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Abstract: Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated in-
tracranial microvascular sinusoids that result in increased susceptibility to hemorrhagic stroke. It has
been demonstrated that three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling
complex (CSC) to mediate angiogenic signaling. Disruption of the CSC will result in hemorrhagic
CCMs, a consequence of compromised blood–brain barrier (BBB) integrity. Due to their characteristi-
cally incomplete penetrance, the majority of CCM mutation carriers (presumed CCM patients) are
largely asymptomatic, but when symptoms occur, the disease has typically reached a clinical stage of
focal hemorrhage with irreversible brain damage. We recently reported that the CSC couples both
classic (nuclear; nPRs) and nonclassic (membrane; mPRs) progesterone (PRG)-receptors-mediated
signaling within the CSC-mPRs-PRG (CmP) signaling network in nPR(−) breast cancer cells. In this
report, we demonstrate that depletion of any of the three CCM genes or treatment with mPR-specific
PRG actions (PRG/mifepristone) results in the disruption of the CmP signaling network, leading to
increased permeability in the nPR(−) endothelial cells (ECs) monolayer in vitro. Finally, utilizing
our in vivo hemizygous Ccm mutant mice models, we demonstrate that depletion of any of the three
CCM genes, in combination with mPR-specific PRG actions, is also capable of leading to defective
homeostasis of PRG in vivo and subsequent BBB disruption, allowing us to identify a specific panel
of etiological blood biomarkers associated with BBB disruption. To our knowledge, this is the first
report detailing the etiology to predict the occurrence of a disrupted BBB, an indication of early
hemorrhagic events.

Keywords: cerebral cavernous malformations (CCMs); CCM signaling complex (CSC); classic nuclear
progesterone receptors (nPRs); nonclassic membrane progesterone receptors (mPRs); CSC-mPRs-PRG
(CmP) signaling network; blood–brain barrier (BBB); endothelial cells (ECs); biomarkers

1. Introduction

Cerebral cavernous malformations (CCM) are characterized by abnormally dilated
intracranial microvascular sinusoids that result in increased susceptibility to hemorrhagic
stroke. At least one of three genes, KRIT1 (CCM1), MGC4607 (CCM2), and PDCD10 (CCM3),
is disrupted in most familial CCM cases. It has been demonstrated that both CCM1 and
CCM3 proteins bind to CCM2 protein to form the CCM signaling complex (CSC) to medi-
ate angiogenic signaling [1–3]. The recent identification of multiple CCM2 isoforms with
distinctive functions [3] and extensive efforts on the comparative omics of the CSC [2,4]
make the ongoing investigation of CSC signaling cascades more exciting. Currently, the
invasive neurosurgery removal of CCM lesions is the only option for treatment, despite
the recurrence of worse symptoms frequently occurring after surgery. Furthermore, as
an autosomal dominant disorder with incomplete penetrance, many CCM gene mutation
carriers are commonly asymptomatic, but when symptoms occur, the disease has typically
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reached the stage of focal hemorrhage with irreversible brain damage, while the under-
lying “trigger” for this seemingly “random” occurrence of hemorrhagic CCMs remains
elusive [5]. However, our recent reports revealed that the CSC modulates progesterone
(PRG)-mediated actions between classic nuclear PRG receptors (nPRs) and nonclassic
membrane PRG/progestin and adipoQ receptors (mPRs/PAQRs) within the CSC-mPRs-
PRG-nPRs (CmPn) signaling network in two nPR(+) (T47D, MCF7) breast cancer cell lines,
and within the CSC-mPRs-PRG (CmP) signaling network in two nPR(−) triple-negative
breast cancer cells (TNBCs: MDA-MB-231, MDA-MB-468) [5–8], shedding light on this
mystery. We discovered that a well-known progesterone blocker, mifepristone (MIF, a
major contraception drug), inhibits PRG actions only via classic-PRG-receptors-mediated
signaling (nPRs) in nPR(+) cells. In contrast, MIF can also act as a PRG agonist alone, and
when combined with PRG, sex steroid signaling via nonclassic PRG receptors (mPRs) is
synergistically enhanced to form a feedback loop in an mPR-specific fashion (only through
mPRs). In this feedback regulation network, the CSC stability is disrupted by the negative
effects of mPR-specific actions (MIF alone or combined (PRG/MIF)) via mPRs signaling
or the positive effects of nPRs-specific PRG actions (only through nPRs) through classic
nPRs signaling [5–8]. Our discovery reveals that the balance between classic and nonclas-
sic PRG signaling (nPRs/mPRs) impacts the CSC function, and identifies the CSC as an
important mediator of nPRs and mPRs crosstalk in nPR(+) cells. Our observations are
further supported by a previous finding that PRG can act simultaneously on both nPRs
and mPRs, and that activation of mPRs-mediated signaling can potentiate expression of
the hormone-activated nPR-2 isoform [9]. All of these data demonstrated the importance
of the CSC for coupling both nPRs and mPRs by mediating crosstalk between them, and
elucidated that the CSC can be regulated by feedback mechanisms involving PRG and its
receptors (nPRs/mPRs) [5–8]. Furthermore, accumulated evidence has demonstrated that
excessive PRG exposure, such as patients under hormone therapy during menopause/post-
menopause, or females taking hormonal contraceptives/experiencing pregnancy, may be
at an increased risk for hemorrhagic events. Significantly increased PRG levels during
early pregnancy has been reported [10], and the increase in size of CCM lesions [11,12]
and increased cases of hemorrhagic CCMs during pregnancy have also been observed [13].
Increased risk for acute CCM bleedings [13–15], or formation of a de novo CCM lesion [15],
has also previously been reported during pregnancies. Finally, our data also demonstrated
that a common contraceptive, mifepristone (MIF), competes with PRG for the same binding
sites on nPRs as an antagonist for nPR-mediated signaling [6]. In contrast, MIF binds
to mPRs allosterically with PRG, and works synergistically with PRG in mPR-mediated
signaling as an agonist [6]. Therefore, we have defined the two-sex-steroids-combined
treatment (MIF + PRG) as mPR-specific PRG actions [6–8]. Together, these results suggest
that pregnancy-/contraceptive-associated increased levels of mPR-specific PRG actions
lead to increased risks of hemorrhage in CCM patients.

In this report, we investigated the underlying mechanisms of the novel CSC-mPR-PRG
(CmP)-mediated signaling network in mainly nPR(−) ECs in vitro, as well as investigating
the integrity of the blood–brain barrier (BBB) utilizing Ccm (1–3) mutant mice in vivo, to
explore the effects of a disrupted CmP network under mPR-specific PRG actions. We also
successfully identified a panel of serum etiological biomarkers associated with a disrupted
CmP signaling network to predict the occurrence of a disrupted BBB in Ccm mutant mice,
an early indication for possible hemorrhagic events, which could have enormous clinical
applications in stroke prevention.

2. Results
2.1. CCM2 Is the Cornerstone for the Stability and Functionality of the CSC in Vascular ECs

Our recently defined CmPn/CmP signaling networks not only emphasize the balanced
modulation of the CSC (CCM signaling complex) stability through either the positive effects
of classic nuclear progesterone (PRG) receptors (nPRs) or negative effects of nonclassic
membrane PRG receptors (mPRs/PAQRs), but also demonstrate the existence of feedback
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regulations in this relationship. The unique role of the CSC was further demonstrated in
the crosstalk between nPRs/mPRs-specific signaling in breast cancer cells [7,8,16]. This
intricate feedback regulatory cascade is within either the CmPn or CmP signaling network,
under mPR-specific PRG actions (PRG-mediated signaling only through mPRs) in nPR(+) or
nPR(−) breast cancer cells, respectively. mPR-specific PRG actions can be realized through
the balanced efforts between nPRs and mPRs in nPR(+) cells, where feedback regulation
can be managed at both transcriptional and translational levels. However, mPR-specific
PRG actions are the only signaling pathway that can be utilized by the PRG in nPR(−) cells.

Similarly, our recent works also demonstrated that CCM2 is the cornerstone for the
stability and functionality of the CSC in both breast cancer cells and zebrafish Ccm1/2
mutant strains [16]. These results suggest the existence of a feedback regulatory loop
influencing the expression of CCM2, based on cellular levels of CCM1 and CCM3 at
the translational level [5,7,8,16], which was further supported by data from 293T cells
(data not shown). In this report, we examined human brain microvascular endothelial
cells (HBMVECs) with identical results (Figure 1(A-1,A-2)), further validating our pre-
vious notion that CCM2 is the cornerstone for CSC stability across multiple in vitro and
in vivo models.
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Figure 1. Relationships among key players (CCMs and mPRs) within the CmP network in nPR(−)
endothelial cells (ECs). (A) Silencing of CCM2 decreases the expression levels of both CCM 1/3
proteins in human brain microvascular endothelial cells (HBMVEC). (A-1) After silencing all three
CCMs (1, 2, or 3) for 48 h, the expression levels of all three CCM proteins were efficiently targeted
and silenced; however, significantly decreased expression of both CCM1/3 proteins was observed
in CCM2-KD HBMVEC cells (left upper and lower panels). The relative expression levels of CCMs
(1, 2, or 3) proteins were measured through quantification of band intensities and normalized against
α-actinin (ACTN1) followed by SC controls (red line), and illustrated with bar plots where light
gray bars represent no change and dark gray bars display decreased relative protein levels (right
panel) (n = 3). (A-2) Significantly increased RNA levels of CCM2 isoforms in both CCM1-KD and
CCM3-KD in HBMVEC cells were observed. The relative transcription expression changes in CCM1,
CCM3, and 5 isoforms of CCM2 in CCMs KD HBMVEC cells were measured by RT-qPCR (Fold) and
illustrated in the bar plots, where light gray bars represent the relative RNA levels of CCM1, dark
gray bars display relative RNA levels of CCM2 isoforms, and black bars for the relative RNA levels
of CCM3 (n = 3). (B) Impacts of mPR-specific actions on the RNA expression of CCM2 isoforms and
mPRs in human microvascular endothelial cells. (B-1) Under mPR-specific PRG actions (PRG + MIF)
for 48 h, enhanced RNA expression levels of most CCM2 isoforms were observed in both human
dermal microvascular endothelial cells (HDMVEC) and human brain microvascular endothelial
cells (HBMVEC) cells, while increased RNA expression levels of CCM1/3 were only observed in
HBMVECs (n = 3). (B-2) Significantly increased RNA expression of PAQR5/7/8 and PGRMC1 was
observed under mPR-specific PRG actions in HBMVECs and human umbilical vein endothelial cells
(HUVECs) for 48 h, while only increased RNA expression of PAQR7/8 was observed in HDMVECs,
suggesting RNA expression of most mPRs can be dramatically enhanced under mPR-specific PRG
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actions (n = 3). (C) Impacts of mPR-specific actions on the protein expression of mPRα (PAQR7)
in HDMVECs. After silencing all three CCM genes for 48 h, decreased protein expression levels of
PAQR7 were observed for all 3 Ccms-KD conditions (n = 3). (D) Impacts of mPR-specific actions
on protein expression levels of CCM1/3 in human microvascular endothelial cells (HDMVECs,
HUVECs, and HBMVECs) and rat brain microvascular endothelial cells (RBMVECs), compared to
mifepristone only (MIF, 20 µM) or vehicle controls (VEH). The relative RNA expression levels were
measured through RT-qPCR from at least three different experiments (triplicates per experiment)
and normalized to housekeeping gene (ACTB) and scramble control. The relative protein expression
levels were measured through quantification of band intensities of targeted proteins by Western
blots, subtracted from the surrounding background and normalized against control housekeeping
proteins followed by vehicle controls. In all bar plots, the red line is the control baseline for fold
change measurements (−/+). ++, +++ above bar indicates p ≤ 0.001 for paired t-test.

2.2. mPR-Specific Actions on the Performance of the CCM Signaling Complex (CSC) in
nPR(−) ECs

The vast majority of vascular ECs are nPR(−) and mPRs(+) (Supplementary Figure S1A–C)
and observations of rapid, nonclassic actions of PRG on ECs have been previously
reported [17]. Therefore, several relevant nPR(−) microvascular ECs, including human
brain microvascular endothelial cells (HBMVECs), human dermal microvascular endothe-
lial cells (HDMVECs), and rat brain microvascular endothelial cells (RBMVECs), were
utilized along with a well-known nPR(+) EC line, human umbilical vein endothelial cells
(HUVECs), to investigate angiogenic signaling modulated by the CmP signaling network
under mPR-specific PRG actions. Interestingly, low protein expression of mPRs/PAQRs
was found in these ECs; therefore, no change in PAQR7 protein expression was detected
among these EC lines under mPR-specific PRG actions (Supplementary Figure S2). The
RNA expression patterns of both mPRs and CCMs genes were examined under mPR-
specific PRG actions demonstrating that increased RNA expression patterns of most CCM2
isoforms were observed in nPR(−) HBMVECs and HDMVECs (Figure 1(B-1,B-2)). Similarly,
increased RNA expression of most mPRs genes (Figure 1C) was observed among nPR(−)
HBMVECs and HDMVECs, and nPR(+) HUVECs. Likewise, silencing all three CCM (1, 2,
and 3) genes led to significantly decreased protein expression of PAQR7 (mPRα) in both
nPR(−) HBMVECs and HDMVECs (Figure 1C). Finally, decreased expression levels of
CCM1 and CCM3 proteins were observed under mPR-specific PRG actions among nPR(−)
HBMVECs, HDMVECs, and RBMVECs as well as nPR(+) HUVECs, reinforcing that PRG
works with its agonist, MIF, synergistically to inhibit the protein expression of CCM1/3
(Figure 1D), as seen previously in nPR(+/−) breast cancer cells [5,7,8,16]. However, mPR-
specific inhibition of protein expression of CCM1/3 in nPR (+/−) ECs (Figure 1D) is
more dramatic than what was observed in either nPR(+/−) breast cancer cells [5,7,8,16],
suggesting that mPR-specific PRG actions have a stronger effect on the stability of the
CSC in microvascular ECs. Finally, similar to our observations in nPR(+/−) breast cancer
cells [5,7,8,16], mPR-specific PRG actions can affect the CSC stability on both transcriptional
and translational levels, demonstrating multiple layers of this intricate feedback regulation,
where CCM2 plays a key role as the cornerstone for the CSC (Figure 1).

2.3. Differential Permeabilities between nPR(+/−) EC Monolayers under mPR-Specific PRG
Actions In Vitro

We next wanted to test whether mPR-specific PRG actions would affect the in vitro
permeability of two different EC lines, nPR(+) Eahy926 ECs, derived from HUVECs, and
nPR(−) RBMVECs. Although increased levels of permeability were initially observed
in both ECs (on Collagen-I coated wells (Figure 2A, bottom panels), the permeability of
nPR(+) Eahy926 ECs was back to normal after 12 h (Figure 2, bottom right panel), while
being continuously enhanced among all sex hormone treatments for nPR(−) RBMVECs
(Figure 2A, bottom left panel) on Collagen-I coated wells, indicating that the permeability
of nPR(−) ECs is more susceptible to steroid hormones via the CmP axis (Figure 2A,
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bottom panels) through the CSC-modulated β1-integrin signaling [18–20]. Interestingly,
permeability remained continuously enhanced among all sex hormone treatments for
nPR(−) RBMVECs, when cultured in the absence of collagen-I (Figure 2A, upper left panel),
while the permeability of Eahy926 ECs returned to normal after 48 h (Figure 2A, upper right
panel), further supporting the important role of β1-integrin-mediated signaling within the
CSC-mPRs-PRG-nPRs (CmPn) signaling network in nPR(+) Eahy926 ECs, but not with the
CmP signaling network in nPR(−) RBMVECs.
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Two different EC lines, nPR(+) EAhy926 ECs, derived from HUVECs, and nPR(−) RBMVECs, were
used to measure in vitro permeability with the passage of FITC-conjugated dextran under vehicle
and various steroid treatments. (A) Impact of sex-steroid-induced mPR-specific actions on the permeability
of both nPR(+/−) ECs. Both nPR(+/−) ECs were under sex steroid treatments (PRG (20 µM), MIF
(20 µM), and PRG + MIF, (20 µM each)) plated on either uncoated (top panels) or collagen-I coated
wells (bottom panels). Although increased levels of permeability were initially observed in both
ECs (on Collagen-I coated wells, bottom panels), the permeability of nPR(+) EAhy926 ECs was
back to normal after 12 h (bottom right panel), while the permeability was continuously enhanced
among all sex hormone treatments for RBMVECs (bottom left panel) on Collagen-I coated wells.
Interestingly, permeability remained continuously enhanced among all sex hormone treatments for
RBMVECs, when cultured in the absence of collagen-I (upper left panel), while the permeability
of nPR(+) EAhy926 ECs did not return to normal until after 48 h (upper right panel), suggesting
crosstalk between integrin and PRG-receptors-mediated signaling cascades in nPR(+) EAhy926 ECs,
but not in nPR(−) RBMVECs. Four treatments are Vehicle, PRG, MIF, and PRG + MIF sequen-
tially. (B) Impact of neurosteroids-induced mPR-specific actions on the permeability of both nPR(+/−) ECs.
Both nPR(+/−) ECs treated with two common neurosteroids synthesized from PRG (or PRG metabo-
lites), Allopregnanolone (3a-hydroxy-5a-pregnan-20-one, ALLO, 20 µM) and Pregnanolone (3a-
hydroxy-5b-pregnan-20-one, P5, 20 µM), were plated on collagen-I coated wells, and the EC per-
meability was continuously monitored and measured as aforementioned. (C). The summarized
feedback regulatory mechanism within the CmP signaling network under mPR-specific PRG actions
for nPR(−) ECs. Yellow line separates transcriptional and translational levels. The + symbols repre-
sent enhancement, and symbols represent inhibition of the expression of targeted genes/proteins.
Red-colored symbols/lines represent positive effects of mPR-specific PRG treatment (PRG + MIF),
and blue-colored symbols/lines represent negative effects of treatment. Dark-green-colored letters
indicate the direct supporting data generated from this work. Arrow indicates effect direction, solid
line is the direct impact, and dotted line is indirect effects. The fluorescence intensity of FITC-dextran
was measured using a 96-multiwell fluorescent plate reader. In all bar plots, *, **, and *** above any
bar graph indicate p ≤ 0.05, 0.01, and 0.001, respectively, using two-way ANOVA with Holm–Sidak’s
multiple comparison correction.
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Some common neurosteroids are synthesized from PRG (or named as PRG metabo-
lites), such as allopregnanolone (3a-hydroxy-5a-pregnan-20-one, ALLO) and pregnanolone
(3a-hydroxy-5b-pregnan-20-one, P5). Like PRG, neurosteroids can suppress inflammation,
reduce apoptosis, and promote neurogenesis and myelination in the nervous system [21],
with many potential therapeutic applications [22]. When increased reactive oxygen species
production occurs followed by neuroinflammation, levels of several common neurosteroids,
such as PRG (P4), ALLO, and P5, can be drastically increased in response to oxidative
damage [23], further reaffirming their neuroprotective roles. In fact, ALLO can elicit its
marked anxiolytic, antistress, and antidepressant effects at very low (nanomolar) concen-
trations [24], and the neuroprotective effects of ALLO are mediated through mPRs [21];
therefore, neurosteroids can evoke mPR-specific actions. We then investigated the per-
meability of two nPR(+/−) ECs (using the early used parameters) under exposure to
two aforementioned neurosteroids (ALLO, 20 µM; P5, 20 µM), respectively, in parallel
with the vehicle control. The binding affinity data showed that as a neurosteroid, PRG
has a 5–100-fold higher affinity to mPRs than its own two metabolites (ALLO and P5) [25],
which is reflected by the significantly shortened negative effects of neurosteroids on the
permeability of microvascular ECs in general (Figure 2B), compared to mPR-specific sex
steroid treatments (Figure 2A, lower panel). These data indicate that neurosteroids also
exert their cellular responses via mPR-specific actions, and the duration of steroid-induced
mPR actions (BBB perturbation) is determined by their corresponding binding affinities
to mPRs, regardless of the existence of nPRs (Figure 2B). Therefore, our data indicate neu-
rosteroids also evoke mPR-specific PRG actions (Figure 2B). In sum, our in vitro findings
of neurosteroid-induced mPR-specific PRG actions leading to the increased permeability
of nPR(−) ECs support a common regulatory mechanism of mPRs-specific actions on the
maintenance of the BBB, independent of nPRs.

To illustrate the molecular network of this CmP signaling network among ECs, the
network was schematically summarized, where key feedback regulatory mechanisms
at both the transcriptional and translational levels are illustrated with supporting data
from corresponding experiments (Figure 2C). From our illustration, we can see that mPRs-
specific PRG actions appear to have a negative effect on the CSC at the proteomic level;
however, the CSC also exhibits signs of dual roles in the feedback regulation of certain
mPRs’ expression at the same level. From this schematic diagram, it is clearly shown that
the transcriptional levels of both CCMs/mPRs genes have been enhanced under feedback
regulation to compensate for the destabilization of the CmP signaling network under
mPR-specific PRG actions at the post-translational level in microvascular ECs (Figure 2C),
in concordance with our previous observations in nPR(+/−) breast cancer cell lines [6–8].

2.4. Subcellular Compartmentation of Key Factors of the CmP Network in nPR(−) RBMVECs
under mPR-Specific PRG Actions

In our previous works, we firstly reported that mPRs are nuclear proteins and have
abilities for nucleocytoplasmic shuttling in nPR(+/−) breast cancer cells [6–8], contradict-
ing their initial roles as membrane-bound proteins. Immunofluorescence (IF) imaging
confirmed our previous observations that CCM1 is capable of cytoplasmic-nuclear traf-
ficking [26,27] allowing us to use CCM1 staining as a positive control when measuring
expression ratios to assess nuclear/cytosol localization techniques for key CmP players.
As predicted, we found that CCM1 is predominantly located in the cytosol, but begins
to show early distinct nucleocytoplasmic-shuttling capabilities with definitive nuclear
predominance by 24 h under mPR-specific PRG actions, followed by a steady decline
back towards the cytosol by 96 h (Supplementary Figure S3A). Similar to CCM1, the
majority of CCM3 resides in the cytoplasm initially; however, under mPR-specific PRG
actions, CCM3 accumulates in the nucleus starting at 24 h and shuttles back to starting
conditions by 72–96 h (Supplementary Figure S3B). Together, these results confirm the
nucleocytoplasmic-shuttling capabilities of CCM1 and CCM3 in RBMVECs under mPR-
specific PRG actions. Ironically, contrary to their nomenclature, the majority of PAQR8
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resides in the nucleus initially, and remains localized primarily to the nucleus throughout
the experiment (Supplementary Figure S3C), suggesting a dominant nuclear localization
of mPRs in nPR(−) RBMVECs under mPR-specific PRG actions, validating our previous
observations in nPR(+/−) breast cancer cells [6–8].

Based on these results, we hypothesized that the stability of the CSC in vascular
ECs will be the first to be challenged under mPR-specific PRG actions involving the
CmP signaling network. These findings translate to the working hypothesis that under
mPR-specific PRG actions, leaky vasculatures would be among the first group of anoma-
lies detected in animal models. We then performed subsequent in vivo analysis to test
this hypothesis.

2.5. Perturbation of the CmP Signaling Network under mPR-Specific PRG Actions Is Sufficient for
BBB Disruption in Ccm-Deficient Mice

It has been proven that falling below the threshold of haploinsufficiency for CCMs
in microvascular ECs is an essential first step for the pathogenesis of CCM lesions in vivo,
generated from both zebrafish [26,28] and mice Ccms mutant models [29], while the ge-
netic “two-hit” mechanism is just the most extreme end (null) at the spectrum of hap-
loinsufficiency. Approximately 60% of patients with CCMs have the sporadic form of the
disease [30], which is difficult to be explained by the current dominant “two-hit” model [31]
even though clonal expansion data provided some degree of support for this “two-hit”
model [32]. Therefore, there must be a “trigger” to initiate the hemorrhagic events of CCM
lesions which is also suggested by our in vitro data. To further test and validate the effects
of mPR-specific PRG actions on the performance and maintenance of permeability of ECs,
next, we plan to measure the stability of the BBB in WT and hemizygous Ccm1, Ccm2, and
Ccm3 mutant mice strains (the same genetic composition as human familial CCM patients)
in vivo.

Using Evans blue dye (EBD), we quantitatively measured the permeability of blood
vessels in the brain which is the major site for CCM pathology and BBB evaluation [33].
To test the presence of compromised permeability of blood vessels in the brain, resulting
from vehicle injection, we initially examined EBD data between naïve (untreated with
no-injections, N) and vehicle (injection of vehicle, peanut oil) groups among WT, Ccm1,
and Ccm2 hemizygous mutant mice; a similar intensity of EBD signals among these con-
trol groups was seen (Supplementary Figure S4A), indicating no apparent influence of
vehicle injection on the permeability of blood vessels in the brain. We then measured
the permeability of blood vessels in the brain among all mouse strains, after treatment
with mPR-specific PRG actions for 30, 60, and 90 days, respectively. A similar intensity
of EBD signals among Ccm (1, 2, and 3) mutants and WT mice for both 30- and 60-day
treatment groups was seen, identical to the naïve and vehicle control groups, suggesting
no influence of genotypes on the permeability of blood vessels yet (Figure 3(A-I,A-II)).
However, significantly increased permeability of the BBB was observed in all Ccms mutant
mice in the 90-day treatment group compared to WT mice, indicating that the BBB was
initially resistant to the disrupting pressure from mPR-specific PRG actions, but eventually
collapsed for all Ccm mutants due to chronic exposure to mPR-specific PRG actions over a
90-day treatment period (Figure 3(A-III)).

Gender differences of disrupted permeability within blood vessels under mPR-specific PRG
actions. To better understand the underlying mechanisms of the negative effects of mPR-
specific PRG actions on the permeability of blood vessels, WT and Ccms mutant mice data
were further stratified into male and female groups. Significantly increased BBB permeabil-
ity was only observed in female Ccm1 mutants for our 30-day treatment group, suggesting
the vulnerability of the BBB to mPR-specific PRG actions in female Ccm1 mutants (up-
per right panel, Supplementary Figure S4B). However, increased BBB permeability was
only observed in male Ccm2 mutant mice in our 90-day treatment group (lower left panel,
Supplementary Figure S4B), demonstrating that the BBB is able to initially resist the disrupt-
ing pressure from mPR-specific PRG actions in males and is more susceptible for disruption
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earlier in females, as demonstrated by increased leakage in the 30-day treatment group. It
must be mentioned that after gender stratification, and our three different treatment groups,
our observed results are from a limited sample size, but we anticipate these differences to
remain significant with an increased sample size. Overall, EBD data suggest that the BBB
integrity and permeability among females is more susceptible to mPR-specific PRG actions.
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Figure 3. mPR-specific actions on nPR(−) ECs are sufficient for blood–brain barrier (BBB) disrup-
tion and formation of subcutaneous lesions in vivo. Hemizygous Ccms (1, 2, and 3) mutants and
WT (C57 BL/6 J) mice were injected with mPR-specific PRG treatment (a cocktail of PRG + MIF,
100 mg/kg body weight) in peanut oil (vehicle), 5 days a week for 30, 60, and 90 days, respectively.
(A) BBB permeability was significantly increased only in our 90-day treatment groups for all 3 Ccm
mutants, demonstrating that increased microvascular permeability in the brain is associated with a
combination of chronic exposure to mPR-specific PRG actions and Ccm deficiency. (B) Subcutaneous
vessel diameters in posterior sections of ears were classified into four subgroups based on the range of
the vessel size (diameters): group-I (8–9 µM), group-II (9–10 µM), group-III (10–11 µM), and group-IV
(11–12 µM). Significantly decreased percentage of vessels was found in Ccm2/Ccm3 within group-I
(8–9 µM), compared to WT in the 90-day treatment group, suggesting that more vessels in Ccm2/Ccm3
mutants are distributed in larger diameter groups under mPR-specific PRG actions. Indeed, the
significantly increased percentage of larger vessels in Ccm3 mutant was found in group-II (9–10 µM)
compared to WT, and Ccm2 is the only mutant to display vessels in the largest size group, group-IV
(11–12 µM) under mPR-specific PRG actions. (C) Subcutaneous vessel lesions in the anterior side of
mice ears in all Ccm (1, 2, and 3) mutant strains can be visually distinguished in the 90-day treatment
groups compared to WT, with Ccm3 mutant having the largest number of CCM lesions. For Evans
blue assays, statistical analysis was generated using one-way ANOVA with either Kruskal–Wallis
test or uncorrected Fisher’s LSD test where appropriate. All treated mice, upon completion of the
last injection, were injected with Evan’s blue dye (EBD) (500 µG/25 G mouse) which was allowed
to circulate for 3 h. Fluorescence data were then measured from the homogenized brain tissue and
converted to µg/mL based on standard curves generated in the extraction buffer, and normalized
based off the tissue weight (µg Evans blue/mg tissue) followed by controls. In ear tissues, statistical
significance was performed using unpaired Student’s t-test (*, ** and *** above graphs indicate
p ≤ 0.05, 0.01, and 0.001, respectively).

2.6. Perturbation of the CmP Signaling Network under mPR-Specific PRG Actions Leads to
Disrupted Angiogenesis in Ccm-Deficient Mice

Disrupted angiogenesis of blood vessels was further validated in ear vessels. The negative ef-
fects of mPR-specific PRG actions on blood vessels was further extended utilizing a mouse
ear angiogenesis assay. Microvessels in mouse ears were evaluated by measuring four dif-
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ferent parameters: (1). vascular density, (2). vascular length density, (3). vascular diameter,
and (4). number of vessel lesions present in each leaflet. No obvious differences between all
four vessel parameters were detected among untreated and vehicle-treated mice, suggest-
ing morphologically equivalent vascular conditions among all untreated/vehicle strains
(Supplementary Figure S4C–F). Furthermore, under mPR-specific PRG actions, no differ-
ences in vascular density (Supplementary Figure S4C) or vascular length density
(Supplementary Figure S4D) were identified between Ccms mutants and WT mice, suggest-
ing no defects in these vascular parameters. However, an apparent shift in the distribution
of vascular diameters from smaller to larger (Figure 3B) as well as an increased number of
vessel lesions (Figure 3C) in Ccms mutant mice was observed, compared to WT, indicating
vascular defects in these two parameters in Ccms hemizygous mice were induced under
chronic exposure to mPR-specific PRG actions.

Disrupted angiogenesis observed ex vivo. Ex vivo angiogenesis of aortae isolated from all
mice strains under various treatments was analyzed, based on the previous observations
that Ccm1 mutant mice strains demonstrated defective EC functions in the aortae [34].
Quantification of de novo ECs generated from angiogenesis in aortae isolated from the
30-/60-day treatment groups demonstrated that there is a significant increase in aortic ECs
in Ccm1/Ccm2 hemizygous mutant mice, in vehicle matrigel media ex vivo (Figure 4(A-I,A-II)
left upper and middle panels, PM/V), demonstrating that angiogenic potential is not yet
disrupted. However, a decrease in aortic ECs was observed in Ccm1/Ccm2 hemizygous
mutant mice in hormone-supplemented matrigel media ex vivo (Figure 4(A-I) right upper
panel, PM/PM), confirming the suppressive roles of mPR-specific PRG actions on angio-
genesis in aortic ECs among Ccm1/Ccm2 hemizygous mutant mice. However, in the 60-day
treatment group, an increase in ECs was observed at 48 h in Ccm2 hemizygous mutant
mice in hormone-supplemented matrigel media ex vivo (Figure 4(A-II) right middle panel,
PM/PM), suggesting the activation of compensation mechanisms due to the essential
role of CCM2 in the CSC. More importantly, in the 90-day treatment groups, a significant
decrease in ECs in both vehicle (PM/V) and hormone-supplemented (PM/PM) matrigel
media ex vivo was observed for all mutant strains at 24 h or CCM1/3 at 48 h, respec-
tively (Figure 4(A-III) bottom left and right panels). In addition, no obvious differences in
EC counts were detected among untreated (naïve) and vehicle-treated groups, suggesting
uniform angiogenic potential from aortae of all mice strains without mPR-specific PRG pres-
sure in vivo (Supplementary Figure S5A,B all panels). We next sought to evaluate overall
angiogenic performance by dynamically measuring the expansion of migrating de novo ECs
generated from aortae. In the 30-day group, Ccm2 hemizygous mutant mice displayed sig-
nificant increased angiogenic performance in vehicle matrigel media ex vivo (Figure 4(B-I)
left upper panel), while a significant decrease in angiogenic performance was observed
in Ccm1 hemizygous mutant mice in hormone-supplemented matrigel media ex vivo for
both 30-/60-day treatment groups (Figure 4(B-I,B-II) right upper and middle panels), re-
affirming the suppressive roles of mPR-specific PRG actions on angiogenic performance.
Interestingly, there were no statistically significant differences among all 60-day treatment
groups in vehicle matrigel media ex vivo (Figure 4(B-II) left middle panel). Similar to our
previous observations, there was a significant decrease in angiogenic performance among
all Ccm mutant strains in both vehicle and hormone-supplemented matrigel media ex vivo
in the 90-day treatment groups (Figure 4(B-III) left and right bottom panels). Additionally,
no obvious differences in angiogenesis were detected among untreated (naïve) and vehicle-
treated groups, suggesting uniform angiogenic performance from aortae of all mice strains
without exposure to mPR-specific PRG actions in vivo (Supplementary Figure S5C,D, all
panels). Finally, we evaluated ex vivo sprouting performance for Ccm hemizygous mu-
tants under mPR-specific PRG actions. No obvious differences in sprouting performance
were observed among untreated (naïve) and vehicle-treated groups, regardless of ex vivo
media used (V/PM), reaffirming relatively uniform angiogenic potential of all mouse
strains without hormone pressure in vivo (Supplementary Figure S5E,F, all panels). In the
30-day group, Ccm1 mice displayed significantly decreased angiogenic sprouting times,
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regardless of ex vivo media used (Supplementary Figure S5G right and left upper pan-
els). There were no significant differences in angiogenic sprouting times among all 60-day
treatment groups (Supplementary Figure S5H right and left middle panels). In the 90-day
group, there was a significant increase in sprouting performance among Ccm3 mice, re-
gardless of ex vivo media used (Supplementary Figure S5I right and left bottom panels).
Finally, we evaluated in vitro sprouting performance in RBMVECs under mPR-specific
PRG actions. Interestingly, PRG-treated cells displayed an increased trend in sprouting,
compared to vehicle controls, but without any significance (Supplementary Table S5). Sur-
prisingly, MIF-treated cells did not display any signs of branching throughout the time
course, while mPR-specific PRG actions appeared to rescue MIF inhibition of sprouting,
at earlier time points, but no statistical significance was obtained in these comparisons
(Supplementary Table S5).
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Figure 4. Overall ex vivo angiogenic performance of nPR(−) ECs derived from dorsal aortae of Ccms
mice under mPR-specific PRG actions. After euthanizing, dorsal aortae were immediately removed
from Ccm1+/−, Ccm2+/−, and Ccm3+/− hemizygous mutant and WT (C57 BL/6 J) mice treated for 30,
60, or 90 days and were divided in half and placed in matrigel media supplemented with vehicle
(V, DMSO + EtOH left panels) or mPR-specific PRG treatment (PM, progesterone + mifepristone,
20 µM each, right panels). Images were acquired in 2 h intervals on a Nikon Biostation CT for
72 h. After acquisition, quantification of cell numbers (measured by object counts using the NIKON
elements software) was conducted on images taken at 12 (red), 24 (green), and 48 h (blue) timepoints.
Quantification of de novo ECs generated from ex vivo angiogenesis (A). (A-I) Ccm1 mice displayed
significantly increased cell counts at 48 h, while Ccm2 mice displayed significantly increased cell
counts at 24 and 48 h when compared to WT among all 30-day PM in vivo treatment groups in vehicle
matrigel media ex vivo (left panel, PM/V); the same 30-day treatment group showed a significant
decrease in cell counts at 48 h in Ccm1 and Ccm2 mice compared to WT in hormone-supplemented
matrigel media ex vivo, (right panel, PM/PM). (A-II) There were significant increases in cell counts at
24 h in Ccm1 and Ccm2 mice compared to WT among all 60-day treatment groups in vehicle matrigel
media ex vivo (left panel), while 60-day treatment only displayed significantly increased counts at
48 h in Ccm2 mice compared to WT in mPR-specific PRG-supplemented matrigel media ex vivo (right
panel). (A-III) There was a significant decrease among all 90-day treatment groups in vehicle matrigel
media ex vivo at 24 h while only Ccm2 displayed significantly decreased cell counts at 48 h compared
to WT (left panel); the same 90-day treatment group only displayed significant decreases in cell
counts at 48 h for Ccm1 and Ccm3 strains when compared to WT in mPR-specific PRG-supplemented
matrigel media ex vivo (right panel). Overall angiogenic performance of nPR(−) ECs (B). After
acquisition, analysis of cell growth and migration was measured by area of ECs (using the NIKON
elements software) on images taken at 12, 24, and 48 h timepoints. (B-I) ECs derived from Ccm2 mice
aortae displayed significant increased growth when compared to WT among all 30-day treatment
groups in vehicle matrigel media ex vivo (left panel), while 30-day treatment showed a significant
decrease in angiogenesis at 48 h in Ccm1 mice compared to WT in mPR-specific PRG-supplemented
matrigel media ex vivo (right panel). (B-II) There were no statistically significant differences among
all 60-day treatment groups in vehicle matrigel media ex vivo (left panel), while 60-day treatment
showed a significant decrease in angiogenesis at 48 h in Ccm1 mice compared to WT (same as
30 day) in mPR-specific PRG-supplemented matrigel media ex vivo (right panel). (B-III) There
was a significant decrease among all 90-day treatment groups in vehicle matrigel media ex vivo at
24 and 48 h compared to WT (left panel), while 90-day treatment also showed significant decreases
in angiogenesis at 24 and 48 h (excluding Ccm1 at 48 h) when compared to WT in mPR-specific
PRG-supplemented matrigel media ex vivo (right panel). Cell count data were normalized by dividing
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cell counts by the length of the aortic vessel (µM). Angiogenesis area measurements (µm2) were
normalized by dividing growth area by the area of the aortic vessel (µm2). Statistical significance
was performed using two-way ANOVA (*, **, and *** above graphs indicate p ≤ 0.05, 0.01, and 0.001,
respectively) and comparisons are color-coded with each time point for clarification. Each symbol
represents individual mice samples, which varies by strain (n = 1–8).

In sum, these results suggest that permanent epigenetic alterations affecting angio-
genic signaling cascades, modulated by the CmP signaling network in vivo, occur af-
ter 90 days of consistent mPR-specific PRG pressure in hemizygous Ccm mutant mice.
These altered angiogenic events have been observed to be epigenetically imprinted into
microvascular ECs, as demonstrated by our ex vivo angiogenesis data (Figure 4A,B,
Supplementary Figure S5A–I) illustrating that disrupted angiogenesis remains even when
hormonal stress is removed ex vivo.

2.7. Immunosuppression Observed in Ccms Mutant Mice

Since the “gut microbiota-brain axis” is a currently dominant theory for CCM patho-
logical progression toward the disrupted BBB integrity [35], it is highly likely that BBB
disruption in Ccm-deficient mice (Figure 3) could be the direct results of local inflammatory
response induced by prolonged steroid (or vehicle) intraperitoneal injections, through this
gut microbiota–brain axis. To examine this possibility, we performed the following experi-
ments to measure the BBB integrity, abdominal distention, and peritoneal inflammation
status among different mice (WT and Ccm mutants) after mPR-specific PRG treatments.

A local inflammatory response is induced by vehicle injections. Peritoneal inflammation is
induced by vehicle (peanut oil) injections, independent of genotype and mPR-specific
PRG actions. It has been reported that steroids can influence the gut microbiota and
perturbed gut microbiota can affect the brain through the gut microbiota–brain axis [35].
Furthermore, gut microbiota disturbance has been reported to lead to gastrointestinal
inflammation [36]. Examination of the mice after mPR-specific PRG treatment revealed
abdominal distention, suggesting that peritoneal inflammation may be present. To as-
sess if there was local inflammation in the peritoneal cavity, leukocyte populations were
analyzed from this compartment. Peritoneal cells were collected via lavage and stained
with fluorescent antibodies to quantify myeloid cell populations. We identified mono-
cytes (CD45.2+CD11b+ Ly6G-Ly6Chigh), neutrophils (CD45.2+CD11b+ Ly6CintLy6Ghigh),
large peritoneal macrophages (LPM; CD45.2+CD11b+ Ly6G-Ly6C- F4/80hiMHC-IIlo), and
small peritoneal macrophages (SPM; CD45.2+CD11b+ Ly6G-Ly6C-F4/80lowMHC-IIhigh)
(the FACS gating pipeline is shown in Supplementary Figure S6(A-I,A-II)).

We quantified the percentage (Figure 5A(I–IV)) and absolute numbers (Figure 5A(V–VIII))
of monocytes, neutrophils, LPM, and SPM in the peritoneal lavage. Naïve mice exhibited
almost no monocytes or neutrophils in their peritoneal cavity (Figure 5A((I,II,V,VI)), at-
tributed to a lack of injections. The majority of myeloid cells present were tissue-resident
macrophages, including an abundant LPM population (Figure 5A(III,IV)) and a less abun-
dant SPM population (Figure 5A(VII,VIII)), consistent with prior reports [37]. Relative to
naïve controls, WT mice injected with mPR-specific PRG treatment exhibited a significant
increase in monocytes (percentage and absolute number) (Figure 5A(I,V)), a significant
increase in neutrophils (percentage and absolute number) (Figure 5A(II,VI)), and a signifi-
cant decrease in LPM (percentage and absolute number) (Figure 5A(III,VII)). These cellular
changes are similar to those observed in prior reports of peritoneal inflammation [38].
Relative to naïve controls, WT-vehicle mice exhibited a significant increase in monocytes
(percentage only) (Figure 5A(I)), a significant increase in neutrophils (percentage and ab-
solute number) (Figure 5A(II,VI)), and a significant reduction in LPM (percentage and
absolute number) (Figure 5A(III,VII)). These data suggest that there is a local inflammatory
response to the vehicle. Relative to vehicle controls, mice injected with mPR-specific PRG
actions exhibited an increase in the percentage of monocytes in the peritoneal lavage, which
was statistically significant (Figure 5A(I)), suggesting that mPR-specific PRG actions may
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boost monocyte infiltration. However, the absolute number of monocytes and the percent-
age and number of neutrophils and LPM were similar in the mPR-specific PRG-treated
and vehicle groups (Figure 5A(II,III,VI,VII)). SPM were not substantially altered by any
treatment (Figure 5A(IV,VIII)).
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Figure 5. The disrupted BBB is not caused by local inflammatory reactions in Ccms mutant mice.
(A) Monocytes, neutrophils, large peritoneal macrophages (LPM), and small peritoneal macrophages
(SPM) within the peritoneal cell populations were collected through peritoneal lavage. Quantification
of percentage of (I) monocytes (CD45.2 + CD11b+ Ly6G-Ly6Chigh), (II) neutrophils (CD45.2 +
CD11b+ Ly6CintLy6Ghigh), (III) LPM (CD45.2 + CD11b+ Ly6G-Ly6C- F4/80hiMHC-IIlo), and
(IV) SPM (CD45.2 + CD11b+ Ly6G-Ly6C-F4/80lowMHC-IIhigh) in peritoneal lavage of mice. The
percentage of monocytes and neutrophils was calculated relative to CD45+ leukocytes. Quantification
of absolute number of (V) monocytes (CD45.2 + CD11b+ Ly6G-Ly6Chigh), (VI) neutrophils (CD45.2
+ CD11b+ Ly6CintLy6Ghigh), (VII) LPM (CD45.2 + CD11b+ Ly6G-Ly6C- F4/80hiMHC-IIlo), and
(VIII) SPM (CD45.2 + CD11b+ Ly6G-Ly6C-F4/80lowMHC-IIhigh) in peritoneal lavage of mice was
performed. Dot plots show mean ± SEM (n = 3–8). The only significance that was found was
with naive wildtype (untreated), which did not receive any injections. This suggests that vehicle
(peanut oil) causes a local inflammatory response. (B) Lipopolysaccharide-based enzyme-linked
immunosorbent assay (LPS-ELISA) was used to measure LPS concentration in mouse serum. Nearly
equal amounts of low LPS in the serum of all mouse strains were observed in 30, 60, and 90-day
groups with mPR-specific PRG treatment. Relatively higher amounts of nonimmunogenic LPS in
Ccm3 mutant mice were constantly observed from naïve mice to the 90-day treatment group, which
also indicates the irrelevance of quantity of nonimmunogenic LPS towards BBB integrity. (C) Nearly
equal amounts of MCP-1 in the serum of all mice strains were observed in 30, 60, and 90-day treatment
groups with mPR-specific PRG treatment but with some notable changes suggesting that MCP-1
may be influenced by either mPR-specific PRG actions or genotypes at early stages in Ccm1 mutant
mice. (D) Significantly different amounts of IL-12 in the serum of mice Ccm mutant (Ccm1/2) strains
were observed in 30 and 60 (Ccm1) and 90-day groups (Ccm2) under mPR-specific PRG treatment,
respectively. (E) Significantly decreased amounts of IL-6 in the serum of Ccm mutant mice strains
were observed in the 90-day treatment group under mPR-specific PRG actions. Although higher
amounts of IL-6 were observed in Ccm2 mutants compared to WT, in the 60-day treatment groups
(mPR-specific PRG actions), this trend was reversed at 90 days. Statistical significance was performed
using unpaired Students t-test (*, ** above graphs indicate p ≤ 0.05, 0.01, and 0.001, respectively).

To assess the possible effects of mouse genotype on this process, leukocyte populations
were analyzed in the peritoneal cavity of all mouse strains injected with mPR-specific PRG
actions (Figure 5A(I–VIII)). The percentage and number of monocytes (Figure 5A(I,V)),
neutrophils (Figure 5A(II,VI)), LPM (Figure 5A(III,VII)), and SPM (Figure 5A(III,VII)) were
similar among all genotypes. Vehicle-treated Ccm mutant mice exhibited a similar response
to vehicle-treated WT mice, suggesting that peanut oil drives peritoneal inflammation,
irrespective of either genotype or mPR-specific PRG actions. Overall, these data suggest
that mouse CCM genotype does not influence the local inflammatory response observed.

Disrupted BBB is not associated with nonimmunogenic LPS from H. pylori bacteria. Upon
arriving, all our mouse strains tested positive for murine norovirus, protozoan tritri-
chomonas, and mostly several strains of Helicobacter pylori which usually infect the digestive
tract. Possible infection of H. pylori, a Gram-negative bacteria, could lead to elevated
LPS levels in mouse serum, but is considered to be nonimmunogenic [39]. No obvious
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differences in LPS levels were detected among untreated (Naïve) and vehicle-treated
groups, suggesting the equal existence of low LPS levels in the serum of all mouse strains
(Supplementary Figure S6B). No significant differences were observed, compared to WT,
in the serum of all mouse strains among 30, 60, and 90-day treatment groups, respec-
tively, suggesting that existing nonimmunogenic LPS in the serum is not influenced by
mPR-specific PRG actions (Figure 5B). Relatively higher amounts of nonimmunogenic LPS
were observed in Ccm3 mutant mice compared to treated mutant mice in both the 60- and
90-day treatment groups (Figure 5B), suggesting Ccm3 mutants may be more susceptible to
H. pylori bacterial infections.

Systemic inflammations remain low in mice injected with either peanut oil or mPR-specific
PRG treatment. Infection of murine model with norovirus and tritrichomonas allows us
to screen for circulating cytokines to evaluate their expression upon mPR-specific PRG
treatment. Four key markers of systemic inflammation (TNF-α, MCP-1, IL-12, and IL-6)
were detected in the serum from all mice strains.

To assess the possible effects of mouse genotype and injection procedures on inflamma-
tory status, four cytokines were analyzed among all mouse strains under naïve (untreated)
and vehicle (peanut oil)-treated conditions. No obvious differences were detected among
them (Supplementary Figure S6C–F), suggesting low existing systemic inflammation, ir-
respective of either genotype, but possibly related to murine norovirus, or protozoan
tritrichomonas (or peanut oil).

Immunosuppression was only observed in Ccm deficient mice under mPR-specific PRG actions.
Interestingly, significantly decreased expression of MCP1 was noted in the serum of Ccm1
mutant mice only in the 30-day treatment group, suggesting possible early immunosup-
pression due to mPR-specific PRG treatment (Figure 5C upper panel compared to lower
panels). IL-12 was also observed to be significantly decreased in the serum of Ccm1 mutant
mice among the 30-day treatment group (Figure 5D upper panel), and although there is
a trend of decreased IL-12 in Ccm1 mutant mice at 60 days (Figure 5D middle panel), the
differences are nonsignificant (60-day group p = 0.053). There was significantly decreased
expression of IL-12 in the serum of Ccm2 mutant mice among 90-day treatment groups
(Figure 5D lower panel), suggesting existing IL-12 cytokines were suppressed, due to the
combination of Ccm mutant genotypes and mPR-specific PRG actions.

The levels of IL-6 were found to be unaffected in our 30-day treatment groups
(Figure 5E upper panel), slightly elevated in our Ccm2 mutant mice in the 60-day treatment
group (Figure 5E middle panel), followed by a dramatic plunge in the serum of all three
Ccms mutant mice among the 90-day treatment group (Figure 5E lower panel), suggesting
IL-6 cytokines were also suppressed, due to the combination of Ccm mutant genotypes
and chronic mPR-specific PRG actions. These data indicate the suppression of systemic
inflammation occurred in all three Ccms mutant mice under mPR-specific PRG actions,
and confirm that the permeability of blood vessels is not driven by a systemic inflam-
matory response, but rather is an effect of an interaction between genotype and chronic
mPR-specific PRG actions, which also causes immunosuppression. PRG was reported to
play a major role in immunomodulatory actions [40], likely through its rapid effects on
human T cells [41]. More importantly, it was found that PRG-induced immunosuppres-
sion is neither mediated through nPRs [42] nor by the glucocorticoid receptor (GR) [43].
Since peripheral blood monocytes and T cells are nPR(−) [44], nonclassic PRG actions
through mPRs are the only viable possibility to explain PRG-induced actions including
immunosuppression [45]. Therefore, the amounts of PRG in serum should be determined
to investigate whether this immunosuppression is indeed caused by excessive circulating
“free form” PRG in serum.

2.8. Perturbation of PRG Homeostasis Leads to a Disrupted BBB in Ccm Mutant Mice

Normal homeostasis of PRG, Serpin A6, and Albumin in the serum of naïve and vehicle-only
groups. Over 98% of PRG in blood is stored and passively transported by plasma
proteins [46], mainly through two major PRG-binding proteins in serum, Serpin A6 (binds
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~18% PRG) and Albumin (binds ~80% PRG), and is physiologically inactive [47]. To
further investigate the underlying mechanisms of sudden elevated levels of active PRG
in the serum, quantification of PRG, Serpin A6 (SERPINA), and Albumin in the serum
was performed from naïve and vehicle-treated groups. No major significant differences
were found between naïve (noninjection) and vehicle-treated groups for all mouse strains
(Supplementary Figure S7A–C, with the exception of naïve CCM3 mice in regard to Ser-
pin A6 levels), suggesting total amounts of PRG, Serpin A6, and albumin are normally
distributed among WT and Ccms mutant strains without hormone pressure.

Excessive active PRG in serum of Ccm2 mutant mice in 90-day treatment group. Quantifica-
tion of PRG in the serum among all treatment groups was also examined. No significant
differences were observed among the different mice strains in the 30- and 60-day treat-
ment groups (Figure 6A upper and middle panels), suggesting homeostasis/biogenesis
of PRG is normal among different strains of mice up to two months of mPR-specific PRG
actions, irrespective of genotype. The amounts of PRG in serum were found to be elevated
significantly in Ccm2 mutant mice in the 90-day group compared to WT, and the same
trend of increased amounts of PRG in serum was also found in Ccm1 mutant mice but
without significance (Figure 6A, bottom panel). These results indicate an abrupt disruption
of homeostasis of PRG is correlated with initiation of a disrupted BBB (Figure 3A, bottom
left panel) among Ccm2 mutant mice (and possibly Ccm1 mice) after chronic exposure to
mPR-specific PRG actions. As aforementioned, it must be mentioned that our observed
results for Ccm2 90-day treatment groups are from a limited sample size due to our strict
husbandry standards for eliminating any mice showing abnormal phenotype/behavior,
but we anticipate these differences to remain significant with an increased sample size.
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Figure 6. Perturbation of homeostasis of PRG is associated with BBB disruption. (A) No obvious
differences in PRG levels in mice serum were observed in the 30-day treatment groups (upper panel).
Interestingly, free-circulating PRG levels in the mice serum have an overall two-fold increase among
all treated genotypes in the 60-day treatment groups (although not statistically significant, middle
panel). In the 90-day treatment groups, free-circulating PRG levels regressed to normal ranges;
however, free-circulating PRG levels in Ccm2 mutant mice stayed significantly higher (there was
a similar higher trend in Ccm1 mutant mice as well). (B) Significantly decreased SerpinA6 levels
were observed in Ccm1 mutant mice in the 30-day treatment group only, while increased amounts
of SerpinA6 were observed in Ccm1/2 mutants in both 60- and 90-day treatment groups (although
not significant yet). (C) Although albumin levels fluctuated in Ccms mutants in the 30- and 60-day
treatment groups (nonsignificant), significantly decreased amounts of albumin were found in Ccm2
mutants in the 90-day treatment group (both Ccm1 and Ccm3 also shared decreased levels) compared
to WT. (D) Serum levels of five molecules (PRG, Albumin, SerpinA6, IL-6, and IL-12) were found
to correlate with vascular permeability in the BBB (leakage), which can be utilized as etiological
biomarkers to predict BBB disruption. The integrated evaluation of these markers will be the key to
predict and prevent hemorrhagic stroke. Predictive equations were generated for this figure using
binomial regression of the serum levels of the five etiological biomarkers by integrating temporal
EBD data in Ccm mutant mice under mPR-specific PRG actions (0–3 months exposure). *, ** and ***
above graphs indicate p ≤ 0.05, 0.01, and 0.001.

2.9. Perturbation of Albumin Homeostasis/Biogenesis Is Observed in Ccm-Deficient Mice under
mPR-Specific PRG Actions

Changed expression levels of PRG-binding proteins in serum of Ccm2 mutant mice in 90-day
treatment groups. Significantly decreased levels of Serpin A6 in serum were found for Ccm1
mutant mice, compared to WT, in the 30-day treatment group (Figure 6B upper panel).
However, an increased trend in Serpin A6 in serum was observed in both Ccm1 and Ccm2
mutant mice, compared to WT, in the 60- and 90-day treatment groups (although not statis-
tically significant when compared to WT) (Figure 6B middle and lower panels), suggesting
that the PRG-binding protein, Serpin A6, follows the same trend in serum level of PRG.
These data suggest that the serum level and function of Serpin A6 is normal, irrespective of
genotype, and Serpin A6 is upregulated in an effort to balance increased levels of active
PRG in the serum (Figure 6A).
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Intriguingly, significantly decreased levels of albumin in serum were found in Ccm2
mutant mice in the 90-day treatment groups despite no differences in either 30- or 60-day
treatment groups (Figure 6C all panels), in parallel to PRG trends in the serum, suggest-
ing reduced levels of albumin in serum might contribute to the perturbed homeosta-
sis/biogenesis of PRG (compare Figures 6C and 6A) in Ccm2 mutant mice. These data
also suggest that the CSC is likely involved in the regulation of homeostasis of PRG by
modulating the expression levels of its dominant binding protein, albumin, in serum. There
was a similar trend between serum levels of albumin and serpin A6 in Ccm1, where both
binding proteins were decreased in the 30-day treatment group (significant in serpin A6,
nonsignificant in albumin), but subsequently were increased in the 60-day treatment group
(nonsignificant in both) (Figure 6B,C). This is correlated with the immunosuppression
shown previously (Figure S5B–E), further validating the notion that the CSC modulates the
biogenesis of albumin, a dominant serum PRG-binding protein (over 80%). Overall, our
data indicate that the CSC not only plays a major role in modulating signaling crosstalk
between classic and nonclassic PRG receptors [16], but also influences the homeostasis
of PRG.

Biomarkers associated with BBB disruption defined in Ccms mutant mice. Our data clearly
demonstrated that there is a correlation between serum levels of PRG and the initiation
of BBB disruption in hemizygous Ccms mutant mice. Furthermore, four more biomarkers
(SerpinA6, IL-12, IL-6, and Albumin) are all associated with PRG homeostasis in serum, and
also correlate well with a disrupted BBB in hemizygous Ccms mutant mice. Therefore, we
hypothesize that these serum molecules can be used as etiological biomarkers to predict the
timing of BBB leakage, the initiating steps in early hemorrhagic events in CCM pathology.
We performed binomial regression with the serum concentration of these five biomarkers
with the corresponding EBD levels for the same treatment groups temporally (0, 30, 60,
and 90 days) to generate binomial correlation functions (Figure 6D). Each biomarker has
a unique cutoff value indicating an elevated risk of BBB disruption. These predictive
algorithms will be tested, improved, and validated through our ongoing collaborative
human CCM biomarker trials.

3. Discussion
3.1. Perturbed Homeostasis of PRG Is a Casual “Trigger” for BBB Leakage

Female gender is a key risk factor for hemorrhagic bleeding in CCMs. Our key findings are
that nPR(−) microvascular ECs are more susceptible to the perturbation of the CmP
signaling network, which is well documented in clinical appearance. CCMs are more
common in women and become symptomatic during their reproductive period (30–40 age
range) [48]. Although no conclusive results have been found [49], hormonal changes during
pregnancy have long been suggested as significant factors for increased bleeding [14], and
female gender is a key risk factor for bleeding in CCM patients [50].

PRG is a key risk factor for hemorrhagic CCMs. Spinal hemangiomas have been defined
as a pregnancy-related vascular disorder [51], and CCMs account for half of them [52].
Hormonal changes during pregnancy are defined as determining factors in initiating and
enhancing the vertebral hemangiomas [51]. Therefore, it has been long speculated that
the flux of hormones during pregnancy may predispose CCMs to hemorrhage [14]. A
pregnancy-associated increase in PRG levels has been indicated to enhance the progression
of vertebral hemangiomas [53], likely through its ability to induce structural changes within
the vessel wall [54]. Negative staining with estrogen (EST) but positive staining with PRG
in all 12 orbital CCM samples suggested the role of PRG signaling in the pathogenesis
of orbital CCMs [55]. Unfortunately, subsequent screening results of CCM lesions from
12 patients showed all negative staining with both EST receptor (ER) and classic nPRs,
failing to link both EST- and PRG-mediated signaling to the pathogenesis of CCMs [56].
Finally, it is highly likely that polymorphisms associated with genes other than CCMs, both
related with oxidative stress, inflammation, and, in particular, involved in the production
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and metabolism of sex steroid hormones, such as CYP450 enzymes [57], might significantly
contribute in CCM disease onset and progression as additional triggers.

mPR-specific PRG actions in the CmP signaling network. Data in nPR(−) blood mono-
cytes and T cells [41], nPR(+) T47D cells [6], and nPR(−) triple-negative breast cancer
cells (TNBC) [7,8] indicate that mPRs are quite possibly the only target for mPR-specific
PRG actions in nPR(−) cells. The CmP signaling network, which modulates the integrity of
the BBB, could be disrupted during pregnancy or physiological/pathological events with
excessive circulating “active” PRG in the bloodstream. In this study, we found that the
disrupted CmP signaling network is greatly influenced by excessive PRG and the effects
are epigenetically imprinted in microvascular ECs, which could subsequently trigger BBB
disruption. In the case of hemizygous CCM mutant carriers (human familial CCM pa-
tients), there are certain increased risks of hemorrhagic events when exposed to chronically
elevated PRG (or MIF) levels in the bloodstream.

Our in vitro data showed that neurosteroids (PRG derivatives) lead to the same phe-
notype of ECs’ permeability as the mPR-specific PRG actions generated from PRG/MIF,
indicating the effect of neurosteroids on ECs is achieved through mPR-specific actions.
Mood disorders are common health problems associated with women in their reproductive
ages [58], with common symptoms ranging from less severe premenstrual syndrome (PMS)
to the more severe premenstrual dysphoric disorder (PMDD) [59]. Although neurosteroids,
such as ALLO, can be synthesized de novo in the CNS [60], the majority of neurosteroids
(ALLO and P5) are generated as PRG (P4) metabolites in the reproductive system [61].
Interestingly, the correlation between increased ALLO levels and worsened symptoms
in PMDD/PMS is very strong [62], although there is an apparent lag time between the
ALLO peak and symptom peak [62], suggesting an underlying molecular trigger is needed
for increased production of neurosteroids during stress [62]. Data from animal models
clearly indicate ALLO and P5 are stress-responsive, serving as homeostatic mechanisms
in restoring normal GABAergic function following stress. Acute stress leads to sharp
increases in both plasma and CNS concentrations of ALLO to restore GABAergic tone and
suppress the acute endocrine stress response, an essential step in homeostatic mechanisms
of adaptation to stress, by limiting the extent and duration of reduction in GABAergic
inhibitory transmission, and activation of the hypothalamic–pituitary–adrenal (HPA) axis.
Disruption in this homeostatic mechanism may lead to the pathogenesis of psychiatric
disorders and depression [63]. Intriguingly, accumulated data show that stress can induce
or increase the risk of hemorrhagic stroke in both animal models and humans [64], linking
high levels of neurosteroids with a high risk of hemorrhagic stroke.

New paradigm for hemorrhagic progression events in CCMs. In clinical diagnosis, hemor-
rhage is often rooted from defective EC junctions, and microvessel rupture is a result
of compromised integrity of BBB in CCMs [65]. Many bleeding mechanisms have been
proposed in CCMs, of which one major theory is the anticoagulant vascular domain the-
ory (endothelial cofactors that generate anticoagulant APC to induce bleeding) [66]. Our
data that enhanced PRG-mPRs signaling due to perturbed homeostasis of PRG leads to
BBB disruption, in addition to evidence that long exposure to hormonal contraceptives
increases the risks of cerebral venous sinus thrombosis (CVST), a phenotype opposite to
hemorrhage [67], seem incongruent with this theory.

The second model is the gut microbiota theory (LPS-activated Toll-like receptor 4
to induce inflammatory-associated hemorrhage) [68] which focuses on the importance
of gut microbiota inducing systemic inflammation that promotes detrimental effects on
the BBB [69]. However, the main issue with this model is that LPS-induced Ccm hemor-
rhagic mice induce a large CCM burden with massive bleeding, uncharacteristic of human
CCMs. Additionally, it has been well documented that immunogenic LPS will compromise
vascular function and integrity in multiple organs/tissues [70] including BBB [71], and
neuroinflammation [72], irrespective of either genotype or inflammatory response. Finally,
this report provides strong evidence that the disrupted BBB observed in our hemizygous
Ccms mutant mice models is unrelated to the locally induced gut inflammation observed in
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Ccms mutant mice (Figure 5A). Furthermore, our findings instead indicate that immuno-
suppression caused by mPR-specific PRG actions in Ccm-deficient mice is associated with
BBB disruption (Figures S3A and 5), which also provides more refuting findings that are in
disagreement with the microbiota theory.

Taken together, neither of these two theories addresses a key issue of gender discrep-
ancy in the pathogenesis of CCMs. Female dominance in CCM patients has been long
suggested [73], with more severe bleeding and worse neurological outcomes observed in
females [74], most likely due to endocrine influences [73]. Therefore, based on the in vitro
and in vivo data presented in this report, we propose a new paradigm for the molecular
mechanisms initiating BBB disruption, the first step in early hemorrhagic events. In nPR(−)
ECs, excessive exposure to mPR-specific PRG actions leads to disruption of the CmP net-
work and enhanced permeability in vitro, while long-term exposure to mPR-specific PRG
actions, in vivo, results in BBB disruption in our hemizygous Ccms mutant mice models.
These findings indicate that the feedback loops within the CmP signaling network are quite
sensitive and perturbation of this intricate balance, such as hormone therapy or hormonal
contraception regimens, could result in increased risks in BBB disruption, especially for
human CCM mutant carriers (either genomic or somatic). Our new paradigm provides a
theory that is in line with the clinically observed human CCM conditions [5].

3.2. Novel Biomarkers Shed Light for the First Time to Predict the Potential Risk of BBB Disruption

Biomarkers have been long sought for early diagnosis of strokes [75], but only with
a limited success in ischemic strokes [76,77]. Efforts to define diagnostic biomarkers for
hemorrhagic strokes are underway [78]. Inflammatory cytokines have been on target as
risk factors or biomarkers for stroke [79]. Circulating levels of TNF-α [80], MCP-1 [81],
and IL-6 [82] as biomarkers have all been investigated. Among various cytokines from
candidate plasma biomarkers in two small cohorts [83,84], the IL-6 plasma level was lower
in hemorrhagic patients compared to stable subjects, which is in accordance with our serum
IL-6 data in Ccm mutant mice.

Plasma levels of Serpin A6 are nearly 20-fold higher in women relative to men, sug-
gesting gender differences in response to PRG signaling [85]. While no differences were
found in women, a significant inverse association between plasma Serpin A6 levels in men
was detected, indicating a protective role of Serpin A6 in strokes [85]. Serum albumin
levels have been found to be inversely correlated with stroke incidence and outcome [86],
but the majority of this work only investigated ischemic strokes [77,87], but a few re-
ports found that serum Albumin levels can predict hemorrhagic stroke with negative
correlation [88]. Since the protective role is so significant, high-dose albumin has been
shown to be highly neuroprotective during strokes [89], and multicenter clinical trials
have been carried out [90], but the neuroprotective function of albumin remains unknown
and our data shed light on these possible mechanisms. Ironically, PRG has long been
sought as a potential therapeutic drug for post-stroke treatment for both ischemic and
hemorrhagic strokes in animal models [91], and now there are even some on-going large
clinical trials. The neuroprotective function of PRG has been well defined [92], mainly due
to its ability of immunosuppression [93]; therefore, there should be caution in evaluate its
potential application as treatment options when current data show the potential role of
excessive PRG in inducing BBB disruption. Collectively, our findings reinforce the idea
that there are gender- and sex-hormone-associated differences in stroke pathophysiology,
and suggest that PRG-mediated signaling should be investigated further as a potential
molecular mediator in strokes.

4. Materials and Methods
4.1. Cell Culture and Treatment, Real-Time Quantitative PCR Analysis (RT-qPCR),
and Western Blots

Human brain microvascular endothelial cells (HBMVEC), human dermal microvascu-
lar endothelial cells (HDMVEC), human umbilical vein endothelial cells (HUVEC), and rat
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brain microvascular endothelial cells (RBMVEC) cells were cultured following manufac-
turers’ recommendations (ATCC) and as previously described [18–20,94,95]. Briefly, when
cells reached 80% confluency, cells were treated with either vehicle control (ethanol/DMSO,
VEH), mifepristone (MIF, 20 µM), progesterone (PRG, 20 µM), mPR-specific PRG actions
(PRG + MIF; 20 µM each), or media only (untreated) for steroid treatments. For RNA
knockdown experiments, 80% confluent endothelial cells (ECs) were transfected with a set
of siRNAs, targeting specific genes, by RNAiMAX (Life Technologies, Carlsbad, CA, USA)
as described before [3,6,16]. The expression of CCM genes at both the transcriptional and
translational levels was confirmed through both RT-qPCR and Western blots (WB) as previ-
ously described [3] with detailed information provided (Supplementary Table S1). Briefly,
after various treatments, cells were harvested, and RNA expression levels of CCMs, nPRs
(nuclear progesterone receptors), and mPRs (membrane progesterone receptors) genes were
determined through RT-qPCR using Power SYBR Green Master Mix with ViiA 7 Real-Time
PCR System (Applied Biosystems, Waltham, MA, USA), and data were analyzed with
DataAssist (ABI) and Rest 2009 software (Qiagen, Hilden, Germany). All experiments
were performed with triplicates as described before [3,6]. The relative expression levels of
candidate proteins were measured with WB as described before [3,6,16].

4.2. In Vitro EC Permeability Assays

Growth of nPR(+/−) ECs, under mPR-specific PRG actions, to assess cellular permeability.
First, 2× 105 ECs were plated onto both 6.5 mm Transwell Collagen-coated and noncoated
membrane inserts (3 µm pore PTFE, Corning Costar, Cat#3415), and grown for 2 days to
form mature monolayers. Permeability was assessed by the passage of FITC-conjugated
dextran (relative mw 40,000, Molecular Probes, D1844), added to the media along with
hormones. Vascular leakage was determined from the change in average fluorescence
intensity in the lower chamber. Before treatment, the medium was replaced with minimal
media without FBS (starvation) for 2 h. Then, the medium was replaced with fresh media
1 h before treatment on the top wells. An amount of 2 ul of Thrombin was added to
each well (100 ul, 1 U/mL in PBS) for 20 min. An equal volume of media was then re-
moved from the top well before treating with either vehicle control (EtOH, DMSO), or MIF
(20 µM), PRG (20 µM), combined sex steroids (PRG/MIF, 20 µM each), allopregnanolone
(ALLO, 20 µM), and pregnanolone (P5, 20 µM), all as mPR-specific PRG treatments. An
amount of 20 ul of dextran (1 ug/ul in PBS) was then added in the top wells. Time-course
(0 (Control vehicle), 2, 4, 8, 12, 24, 36, 48, 60, and 72 h) experiments of various hormone(s)
stimulation in nPR(+/−) ECs was measured, respectively. Each sample from the bottom
chamber was read on a fluorescent plate reader (excitation wavelength 488 nm), from five
independent experiments (n = 5 per group). The fluorescence intensity of FITC-dextran
in the samples was measured using a 96-multiwell plate reader. Statistical analysis was
performed using ordinary two-way ANOVA with Holm–Sidak’s multiple comparison
correction as described before [96].

4.3. Evaluation of Blood–Brain Barrier with Evan’s Blue Dye (EBD) from Brain Tissues

Control and treatment groups: Hemizygous Ccm1+/−, Ccm2+/−, Ccm3+/− mutants with
a C57 BL/6 J background (generous gift of Dr. Marchuk, DUKE) and WT (C57 BL/6 J)
mice were injected with an mPR-specific PRG treatment (PRG + MIF, 100 mg/kg body
weight) in peanut oil (vehicle), 5 days a week for 30, 60, and 90 days, respectively. Mice
were also injected with only peanut oil or left untreated as vehicle and naïve controls,
respectively. Upon completion of the last injection, mice were injected intravenously with
EBD (500 µG/25 G body weight) and allowed to circulate for 3 h followed by euthanasia
and transcardial perfusion with sterile ice-cold 1X PBS; organs were harvested and snap
frozen in liquid nitrogen for future use. Individual points on graphs represent a mouse,
and sample size, depending on genotype and treatment group, normally ranged from
N = 3–20.



Int. J. Mol. Sci. 2022, 23, 9684 27 of 33

Extraction of EBD from brain tissues: Tissues were homogenized in 1.5 mL tubes using
presterilized pestles in ice-cold PBS. All samples were then loaded on a bead beater machine
and agitated at max speed for 1 min and quickly placed back on ice. After centrifugation
at 15,000 RPM at 4 ◦C, supernatants were transferred to a new tube with 1/3 volume
of 100% trichloroacetic acid (TCA). Samples were rocked overnight (O/N) at 4 ◦C and
again centrifuged at 15,000 RPM at 4 ◦C. The supernatant was then transferred to a new
tube with 1/3 volume of ethanol before measuring. Each sample was loaded in 8 wells of
a 384 well black Costar plate to serve as technical replicates. The plate was then analyzed
using a flex station 3 with fluorescence being read using 620 nm excitation and 680 nm
emission, with 6 readings per well, auto PMT sensitivity, and column wavelength priority
set during the reads.

4.4. Immunofluorescent (IF) Staining Preparation for Evaluation of Subcutaneous
Microvasculature in the Ears

Ear collection and preparation: The procedure was performed as described before [97].
Briefly, whole ears were collected from WT (C57 BL/6 J) and Ccm1+/−, Ccm2+/−, and
Ccm3+/− hemizygous mutant mice after being treated for 90 days with mPR-specific PRG
treatment or vehicle control or left untreated as a naïve control. Ears were kept frozen at
−80 ◦C and thawed at 4 ◦C before preparation. Ears were placed in Hank’s balanced salt
solution (HBSS) so that hairs and excess tissue could be removed with scissors under a
dissection microscope. Posterior and anterior leaflets of the ears were separated with each
leaflet being placed in a separate 24-well plate with 1 mL of 4% paraformaldehyde (PFA) at
4 ◦C for 15 min. Ears were washed with 1 mL PBS with 0.2% triton X-100 (washing buffer);
then, remaining cartilage and hair were removed and washed again before proceeding to
staining procedures.

Preparation of gelatin slides: A gelatin coating solution was prepared by dissolving 5 g
of gelatin in 1 L of heated water; 0.5 g of chromium potassium sulfate was then dissolved
in the gelatin. The solution was filtered and applied to slides in a histological dipping tank.
Briefly, cleaned slides were placed in a rack and dipped in the gelatin coating solution 3 to
5 times (5 s each). The slides were allowed to dry at room temperature (RT) for 48 h and
then stored at 4 ◦C until ready to use.

IF staining of ears: The procedure was performed as described before [97]. Briefly,
prepared ears were placed in 24-well plates (all wash/incubation steps were performed in
separate wells) with 0.05% (w/v) Pronase (antigen retrieval) in PBS with 0.2% triton X-100,
and incubated with gentle agitation at RT for 30 min. Ears were washed with wash buffer
(1X PBST), followed by blocking buffer (10%BSA + 0.2% triton X-100 (TX-100)), incubated
at RT for 30 min, followed with wash buffer. Ears were then incubated with PECAM-1
conjugated antibody (FITC, 488 nm) diluted in blocking buffer to a 1/50 concentration. The
plate was covered with aluminum foil and incubated for 1 h at RT. Rhodamine Phallodin
conjugated antibody (TRITC, 565 nm) and DAPI (408 nm) diluted to a 1/200 concentration
for each were then added into the well without removing PECAM-1 solution and incubated
O/N at 4 ◦C in the dark.

Mounting and imaging of ears: Stained ear leaflets were placed in a Petri dish with PBS
to prevent drying out during this procedure. Any remaining hairs, cartilage tissue, dust,
and fibers remaining after IF staining were removed from the ears under a dissection
microscope. The ear leaflets were transferred to a gelatin slide with the inside of the leaflet
facing up. Prolong Gold was placed on the ear leaflets to mount. Ears were clamped and
allowed to cure in the dark.

The slides were imaged using a Nikon Eclipse Ti confocal microscope using a 40×
objective lens with the appropriate lasers for the antibodies used (Supplementary Table S1).
A total of 10–20 random images (anterior and posterior) from 3 mice from each strain in
the 90-day treatment groups (spanning the full surface area of the ear) were taken for a
representative image of the ears depending on the size of the ear using z-stacks. Counts of
lesions present for the treatment groups, along with the CCM2 naïve and vehicle controls,
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were also obtained during this time. The images were saved as an 8-bit, multicolor, black
and white file (required for use in the ImageJ software with vessel analysis package) using
NIKON Elements software. Briefly, images were first inverted then converted to a bit map
with a resolution of 1024 × 1024 pixels with each pixel corresponding to 0.31 uM. The
software used for analysis is a vessel analysis plugin (performed automatically in ImageJ)
that provides vessel diameter, vessel length density, and vascular density using the above
scaling information and produces the averaged results in uM. To summarize the data, we
manually created groups (X axis in graphs) based off the measurement values that were
obtained for each strain/treatment group. Statistical significance was determined using
unpaired t-test.

4.5. Evaluation of Overall Angiogenic Performance of nPR(−) Aortic ECs from Ccm Mutant Mice
Ex Vivo

After euthanizing Ccm1+/−, Ccm2+/−, and Ccm3+/− hemizygous mutant and WT
(C57 BL/6 J) mice treated for 30, 60, or 90 days, the thoracic aorta was carefully dissected,
removed, and placed in OPTI-MEM media on ice (viable up to 4 h) [98]. The experiment was
initiated by adding 500.0 µL of Matrigel matrix (BD Biosciences) supplemented with vehicle
(DMSO + EtOH, V) or mPR-specific PRG treatment (20 µm each, PM) to corresponding
24-well plates; the matrigel media needed to polymerize at 37 ◦C for 15 min before adding
the aortic rings on top. The aortae were cut into equal segments and after addition into the
well, another 500.0 µL of corresponding matrigel (V or PM) was added and again allowed to
polymerize at 37 ◦C for 15 min. Finally, 250 µL of EC media was placed, supplemented with
either vehicle or mPR-specific PRG treatment (20 µm each, PM) on top of the last matrigel
layer. Plates were placed into a Nikon BioStation CT cell culture system to observe ex vivo
angiogenesis. Time-specific images of the aortic vessels were taken with pictures acquired
every 2 h for a total of 72 h. After acquisition, analysis of cell growth was conducted
on images taken at 12, 24, and 48 h. Images (4324 × 4324 pixels) were analyzed using
Nikon Elements V5.02 by calibrating images using the dynamic range of the CCD camera
(1000 pixels × 1000 pixels) according to specifications from the corresponding Bio station
CT objective lens used for image acquisition (0.8 µM/pixel). The area of six independent
sections, using Nikon Elements V5.02, was averaged from the images at each corresponding
time point based on areas of cell growth that could be visualized to obtain angiogenesis
measurements (area of growth-µm2). In addition, the area of the aortic vessel was also
measured in order to normalize angiogenesis measurements. EC counts were measured
using the object count function tool also provided with Nikon Elements with thresholds set
to eliminate both high and low extreme values. To normalize cell count values, object count
data were divided by the length of the aortic vessel (µM). Sprouting times were estimated
using time interval images from the beginning of the experiment until apparent visible
sprouting from aortae was observed. All normalized values for images taken at 12 h, 24 h,
and 48 h were compared with controls to observe alterations to angiogenic performance
and statistical analysis was performed using either t-test (sprouting times) or two-way
ANOVA using Graphpad Prism.

4.6. Measurement of Cytokines and Etiological Serum Biomarkers

Estimation of monocytes and neutrophils in the peritoneal lavage. Peritoneal lavage was
collected from Ccms (1, 2, and 3) mutants and WT mice as previously described [99].
Briefly, after euthanasia, 3 mL PBS was injected into the peritoneal cavity of the mouse. The
abdomen was gently massaged for 2 min. Subsequently, lavage fluid was recovered using a
pipette. Cells were counted on a hemocytometer slide and 1 × 106 cells were resuspended
in staining buffer (PBS with 2% FBS). Staining was carried out as described previously [99].
Briefly, cells were incubated with CD16/CD32 antibody (Fc shield) for 5 min on ice, to
prevent nonspecific binding. Subsequently, cells were incubated for 60 min on ice with
antibodies against cell surface markers (Supplementary Table S2). Cells were fixed for 5 min
on ice with IC fixation buffer (eBiosciences, cat#00-8222-49). Labeled cells were analyzed
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on a BD FACS CantoII flow cytometer (BD Biosciences) and data were analyzed using
FlowJo software (FlowJo). The sample size ranged from N = 3–8, depending on strain and
treatment group.

Measurement of cytokines and other biomarkers in mice serum with ELISA assays. The serum
levels of four serum cytokines, TNF-α, MCP-1, IL-12, and IL-6, as well as PRG and PRG
binding proteins (Albumin and Serpin A6), were measured using corresponding ELISA
kits (Supplementary Table S2) and quantified using the provided standard titration curve
for each kit, following the manufacturer’s instructions.

5. Conclusions

In this report, we extended our previous finding of the intricate feedback regulation in
the CmP signaling network into nPR(−) ECs. We found that the CSC controls homeostasis
of PRG, in the CmP signaling network, linking the perturbed homeostasis of PRG to the
center stage of vascular leakage, in vitro, using nPR(−) ECs under mPR-specific PRG
actions, as well as the observed BBB disruption in our in vivo Ccm mice models under the
same treatment conditions. This project provides new insights establishing the existence of
and crosstalk within the CmP signaling network, which helps maintain the integrity of the
BBB, revolutionizing the current concepts of vascular leakage and BBB disruption, leading
to new therapeutic strategies.
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