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Quantum theory of the nonlinear Hall effect
Z. Z. Du1,2, C. M. Wang1,2,3, Hai-Peng Sun1,2, Hai-Zhou Lu 1,2✉ & X. C. Xie4,5,6

The nonlinear Hall effect is an unconventional response, in which a voltage can be driven by

two perpendicular currents in the Hall-bar measurement. Unprecedented in the family of the

Hall effects, it can survive time-reversal symmetry but is sensitive to the breaking of discrete

and crystal symmetries. It is a quantum transport phenomenon that has deep connection with

the Berry curvature. However, a full quantum description is still absent. Here we construct a

quantum theory of the nonlinear Hall effect by using the diagrammatic technique. Quite

different from nonlinear optics, nearly all the diagrams account for the disorder effects, which

play decisive role in the electronic transport. After including the disorder contributions in

terms of the Feynman diagrams, the total nonlinear Hall conductivity is enhanced but its sign

remains unchanged for the 2D tilted Dirac model, compared to the one with only the Berry

curvature contribution. We discuss the symmetry of the nonlinear conductivity tensor and

predict a pure disorder-induced nonlinear Hall effect for point groups C3, C3h, C3v, D3h, D3 in

2D, and T, Td, C3h, D3h in 3D. This work will be helpful for explorations of the topological

physics beyond the linear regime.
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The recently discovered nonlinear Hall effect1–22 is a new
member of the Hall family23–26. It is characterized by a
nonlinear transverse voltage (or current) in response to

two ac currents (or electric fields). The nonlinear Hall effect does
not require breaking time-reversal symmetry but inversion
symmetry. More importantly, this effect is an unconventional
response sensitive to the breaking of discrete and crystal sym-
metries and thus can be used to probe phase transitions induced
by spontaneous symmetry breaking, such as ferroelectric27 or a
space symmetry-related hidden order transition28,29. It has
recently been proposed that the nonlinear Hall effect can also be
used to probe the quantum critical point3,6,17 and Néel vector
orientation in antiferromagnets18. Various related phenomena
have also been proposed, such as the gyrotropic Hall effect30, the
Magnus Hall effect31, and the nonlinear Nernst effect32,33.

The nonlinear Hall effect has a quantum nature because of its
connection with the Berry curvature dipole. The Berry curvature
can be regarded as a magnetic field in parameter space (e.g.,
momentum space). It describes the bending of parameter spaces,
arising from the geometric structure of quantum eigenstates. The
Berry curvature dipole describes the dipole moment of the Berry
curvature in momentum space1. In addition, the nonlinear Hall
effect is a quantum transport phenomenon near the dc limit
because of the extremely low frequency (~10 to 1000 Hz) of the
input currents in experiments7,8,34–41. The importance of the
quantum description of dc quantum transports has been well
acknowledged42. Despite its quantum nature, by far there are only
semiclassical theories based on the Boltzmann equations under
the relaxation time approximation1,6,9–11,30,43. There has been a
tendency towards a quantum description of the nonlinear Hall
effect10,11. A new side-jump contribution without semiclassical
correspondence has also been discovered10. However, a sys-
tematic quantum theory of the nonlinear Hall effect that can
explicitly describe the disorder effects is yet to be developed.

In this work, we construct a quantum theory for the nonlinear
Hall effect using the diagrammatic technique. Unlike the bubble
diagrams of the linear-response theory, the quadratic responses
are described by triangular and two-photon diagrams, repre-
senting two inputs and one output. We identify 69 Feynman
diagrams that contribute to the leading nonlinear responses in the
weak-disorder limit, including the intrinsic, side-jump, and skew-
scattering contributions (Fig. 1). Quite different from nonlinear
optics44–48, 64 out of these diagrams account for the disorder
effects, which are decisive for electronic transport. We formulate
the diagrams for a generic two-band model and apply them to
calculate the nonlinear Hall conductivity of a disordered 2D tilted
Dirac model. The general formulas obtained from the diagram-
matic calculations can be directly adopted by the first-principles
calculations. According to the symmetry of the diagrams, we
perform a symmetry analysis of the nonlinear Hall response
tensor for all of the 32 point groups (see Table 1 for 2D and
Supplementary Table 2 for 3D).

Results
Nonlinear response and Feynman diagrammatics. In response
to ac electric fields along with the b and c directions, the nonlinear
electric current along the a direction can be formally written as
(Supplementary Note 2)

Re½J ð2Þa ðtÞ� ¼ ξabcEbEc cos½ðωb � ωcÞt�
þ χabcEbEc cos½ðωb þ ωcÞt�;

ð1Þ

where {a, b, c}∈ {x, y, z}, Eb;c and ωb,c are the amplitudes and
frequencies of the electric fields, respectively. For a mono-
frequency electric field input, ξabc and χabc are the zero- and
double-frequency responses, respectively, and we should have
ξabc= χabc by definition when ωb= ωc= 0. In experiments, it is
more convenient to measure the double-frequency response,

Fig. 1 Feynman diagrams for the nonlinear Hall conductivity. The Eigen bands of a generic two-band model are labeled as ± and the Fermi energy is
assumed to cross the+ band. a–d are the triangular diagrams and e–h are the two-photon diagrams. These diagrams can be classified into intrinsic (a and
e), side-jump (b and f), intrinsic skew-scattering (c and g), and extrinsic skew-scattering (d and h) contributions. The solid lines stand for the Matsubara
Green’s function of the+ or− band. The dashed lines represent the disorder scattering. The gray and green shadows represent the vertex and edge
corrections, respectively. The triangular diagrams can be labeled as both clockwise and anticlockwise arrows48,50,54–56, which we count as one diagram.
The symbols↻ × 3, ↕ × 2, and↔ × 2 represent the threefold permutation, up-down and left-right reverse of the scattering kernel and accordingly the labels
of the Green’s functions and vertices. These symbols give the number of each type of diagram. For example, a has three diagrams by threefold
permutations of the {− ,+ ,+} labels. All of these diagrams can be found in Supplementary Figs. 5–9 (triangular) and 11–15 (two-photon).
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which is less sensitive to low-frequency noises, so we focus on
χabc.

It has been pointed out that48,49, in order to compute a gauge
invariant nonlinear conductivity up to quadratic order in electric
fields, one should expand the vector potential A in the Peierls
substituted Hamiltonian Ĥðk þ eA=_Þ up to the third order,
where−e is the electron charge. These high-order terms are
proportional to the tensor generalization (v̂ab ¼ ∂bk∂

a
kĤ=_2 and

v̂abc ¼ ∂ck∂
b
k∂

a
kĤ=_3) of the velocity operator v̂a ¼ ∂akĤ=_, where

∂ak � ∂=∂ka, v̂ab and v̂abc correspond to the two- and three-photon
processes, respectively. To achieve a divergent free description in
the dc limit, one needs to treat all the coupling vertices on the
same footing. After a lengthy calculation (Supplementary Note 2),
one can obtain the quadratic conductivity in the dc limit as50

χabc ¼ χIabc þ χIIabc þ χIIIabc,

[dk]≡ dnk/(2π)n with n for the dimensionality, ImðÔÞ � ðÔ�
ÔyÞ=2i for an operator Ô, Ĝ

R=AðεÞ is the retarded/advanced
Green’s function, and f ðεÞ ¼ 1=f1þ exp½ðε� εFÞ=kBT�g is the
Fermi distribution with the Fermi energy εF. χIabc and χIIabc are the
Fermi surface contributions, where χIabc describes the triangular
diagrams while χIIabc describes the two-photon diagrams. The
diagrammatic representation of χIabc and χIIabc are not standard but
effective one obtained from analytical calculations (Supplemen-
tary Note 2). χIIIabc is the Fermi sea contribution, in which all the
terms depend on the products of Ĝ

R
only or Ĝ

A
only. It can

be shown that terms in χIIIabc are one order smaller than the

leading terms in χIabc and χIIabc in the weak-disorder limit51, we can
hence neglect the Fermi sea contributions in the low-frequency
transports. By transforming into the eigenstate basis, we can
describe different mechanisms of the nonlinear Hall conductivity
explicitly within the diagrammatic approach. In the weak-
disorder limit, only the contributions in the leading order of
the impurity concentration ni are important, and thus the
diagrams are selected according to their ni dependence (see
Methods). The relevant diagrams for time-reversal symmetric
systems are shown in Fig. 1, which can be further classified into
intrinsic, side-jump, and skew-scattering diagrams according to
their correspondences in the semiclassical descriptions.

Generic model and disorder. We consider a generic two-band
model as a building block for realistic systems

Ĥ ¼ h0 þ hxσx þ hyσy þ hzσz; ð5Þ

where σx,y,z are the Pauli matrices, h0 and hx,y,z are functions of
the wave vector k= (kx, ky, kz). The model describes two energy
bands (denoted as ±) with the band dispersions ε±k ¼ h0 ± hk ,

where hk � ðh2x þ h2y þ h2zÞ
1=2

. The disorder is modeled as δ-
function scatters Vimp(r)=∑iViδ(r− Ri) with a random dis-
tribution Ri and the disorder strength Vi satisfying 〈Vi〉= 0,
hV2

i i ¼ V2
0, and hV3

i i ¼ V3
1, where 〈. . . 〉 means the ensemble

average over disorder configurations. Up to the leading order, the
disorder scattering has two types of correlation: one correlates
two scattering events (Gaussian disorder distribution), and the
other correlates three scattering events (non-Gaussian disorder
distribution).

The above considerations allow us to identify the physical
mechanism of each diagram (see Methods) and derive the
expressions of the nonlinear Hall conductivity for the generic
two-band model (Supplementary Note 3 and 4). The intrinsic
part up to the leading order is only contributed by Fig. 1a and is
still proportional to the Berry curvature dipole, its expression
within the quantum theory is

χinabc ¼ � e3

4_

Z
½dk�τþk f 0ðεþk ÞεabdΩþ

dk~v
þþ
ck þ b $ c; ð6Þ

where f 0ðεÞ � ∂f ðεÞ=∂ε, εacd is the Levi-Civita antisymmetric
tensor, τþk is the scattering time, Ωþ

ak is the Berry curvature, and
~vþþ
ak is the vertex-corrected diagonal velocity. As we do not
assume a detailed vertex-correction form of ~vþþ

ak that corresponds
to the gray shadow in Fig. 1a, many possible quantum corrections
can in principle be accounted in forms of ~vþþ

ak . More strikingly,

Table 1 Nonzero nonlinear Hall response elements in 32
point groups (2D). The matrices are defined in Eq. 10. The
elements that exist in χex but vanish in χin are highlighted in
bold. The Cn axis is assumed in order as the z-, x-, and y-
axis, the mirror plane σv is assumed in order as the yz- and
zx-plane and the mirror plane σh is assumed as the xy-plane.

Class/Group Extrinsic contribution Intrinsic contribution

Triclinic/C1 χexxxx χexxxy χexxyy
χexyxx χexyyx χexyyy

� �
0 �χ inyxx χinxyy
χinyxx �χ inxyy 0

 !

Monoclinic/C1v 0 χexxxy 0
χexyxx 0 χexyyy

� �
0 �χinyxx 0
χinyxx 0 0

 !

Trigonal/C3
Hexagonal/C3h

χexxxx �χexyyy �χexxxx
�χexyyy �χexxxx χexyyy

� �
0

Trigonal/C3v
Hexagonal/D3h

0 �χexyyy 0
�χexyyy 0 χexyyy

� �
0

Trigonal/D3
χexxxx 0 �χexxxx
0 �χexxxx 0

� �
0

where

χIabc ¼ � e3_2

4π

Z
½dk�

Z 1

�1
dε

∂f ðεÞ
∂ε

Im Tr v̂a
∂Ĝ

RðεÞ
∂ε

v̂bĜ
RðεÞv̂cĜ

AðεÞ
" #( )

þ b $ c; ð2Þ

χIIabc ¼ � e3_2

8π

Z
½dk�

Z 1

�1
dε

∂f ðεÞ
∂ε

Im Tr v̂a
∂Ĝ

RðεÞ
∂ε

v̂bcĜ
AðεÞ

" #( )
þ b $ c; ð3Þ

χIIIabc ¼ � e3_2

8π

Z
½dk�

Z 1

�1
dεf ðεÞIm Tr v̂a

∂2Ĝ
RðεÞ

∂ε2
v̂bcĜ

RðεÞ
((

þ 2v̂a
∂

∂ε

∂Ĝ
RðεÞ
∂ε

v̂bĜ
RðεÞ

" #
v̂cĜ

RðεÞ
))

þ b $ c; ð4Þ
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the side-jump and skew-scattering parts include qualitatively new
contributions that go beyond the semiclassical description
(Supplementary Note 3 and 4). Especially, the contribution from
the two-photon diagrams is related to the leading ω-dependent
part of the vertex correction, which is a peculiar feature of
nonlinear transports. As the semiclassical description of the
nonlinear Hall effect is obtained by generalizing the modern
semiclassical theory of the anomalous Hall effect52 to the
nonlinear response regime, this qualitative inconsistency indicates
that a proper semiclassical theory of the nonlinear Hall effect
warrants some special considerations.

Nevertheless, we find that the quantum theory does not modify
the scaling law because the scaling behavior is determined by the
order of the disorder-dependence of each mechanism9,38, while so
far we find that the disorder dependence is the same for the
semiclassical and quantum theories.

Simplified representation of the Feynman diagrams. For a
better understanding of the side-jump and skew-scattering dia-
grams, it is desirable to introduce some quantities that can simplify
the diagrammatic representation. The 16 disorder-related diagrams
of the anomalous Hall effect can be simplified into 3 by introducing
the side-jump and skew-scattering velocities vsja and vska . As the two-
photon diagrams of the nonlinear Hall effect share the same Green’s
function parts as those of the anomalous Hall effect, these diagrams
can also be simplified by introducing vsja and vska but with an
additional tensor generalization of the side-jump velocity vsjab as
shown in Fig. 2e, f. To simplify the triangular diagrams, we have
introduced the modified off-diagonal, side-jump, and skew-
scattering velocities ~vþ�

a , ~vsja , and ~vska , respectively. By introducing
these quantities we can simplify the 46 disorder-induced triangular
diagrams into 16 as shown in Fig. 2b, c (Supplementary Note 6).

Other than reducing the number of diagrams, the simplified
representation of the diagrams highlights the qualitative differ-
ence between the nonlinear Hall diagrams and the anomalous
Hall ones. Although ~vsja and ~vska can be considered as the
generalization of vsja and vska , the disorder modification compli-
cates the quantum results so much that they are very different
from their semiclassical counterparts. In addition, the ~vþ�

a related

diagrams obviously do not have any linear counterpart. More
interestingly, these simplified diagrams show similar structures as
the intrinsic triangular diagrams, although the ~vþ�

a related skew-
scattering diagrams do not contribute to the nonlinear Hall
conductivity within our simple considerations. Another impor-
tant difference comes from the diagrams with the indecompo-
sable self-energy Σkk0k00 . Although it also vanishes in our
consideration, this type of diagrams can be important once we
go beyond the non-crossing approximation. This simplified
representation of the nonlinear Hall diagrams is general and is
not restricted by models or approximations.

Application to the 2D tilted Dirac model. For an intuitive
estimate of the quantum contributions, we apply the diagrams to
calculate the nonlinear response for the 2D tilted Dirac model,
whose Hamiltonian can be obtained by letting

h0 ¼ tkx; hx ¼ vkx; hy ¼ vky; hz ¼ m ð7Þ
in Eq. 5 with the model parameters t, v, and m. This is the
minimal model of the nonlinear Hall effect because it has strong
Berry curvature and has no inversion symmetry1,6,7. t/v measures
the tilt of the Dirac cone along the x direction, which breaks
inversion symmetry. 2m is the band gap6. A single 2D Dirac cone
does not have time-reversal symmetry. Time-reversal symmetry is
satisfied by including its time-reversal partner (m→−m, t→
− t) at opposite regions of the Brillouin zone7, which contributes
the same nonlinear Hall response by symmetry.

With the help of effective diagrammatics, the nonlinear Hall
conductivity χyxx of the 2D Dirac model at zero temperature can
be obtained (Supplementary Note 8), as shown in Fig. 3. Within
the non-crossing approximation, the intrinsic contribution from
the quantum theory is identical to the result from the
semiclassical theory1 (Fig. 3a). However, the side-jump and
skew-scattering contributions calculated by the quantum theory
demonstrate opposite signs, compared to the semiclassical results
(Fig. 3b, c). As a result, the nonlinear Hall conductivity also has
opposite signs for the semiclassical and quantum theories
(Fig. 3d). Different from the semiclassical results, the total
quantum result shares the same sign and similar line shape with
the intrinsic contribution but with a greater magnitude. The sign

Fig. 2 Simplified Feynman diagrams for the nonlinear Hall conductivity. The simplified triangular (a–c) and two-photon (d–f) diagrams after the
redefinition of the vertex functions. The gray shadow represents the modified diagonal velocity that has appeared in Fig. 1, while the orange, green, and blue
shadows represent the newly defined modified off-diagonal, side-jump, and skew-scattering velocities respectively. Σkk0k00 is the indecomposable self-
energy. The symbols ↻ × 3 and ↕ × 2 are the same as those in Fig. 1, and vertex × 2 in b means that for the shown diagram one can label either vþ�

a or v�þ
b

as the modified off-diagonal vertex. Detailed definition of each quantity within the non-crossing approximation and all the simplified diagrams can be found
in Supplementary Note 6.
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change from the semiclassical theory to the quantum theory is
partially supported by another work beyond the semiclassical
theory, where a tendency of the sign change is observed as the
quantum description comes in11. Our calculation results then
provide an explanation on the fact that although the scaling
experimental results indicate comparable intrinsic and disorder-
induced contributions8, the qualitative feature of the nonlinear
Hall effect can still be well described by the Berry curvature dipole
in bilayer WTe26,7.

Our quantitative results come from a case study, which
unnecessarily includes certain approximations on the methods
and models. As the competition between the intrinsic and
extrinsic mechanisms may be different from case to case, future
studies are needed to reveal the possible general rules. Never-
theless, our calculation clearly shows that the quantum descrip-
tion is very important for the nonlinear Hall effect, especially
when the disorder effects are relevant.

Symmetry aspects of the nonlinear response. According to our
diagrammatic results, the disorder-induced extrinsic contribution
to the quadratic nonlinear conductivity is a rank-three tensor
with the constraint χexabc ¼ χexacb, while the intrinsic contribution
related to the Berry curvature dipole has extra antisymmetric
properties under the label exchanges a↔ b or a↔ c, as described
by

χexabc ¼ Tabc þ Tacb; ð8Þ

χinabc ¼ εabdTcd þ εacdTbd; ð9Þ
where Tab and Tabc are rank-two and rank-three tensors, respec-
tively. The extrinsic response tensor χex has more nonzero elements
than χin. More importantly, the different symmetry properties under
the exchange of labels impose different constraints on the elements
of the nonlinear response tensor.

For a complete investigation, we check both the nonzero elements
of χex and χin for all of the 32 point groups (Supplementary Note 9).
The results for 2D systems are summarized in Table 1, where the

matrix is defined as

Jx
Jy

 !
¼

χxxx χxxy χxyy
χyxx χyyx χyyy

 ! E2
x

2ExEy

E2
y

0
B@

1
CA; ð10Þ

and we have highlighted the elements that exist in χex but vanish in
χin. The results for 3D systems can be found in Supplementary
Table 2. These elements are contributed by the disorder effects and
thus represent the Berry curvature irrelevant nonlinear Hall
response. In some point groups, such as C3, C3h, C3v, D3h, and D3

in 2D, the Berry curvature-dipole-related χin vanishes, but χex

survives. For 3D systems, the point groups that support the pure
disorder-induced nonlinear Hall effect are T, Td, C3h, and D3h.
Therefore, the nonlinear Hall effect observed in systems with these
point groups can only be induced by disorder.

Methods
Diagram construction. In the weak-disorder limit, the diagrams of leading con-
tributions are constructed according to their dependence on the impurity con-
centration ni51. For systems with time-reversal symmetry, the leading contribution
to the nonlinear transport is of order n�1

i , which can be obtained by adding non-
ladder-type scattering events to the simplest triangular and two-photon
diagrams53. The resulting diagrams of order n�1

i within the non-crossed approx-
imation are shown in Fig. 1a–h, which include intrinsic, side-jump, intrinsic and
extrinsic skew-scattering contributions. A complete summary of all the 69 dia-
grams for each contribution can be found in Supplementary Figs. 5–9 (triangular)
and 11–15 (two-photon).

The classification of these diagrams is carried out via finding the characteristic
physical quantities. For the intrinsic contribution (Fig. 1a, e), the characteristic
quantity is the Berry curvature. For the side-jump contribution (Fig. 1b, f), the
characteristic quantity is vþ�

ak hV�þ
kk0 V

þþ
k0k i with V�þ

kk0 � hu�k jVimpjuþk0 i, which
represents an off-diagonal scattering process. The skew-scattering contribution
contains two categories as intrinsic (Fig. 1c, g) and extrinsic (Fig. 1d, h) skew-
scattering according to their characteristic scattering processes (Supplementary
Note 7). The first one is from the leading asymmetric scattering contribution due to
the Gaussian disorder within the non-crossing approximation, which is
characterized by hV�þ

kk0 V
þþ
k0k ihVþ�

k00kV
þþ
kk00 i. The second one is from the leading

asymmetric scattering contribution due to the non-Gaussian disorder, which is
characterized by hVþþ

kk0 V
þþ
k0k00V

þþ
k00k i.

Total

Semiclassical

a

c

b

d

Side-jump

Semiclassical

Skew-scattering

Semiclassical

Intrinsic

Semiclassical

Fig. 3 Nonlinear Hall conductivity of a 2D tilted Dirac model. a–d The intrinsic, side-jump, skew-scattering, and total contributions to the nonlinear Hall
conductivity χyxx of the 2D tilted massive Dirac model [Eq. 7] as functions of the Fermi energy εF at zero temperature. The semiclassical results (dashed
lines) are also shown for comparison. The inset of a shows the two energy bands of the model. The color bar stands for the value of the Berry curvature.
The model parameters are t= 0.1 eV ⋅Å, v= 1 eV ⋅Å, m= 0.1 eV, niV

2
0 ¼ 102 eV2�Å2 and niV

3
1 ¼ 104 eV3�Å4.
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Remarks on the effective diagrammatics. The effective diagrammatic repre-
sentations of χIabc and χIIabc provide us an approach for a quantum description of the
nonlinear Hall effect, although its construction is not so straightforward and
indicates the importance of the multiphoton processes even for systems with a
linear k-dependent Hamiltonian. Because of the establishment of Eqs. 2–4 requires
that all the coupling vertices (v̂a, v̂ab , v̂abc) should be finite, a correct interpretation
of the effective diagrammatic theory is that we should first include the multiphoton
coupling vertices to obtain the general expression in the dc limit, and then turn to
the low-energy effective Hamiltonian for detailed calculations. Alternatively, a
direct calculation of the triangular diagrams would lead to unphysical results in the
dc limit (Supplementary Note 5). A possible reason for this puzzle is that, the linear
k-dependent Hamiltonian is only a low-energy effective description but there are
always multiphoton coupling vertices for the Bloch bands. An accurate description
of the nonlinear Hall effect may require full-band information even though it is
only a Fermi surface effect.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.

Code availability
The code that is deemed central to the conclusions is available from the corresponding
author upon reasonable request.
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