
1Scientific Reports |          (2019) 9:1643  | https://doi.org/10.1038/s41598-018-38338-0

www.nature.com/scientificreports

Differential sensitivity of bees 
to urbanization-driven changes 
in body temperature and water 
content
Justin D. Burdine    & Kevin E. McCluney

Predicting how species will respond to climate change and land use modification is essential for 
conserving organisms and maintaining ecosystem services. Thermal tolerances have been shown 
to have strong predictive power, but the potential importance of desiccation tolerances have been 
less explored in some species. Here, we report measurements of thermal and desiccation tolerances 
and safety margins across a gradient of urbanization, for three bee species: silky striped sweat bees 
(Agapostemon sericeus), western honeybees (Apis mellifera), and common eastern bumblebees 
(Bombus impatiens). We found significant differences in thermal tolerances, measured as critical thermal 
maximum (CTmax), amongst species. Bumblebees were the least sensitive to warming, with a higher 
CTmax (53.1 °C) than sweat bees (50.3 °C) and honeybees (49.1 °C). We also found significant differences 
in desiccation tolerances, measured as critical water content (CWC), between all species. Sweat bees 
were the least sensitive to desiccation, with the lowest CWC (51.7%), followed by bumblebees (63.7%) 
and honeybees (74.2%). Moreover, bumblebees and sweat bees were closer to their CTmax in more 
urbanized locations, while honeybees were closer to their CWC. These results suggest that bees have 
differential sensitivities to environmental change and managing for diverse bee communities in the face 
of global change may require mitigating both changes in temperature and water.

Climate change and land use modification can have negative consequences for many species, leading to local 
population declines1–3 and extinctions4. When certain taxa decline, the services they provide (e.g. pollination) 
can be disturbed or degraded5,6. While examples of population declines with climate change and land-use mod-
ification are accumulating1–3,7, proximate mechanisms mediating these declines are often unclear because very 
species-specific patterns occur. Understanding these mechanisms is vital to identifying actions that mitigate the 
potential losses of ecosystem services. Multiple studies have identified the importance of physiological tolerances 
in predicting species responses to global change3,8–11, as these tolerances demarcate the environmental conditions 
necessary for survival. However, the majority of studies investigating physiological tolerances focus on thermal 
tolerances12–14, while desiccation tolerances may be just as important.

Thermal tolerances are an important tool for investigating species responses to changes in temperature15–17. 
Critical thermal maximum (CTmax) and minimum (CTmin), and thermal safety margins are the most common 
metrics of physiological vulnerability to climate change for a variety of organisms13,18,19. CTmax is an organism’s 
upper sub-lethal temperature and CTmin the lower sub-lethal temperature20, and these are the temperatures at 
which an organism loses muscular control and suffers an ecological death. The difference between CTmax and 
CTmin is defined as the thermal range21. Thermal safety margin is defined as the differences between CTmax and 
either optimal body temperature, field body temperature, or air temperature, and offers a metric for under-
standing vulnerabilities to warming8. In general, thermal tolerance has been found to vary with natural tem-
perature gradients. Insects from high and low latitudes tend to have similar CTmax values, while CTmin declines 
with latitude18,22 and thermal safety margin increases with latitude18. CTmax has been shown to decreases with 
altitude13,23. There is also evidence that insect thermal tolerance varies across smaller climatic gradients24. Body 
size (surface-volume ratios) may also influence thermal tolerance, because smaller animals dissipate heat better 
but may be more prone to desiccation25.
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Desiccation tolerances may also be an important mediator of climate effects on species26, but few studies have 
explored desiccation in this context27–30, and little information exists about desiccation tolerance of animals in 
general31–35. Hadley34 reported that the majority of arthropods maintain a water content between 65 and 75%, 
while some arthropods may survive with a water content as low as 40%31. We know little about how desiccation 
tolerance varies with environmental gradients, but Hoffman et al.27 suggest that fruit fly desiccation tolerance 
declines with increasing precipitation in Australia. Weldon et al.36 provide evidence that desiccation tolerance 
varies geographically among populations of Mediterranean fruit flies. Moreover, McCluney et al. (2017) found 
that arthropod hydration decreased with urbanization and consequent warming in moist/mild cities (Raleigh, 
NC), but sometimes increased with urbanization in warmer cities (Phoenix, AZ; Orlando, FL). The observed 
variations in desiccation tolerance may be due to local adaptations, or plasticity37. These studies suggest that 
desiccation tolerance might be an important predictor of the effects of land use and climate change on animals. 
Desiccation may be particularly likely for smaller animals, like insects, due to their greater surface area to volume 
ratios and higher water loss relative to metabolic rate38.

Multiple metrics of desiccation tolerance have been employed by others. Many studies have used the time until 
50% of the animals die (LT50)27,39 for both desiccation and thermal tolerance measurements. However, another 
measure, body water content at death (critical water content, CWC), provides values comparable across studies. 
CWC is an experimental measurement of desiccation tolerance, or the lethal water content, calculated gravimet-
rically as the difference between wet and dry mass, divided by wet mass40. Unlike thermal safety margins, none 
have calculated a hygric safety margin (hygric = relating to moisture), which we have used in this study and define 
here as the difference between CWC and field body water content. This metric could be highly informative in 
predicting potential responses to climate change, complementing thermal analogs.

Urban environments are unique systems for examining how land use modification and climate change 
influence thermal and desiccation tolerances41. Summer urban heat islands (UHIs) in the USA typically gen-
erate a mosaic of hotter and cooler locations that differ, on average, by 1–4 °C from each other and form cooler, 
rural temperatures42. The intensity of UHIs is often influenced by the biome in which the city is located. Urban 
areas within regions dominated by temperate and mixed forest can experience temperature increases of 8 °C, 
while urban areas within desert regions experience less pronounced changes or temperature decreases in urban 
centers43. UHIs provides a gradient of temperatures44,45 that can replicate projected climate change41. Urban areas 
can also experience altered soil moisture46, and soil moisture is found to vary among habitat types within and 
among cities47. These changes in temperature and moisture availability can impact the field body water content 
of arthropods48. A recent study by Hamblin et al. (2017) found CTmax to predict population change for 15 bee 
species across an urbanization gradient. We know relatively little about bee thermal tolerances13,15,49,50, and even 
less about the desiccation tolerances of bees49, even though these factors may provide strong predictive power in 
explaining population declines or changes in distributions. Elevated temperatures due to UHI effects are likely to 
increase desiccation threats. Others have found that changes in insect water balance can have consequences on 
growth, reproduction, and survival51.

Here we examine how a gradient of urbanization (impervious surface, e.g. areas of pavement), in a 
medium-sized city, alters both the CTmax and CWC of three bee species: the silky striped sweat bee (Agapostemon 
sericeus), the western honeybee (Apis mellifera), and the common eastern bumblebee (Bombus impatiens). We 
combine measurements of thermal and water content limits with measurements of field body temperature 
and field water content, to quantify thermal and hygric safety margins. We test the relative importance of two 
competing hypotheses about limits and safety margins. First, thermal and water content limits may change 
rapidly within taxa due to changes in temperature and moisture conditions, with sensitivity decreasing with 
urbanization-induced warming and drying. In this case, thermal and hygric safety margins would not vary with 
urbanization because limits change in concert with field body temperature and water content (“shifting limits 
hypothesis,” i.e. limits are plastic). Second, thermal and water content limits may change slowly within taxa, being 
insensitive to urbanization-induced warming and drying. In this case, limits would not change with urbanization, 
even as average field body temperature or water content did change, and we would expect safety margins to be 
related to urbanization-induced warming or drying (“stable limits hypothesis,” i.e. limits are non-plastic).

Materials and Methods
Study Area.  Field body temperature and water content were measured in bees collected from 19 sites, and 
CTmax and CWC were measured on bees collected from a subset of sites, across the metropolitan region of Toledo, 
Ohio, USA (Fig. 1). Toledo has been shown to display urban heat island effects with 2 °C warmer mean annual 
temperatures52. Toledo has a 622.6 square-kilometer metropolitan area with a population of 507,643 residents and 
a large network of greenspaces (125 city parks and 150 urban gardens)53 that were used as sampling locations52 
Sites were selected by overlaying a grid over a map of Toledo in ArcGIS and numbering each grid cell (2 × 2 km). 
A random number generator was used to identify grid cells for sampling, and we chose a park or garden within 
each selected cell. We quantified imperviousness (land surfaces that prevent water infiltration) for each site using 
the percent developed imperviousness layer in the 2011 National Land Cover Dataset54 in ArcMap 10.3. We 
calculated local imperviousness (300 m radius) and landscape imperviousness (2000 m radius), as scale can be 
important in appropriately measuring the urban landscape for bees55.

Study Organisms.  We focused on the silky striped sweat bee (Agapostemon sericeus), western honeybee 
(Apis mellifera), and common eastern bumblebee (Bombus impatiens) due to the relative commonness of these 
species in parks and gardens across Toledo56. In general, sweat bees begin their activity in early to mid-Spring 
when temperatures reach 14 °C57, while bumblebees and honey bees are known to forage at much lower temper-
atures58. Most research on thermal tolerance in bees is focused on bumblebees and honeybees, and we included 
sweat bees because little is known of their physiological tolerances, they are abundant and widely distributed, and 
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they are smaller than the other species. These three species differ in size, foraging preference, sociality, and nest 
specificity59, increasing the likelihood of detecting differential responses among species.

Field Body Temperature and Water Content.  We hand collected sweat bees, honeybees, and bum-
blebees from a series of 19 sites from June-August 2016 using 120 ml specimen containers (QuickMedical 
Model#4256). Bees were sampled in the mornings on days with clear skies and temperatures above 22 °C. Upon 
capture, bees were anesthetized with CO2 to estimate body temperature using a thermocouple (Atkins 351/352) 
held between the thorax and abdomen for approximately 30 s. Surface temperatures of bees and other insects, at 
rest, have been found to be similar to internal body temperatures (within 1 °C)60,61. We then transported bees back 
to the lab in airtight vials (Pelco® Mini Vials) to prevent water loss, and placed the vials in a freezer for 24 hours 
prior to water content determination. Bee water content was calculated gravimetrically using an analytical bal-
ance (Mettler Toledo XPE56) with precision to one microgram. We calculated the water content of each bee as 
the difference in wet and dry mass divided by wet mass. To calculate dry mass, bees were placed into a drying 
oven (Thermo Fisher Scientific #151030520) set at 55 °C for at least 48 hours, and then reweighed48. We obtained 
estimates of water content from all 19 sites, but our temperature measurements are from only 13 sites. We were 
unable to take body temperature measurements at all 19 sites due to equipment availability.

Thermal and Water Content Limits Sampling.  To measure thermal and water content limits, we 
focused on 6 sites (3 urban, 3 rural) in the metropolitan region of Toledo (Fig. 1), that were selected based on 
the percent impervious surface within a 300 m radius of the site center (see Fig. 1). Urban sites had an average 
local impervious surface (300 m) of 57.79% ± 9.6, while rural sites had an average local impervious surface of 
23.24% ± 4.5. For each experiment, we collected 15 bees from each site of the same species identified above (five 
sweat bees, five honeybees, five bumblebees). At each site, we walked a linear transect starting at the site’s center 
and collected the first five bees of each species we encountered using 120 ml specimen containers. Upon collec-
tion, bees were placed in a cooler box without ice (25 °C) to standardize temperatures prior to each experiment, 
and immediately taken to Bowling Green State University. Bees were given a 1 M sucrose solution upon capture to 
ensure bee survival during transportation prior to thermal ramping and desiccation trials, which was especially 
important to ensure survival of honeybees50. All experimental trials began within two hours of collection. The 
collection period for bees in our thermal and hygric experiments occurred during September 6–22, 2016.

Thermal Tolerance Experiment.  We measured critical thermal maximum (CTmax) for each sampled bee 
with a temperature ramping experiment using an environmental chamber (Memmert HPP 750). The tempera-
ture ramp began at 25 °C and increased at a rate of 0.5 °C min−1, following standard methods20. Humidity was 
held constant at 30%. We used iButton® temperature and humidity data loggers (DS1923) to verify the condi-
tions of the environmental chamber. Bees were placed individually into a 120 ml specimen cup (QuickMedical 
Model#4256) with a mesh cover that allowed air temperatures within specimen cups to increase with the temper-
ature ramp. Additionally, the mesh top allowed us to easily test the righting response using a puff of air (Giottos 
AA1900). The loss of righting response indicates an endpoint when muscle functions begin to fail, and is com-
monly used to estimate CTmax

12,13. Bees unable to flip themselves upright within 15 seconds after receiving a puff 

Figure 1.  Map displaying site locations in Toledo, Ohio, with reference to the state of Ohio. Base layer 
coloration indicates percent impervious surface. Darker shades of red represent high impervious surface, and 
light shades represent low impervious surface. CTmax and CWC were determined for square sites (3 urban, 3 
rural). Field measurements body temperature and water content were measured at all 19 sites. This map was 
created using the 2011 National Landcover Dataset percent developed imperviousness layer54,81 in ArcGIS 
10.3.1.
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of air were considered to have lost the righting response. The temperature at which the righting response was lost 
was recorded as the CTmax, and bees were removed from the environmental chamber after this point. The tem-
perature ramp ended when all 90 bees had reached their CTmax (~2 hrs). All samples were immediately weighed 
and stored in air-tight vials after the temperature ramp ended. Bees were not given food or water during the 
temperature ramping period.

Desiccation Tolerance Experiment.  We measured critical water content (CWC) by placing a different 
set of 90 bees in a desiccation cabinet at 0% humidity and a constant temperature of 25 °C (well below CTmax). 
Humidity was maintained at 0% using Drierite (#60011T), and was verified using an iButton® temperature and 
humidity logger (DS1923). Bees were placed individually into the same 120 ml specimen cups used in the CTmax 
experiment and checked on an incremental timescale as follows: (1) every 15 minutes, (2) every 30 minutes, (3) 
every 1 hour, (4) every 3 hours, (5) every 6 hours, and (6) every 12 hours. We performed three checks of each time 
period. Each check lasted approximately five minutes, and we tested the bees’ righting response and removed 
unresponsive bees. Immediately after removal from the desiccation cabinet, bees were placed into pre-weighed 
Pelco® Minivials for water content determination.

Thermal and Hygric Safety Margins.  We calculated thermal and hygric safety margins as measures of the 
proximity of bees to limits8. Thermal safety margins were calculated as the difference in the measured field body 
temperature and the 90th percentile CTmax. Hygric safety margins were calculated similarly as the difference in the 
measured field water content and the 10th percentile CWC. Using 90th and 10th percentiles, respectively, prevented 
us from using abnormally tolerant individuals to estimate safety margins, while simultaneously preventing neg-
ative safety margins (see Mccluney et al. 2017) that might have arisen had we used mean CTmax or CWC values.

Statistical Methods.  All statistical tests were conducted in the R statistical environment (version 3.1.3). We 
used the nlme package62 to fit linear mixed effects models (lme), comparing CTmax and CWC among bee species 
(A. sericeus, A. mellifera, B. impatiens) and site class (rural, urban), and the interaction effect between species 
and site class. We included site ID as a random effect to account for inclusion of multiple bees per site. Post-hoc 
Tukey multiple comparison of means (glht) tests, in the multcomp package63, were used following significant main 
effects.

Linear mixed effects models were also used to examine relationships between thermal and hygric safety mar-
gins and our urbanization metrics (local imperviousness, landscape imperviousness), with site as a random effect 
to account for inclusion of multiple bees per site. We also used linear mixed effects models to test for relationships 
between safety margins and bee mass, including site and bee species as random effects. We tested for the signifi-
cance of fixed effects via likelihood ratio tests with removal of the fixed effect from the model64. Significance was 
indicated and discussed at α = 0.05 for a test of the core hypotheses, and at α = 0.1 as a threshold for patterns 
that could be further explored in the future. Assumptions of normality were checked via examination of plots of 
residuals, and measures of hygric safety margins were logit transformed.

Results
Critical Thermal Maximum (CTmax).  We measured CTmax for 88 bees (30 sweat bees, 30 honeybees, 28 
bumblebees). Our measurements varied significantly between species (df = 2, χ2 = 6.56, p = 0.038; Fig. 2A). A 
post-hoc test revealed that bumblebees had significantly higher CTmax than honeybees and sweat bees, but there 
was no difference between honeybees and sweat bees. Although we did not detect a significant difference in 
CTmax between urban and rural sites at α = 0.05 (df = 1, χ2 = 3.84, p = 0.05; S1), a strong trend was apparent in 
mean CTmax between urban (52.0 °C ± 0.76) and rural sites (49.6 °C ± 1.1). We found no difference in the slope 
of the relationship between urbanization and CTmax between species (Urbanization x Species: df = 2, χ2 = 0.745, 
p = 0.69). We also found no significant relationship between CTmax and bee mass (df = 1, χ2 = 2.357, p = 0.125, 
R2 = 0.02). Bee mass did not differ between urban and rural sites (df = 1, χ2 = 0.488, p = 0.485), but we did find 
significant differences in mass between species as expected (df = 2, χ2 = 139.8, p < 0.001). Bumblebees had the 
largest mass (44.97 mg ± 2.81), followed by honeybees (31.39 mg ± 0.46), and sweat bees (4.00 mg ± 0.44).

Critical Water Content (CWC).  We measured CWC for a different set of 89 bees (30 sweat bees, 30 honey-
bees, 29 bumblebees), and our measurements varied significantly between species (df = 2, χ2 = 77.81, p < 0.001; 
Fig. 2B). A post-hoc multiple comparisons test showed significant differences in CWC between all bee spe-
cies. Sweat bees had the lowest CWC (highest tolerance), and honeybees the highest CWC (lowest tolerance). 
However, we did not detect a significant difference in CWC between bees from urban and rural sites (df = 1, 
χ2 = 3.26, p = 0.071), and we found no interaction between species and urbanization (df = 2, χ2 = 2.44, p = 0.29). 
We also found no relationship between CWC and bee mass (df = 1, χ2 = 1.94, p = 0.16; R2 < 0.001).

We also found significant differences between species in the length of time they survived in the desiccation 
cabinet (df = 2, χ2 = 9.87, p = 0.007). A post-hoc multiple comparisons test found sweat bees (39.5 hours ± 8.03) 
to have longer survival times than honeybees (12.3 hours ± 6.85) (p = 0.005), and statistically similar survival 
times to bumblebees (19.5 hours ± 2.65) (p = 0.057). We found no differences in survival times between hon-
eybees and bumblebees (p = 0.70). We also found no differences in survival times between bees collected from 
urban and rural sites (df = 1, χ2 = 0.71, p = 0.40).

Thermal Safety Margin.  We calculated thermal safety margins for 52 bees (22 bumblebees, 21 honeybees, 
9 sweat bees) taken from 13 sites that varied in the amount of impervious surface present around our collection 
sites (our metric of urbanization) at the local (300 m radius) and landscape (2 km radius) scale. Thermal safety 
margins declined with increasing impervious surface, but bee species differed in the strength of this response 
(Table 1). Overall, bumblebees (29.38 °C ± 0.38) had the largest thermal safety margin followed by honeybees 
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(26.95 °C ± 0.37) and sweat bees (24.91 °C ± 0.47). We found thermal safety margin declined with local (300 m) 
imperviousness for both bumblebees (Fig. 3D) and sweat bees (Fig. 3C), but not for landscape imperviousness. 
For honeybees, thermal safety margin was not associated with imperviousness at either scale. Overall, we found 
no relationship between thermal safety margin and bee mass (df = 1, χ2 = 1.93, p = 0.165, R2 = 0.02).

Hygric Safety Margin.  We calculated hygric safety margins for 88 bees (42 bumblebee, 24 sweat bees, 22 
honeybees) taken from 19 sites that varied in the amount of impervious surface present around our collection 
sites (our metric of urbanization). Hygric safety margin varied interactively with imperviousness and bee spe-
cies at the landscape level (df = 2, χ2 = 9.014, p = 0.01; Table 1). Sweat bees had the largest hygric safety margin 
(26.15% ± 1.22), followed by bumblebees (5.25% ± 0.46) and honeybees (2.50% ± 0.45). For honeybees, hygric 
safety margin declined with landscape imperviousness at α = 0.05 (df = 1, χ2 = 8.847, p = 0.003; Fig. 3A), with 
a similar trend for local imperviousness at α = 0.1 (df = 1, χ2 = 2.81, p = 0.094; Fig. 3B). For sweat bees and 
bumblebees, we found no associations between imperviousness and hygric safety margin. Overall, we found 
no significant relationship between hygric safety margin and bee mass (df = 1, χ2 = 0.06, p = 0.807; R2 < 0.001). 
Field water content did not differ between urban and rural sites (df = 1, χ2 = −311.34, p = 0.91), but we did find 
significant differences in field water content between species (df = 2, χ2 = −253.04, p < 0.001). Sweat bees had the 
lowest field water content (59.3% ± 1.2), followed by bumblebees (65.6% ± 0.4), and honeybees (70.1% ± 0.46).

Figure 2.  Differences across bee species for thermal and hygric limits. (A) CTmax was significantly different 
between species (χ2 = 6.56; p = 0.038), and bumblebees had a higher CTmax than honeybees and sweat bees; (B) 
CWC was significantly different between all species (χ2 = 77.81; p < 0.001) and sweat bees had the lowest CWC; 
(C) thermal safety margins were significantly different across all species (χ2 = 55.62; p < 0.001), and honeybees 
had the largest thermal safety margin; and (D) hygric safety margin was significantly different across all species 
(χ2 = 97.433; p < 0.001), and sweat bees had the largest hygric safety.
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Discussion
Overall, we found that bee species differ in their thermal limits and water content limits, and their proximity to 
those limits, with certain species (honeybees) being more susceptible to desiccation than to extreme temper-
atures. This points out the need to better investigate desiccation, along with temperature, as potential mecha-
nisms underlying the biological effects of global change. We also found that all three species were closer to their 
physiological limits (either thermal or hygric) with increasing urbanization (local or landscape imperviousness), 
and that thermal and hygric limits did not vary significantly with urbanization, supporting the “stable limits 
hypothesis”.

The proximity of honeybees to their water content limits in highly urbanized areas likely represents a high 
risk for population declines during a drought or heat wave (due to increased water loss rates). However, given 
that bumblebees and sweat bees were not close to their thermal limits, and that physiological performance often 
increases as an animal approaches its thermal limits18,65, the increasing proximity to thermal limits for these two 
species may actually represent a benefit rather than an increased risk. Essentially, warming related to urbanization 
may benefit bumblebees and sweat bees in cool cities like Toledo, Ohio (<15 days per year above 32 °C), com-
pared to many other US cities. However, we suggest that if increased proximity to thermal limits with urbaniza-
tion also occurs in warmer cities, urbanization may represent substantial increased risk of population declines in 
those cities. This hypothesis needs further testing, but is supported by research from a warmer, southeastern US 
city, Raleigh, NC, USA, where critical thermal maximum (CTmax) was a strong predictor of species presence with 
increased urbanization15.

Thermal Tolerance.  We found no significant differences in CTmax between urban and rural sites. Others 
have found CTmax to vary with natural temperature gradients, such as elevation13 and latitude66, and multiple 
studies have identified patterns between CTmax and urbanization15,17,67,68. For example, Diamond17 found differ-
ences in CTmax between urban and rural acorn ants, and attributed these differences to evolved plasticity to local 
environmental conditions. Angilletta68 found urban ants more heat tolerant than rural ants, but were unable to 
determine whether the differences were attributed to environmental or genetic effects. These studies seem to 
support the “shifting limits hypothesis”. We hypothesize that bee movement distances may help explain why we 
found stronger effects on safety margins than limits. Research suggests that bee body size predicts foraging dis-
tance69, and the species used in our study are relatively large bees. Greater mobility may prevent local adaptation 
or even local acclimation, as mobile species encounter both very urbanized and poorly urbanized landscapes, and 
have greater ability to evade lethal conditions. In addition, any small amount of local adaptation could be erased 
by genetic mixing. Results might be different for small bees (i.e. Lasioglossum) with short foraging ranges (sensu 
local adaptation was observed for acorn ants in Diamond17). In addition, results may be different with a larger 
sample size, or at sites with more extreme levels of impervious surface as others have found when using rural sites 
with 0% impervious surface17.

We note that bumblebees had higher CTmax than both honeybees and sweat bees, independent of urbaniza-
tion. Others have found CTmax to increase with bee size13, although the exact mechanism is unclear. We found no 
significant relationship between bee mass and CTmax, when controlling for species. Furthermore, sweat bees were 
the smallest bees measured and their CTmax was not significantly different from honeybees. Hamblin et al. found 
sociality to be an important factor in heat tolerance15, and our results offer some support for the importance of 
sociality in heat tolerance. Honeybees are eusocial and thermoregulation has been commonly observed in hon-
eybee colonies70,71. While thermoregulation has also been observed for some bumblebee species72,73, we suggest 

Model Component Removed df ΔAIC LRT(χ2) P-Value

Hygric Safety Margin ~ Local

Species * Local 2 204.51 3.361 0.186

Species 2 296.09 95.584 <0.001

Local 1 205.47 2.962 0.085

Hygric Safety Margin ~ Landscape

Species * Landscape 2 200.85 9.424 0.01

Species 2 294.28 97.433 <0.001

Landscape 1 205.47 6.623 0.01

Thermal Safety Margin ~ Local

Species * Local 2 183.47 0.457 0.796

Species 2 235.09 55.623 <0.001

Local 1 186.42 3.951 0.047

Thermal Safety Margin ~ Landscape

Species * Landscape 2 186.67 0.570 0.752

Species 2 235.51 52.842 <0.001

Landscape 1 185.42 0.749 0.387

Table 1.  Results of linear mixed effects models comparing thermal and hygric safety margins to local (300 m) 
and landscape (2 km) imperviousness. Each model begins with interaction terms, followed by the effect of each 
component removed individually. Significant results with a p-value < 0.05 are in bold.
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that highly social honeybees may experience less selection pressure for increased CTmax than bumblebees, due to 
hive thermoregulation.

Desiccation Tolerance.  Although little research has been done on critical water content (CWC), the val-
ues we collected for bee water content are generally consistent with the reporting of other studies on arthro-
pods32–34,40. While CWC values for sweat bees are consistent with the other arthropod taxa mentioned above, 
honeybees and bumblebees have much higher CWC. Other research has documented particularly high water 
loss rates in honeybees49, and here we find that they are relatively intolerant of desiccation. It is also interesting to 
note that honeybees and bumblebees have a tight range of tolerance, suggesting relatively little variation in water 
content limits in these populations.

Our research suggests key unanswered questions about CWC that future research should investigate. For 
instance, a better understanding of mechanistic drivers of variation in CWC is needed in general, including for 
bees. Following earlier work on other arthropods34, we suggest CWC may be associated with functional traits like 
cuticular hydrocarbon content, physiological stress response pathways, coloration, or other traits, with a variable 
degree of genetic influence. Moreover, our work suggests there may be a tradeoff between CWC and CTmax (bees 
were either more sensitive to heat or desiccation). But these ideas are in need of further, more explicit testing.

Thermal and Hygric Safety Margins.  We found evidence that all species of bees have decreased safety 
margins with increasing urbanization. At high impervious sites, bumblebees and sweat bees were both closer 
to their thermal limit, and honeybees were closer to their hygric limit. These results have several significant 
implications.

Figure 3.  Significant relationships between safety margins (thermal and hygric) and imperviousness (local and 
landscape) for each bee species. (A) Honeybee hygric safety margin is significantly associated with landscape 
imperviousness at α = 0.05 (χ2 = 8.847, p = 0.003, R2 = 0.19); (B) Honeybee hygric safety margin is also 
associated with local imperviousness at the α = 0.1 level (χ2 = 2.81, p = 0.094, R2 = 0.04); (C) Sweat bee thermal 
safety margin is significantly associated with local imperviousness (χ2 = 6.28, p = 0.012, R2 = 0.49); and (D) 
Bumblebee thermal safety margin is significantly associated with local imperviousness (χ2 = 4.905, p = 0.027).
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First, many studies have shown that urban areas are able to support diverse bee communities74,75, particularly 
bumblebees55,76,77. The observed positive effects are typically thought to be due to increased floral resources or 
nest site availability in urbanized regions56,78,79. However, our research suggests that associations between urbani-
zation and bumblebee thermal physiology could be beneficial or harmful depending on the typical regional tem-
peratures, altering thermal safety margins. Although bees function as facultative endotherms in flight, the body 
temperatures of flying bees increase with environmental warming25. Populations of both bumblebees and sweat 
bees may benefit from urbanization in cool regions, because higher ambient temperatures bring bees towards 
optimal operative temperatures. But these same species may be harmed by urbanization in warmer cities where 
bees are already near optimal operative temperatures. Likewise, in warm cities, these species may have reduced 
capacity to tolerate further increases in temperature associated with climate change or heat waves. Efforts to 
increase green spaces and shade within warm cities could help bees thermoregulate14 and reduce risk. Although 
we did not investigate CTmin (e.g. cold resistance) in this study, urban warming may lead to higher CTmin values 
and an overall decrease in thermal tolerance range, a as has been shown in ants17.

Second, we found that honeybees were closer to their hygric limits with increasing urbanization, causing them 
to be on the edge of their desiccation tolerance. Although bees drink a nectar diet and produce metabolic water, 
they can regularly become dehydrated in the field25. Water drinking behavior has been observed in honeybees80 
and this is consistent with their low desiccation tolerance. Here we also show that honeybees are unable to main-
tain their water content with increasing urbanization, even in this relatively cool, mesic city. This suggests that 
metabolic water production may be insufficient to prevent dehydration, in honeybees. Thus, urban gardeners in 
any city may want to consider providing water sources for honeybees.

Finally, we note that although bumblebee hygric safety margins were not associated with urbanization, bum-
blebees had narrow hygric safety margins overall. This suggests that bumblebees are able to maintain their water 
content with increasing urbanization in this cool, mesic city, but urban bumblebees may be at greater risk in drier 
or hotter cities or during heatwaves or droughts.

Conclusion.  Here, we provide the first measurements of bee CWC and one of only a small number examin-
ing bee CTmax (only one other in an urban context). Interesting insights emerge from these investigations. First, 
we found that species differ in their thermal and desiccation tolerance and in their safety margins. Honeybees 
may be particularly sensitive to desiccation associated with urbanization and climate change, while sweat bees 
may be more sensitive to temperature changes. More research is needed to determine whether bumblebees are 
more sensitive to changes in temperature or water balance. This is because, for bumblebees, we found a decline in 
thermal safety margins, but not hygric safety margins, with urbanization, but overall hygric safety margins were 
much narrower than their thermal safety margins, indicating potential susceptibility to changes in water balance.

Overall, we argue that a physiological approach provides important information about how bees may respond 
to changes in climate and land use. Additionally, our research highlights that water balance should not be ignored. 
Moreover, if changes in bee thermal and water physiology associated with land use or climate change alters bee 
communities, there could be significant economic consequences related to altered pollination services. Thus, 
physiological approaches could prove useful in developing strategies to maintain key ecosystem services under 
climate and land use change.

Data Availability Statement
All data analyzed in this study will be made available in supplementary files.
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