different for each of the labs. While differences in technique
and study design can explain differences in results, a true biomarker should be directly
keyed to the disease. In other words, if the tumor type is present than the differential
biomarker should be there. Only if protocols become uniform can this type of biomarker
be truly discovered. Independent labs who use their time and resources to repeat and
validate an assay should perhaps be given publication opportunities as this is important to
communicate to the metabolomics community. Thus, the publication industry has a big
role to play as publication should be used to disseminate scientific findings that are not
just unique but also for the benefit of the public, in this case, cancer patients. Allowing
other scientists to read about good result reproducibility will encourage the use of those
assays and produce more consistent findings that will eventually lead to a trustworthy
clinical assay. Funding agencies should also provide help to those labs which are willing to
perform assay validation work. Once consistent biomarkers are found, there is much more
basic science work to be done in the metabolomics field to develop more targeted assays to
provide information about cancer vulnerabilities and enable a more selective targeting of a
metabolic pathway while preserving as much normal physiological function as possible.
During this process we shall also learn more about why established drugs work better for
some cancers. The main point being that the assays must eventually become standardized
and more uniform. If the ideas put forth in this last paragraph are seriously considered as
worthwhile, we believe that having metabolomics assays implemented in the clinical lab is
still very winnable.

11. Conclusions

In conclusion, serum metabolomics has a real potential for use as a cancer-screening
tool. Cancer tumors are distinguishable between different types of cancers based on histol-
ogy, genomic backgrounds and mutations, and also, as found in this review, their metabolic
phenotypes. The changes in metabolism are due to cancer cell reprogramming which
enables higher output of biomolecular building blocks necessary for increased proliferation
and ultimately, survival in terms of immune escape and the ability to metastasize. In addi-
tion, the metabolic output of disease-induced composition changes in the gut microbiota
play a role in the cancer metabolic phenotype. Serum metabolomics is a way to identify
cancer related changes due to both patient and gut mictobiota metabolic output. A simple
blood sample from a patent, coupled with trustworthy, uniform measurement procedures
may someday allow earlier cancer detection and better patient outcomes.
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