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Abstract 

Stroke, characterized by sudden neurological deficits, is the second leading cause of death 
worldwide. Although genome-wide association studies (GWAS) have successfully identified 
many genomic regions associated with ischemic stroke (IS), the genes underlying risk and their 
regulatory mechanisms remain elusive. Here, we integrate a large-scale GWAS (N=1,296,908) 
for IS together with mRNA, splicing, enhancer RNA (eRNA) and protein expression data 
(N=11,588) from 50 tissues. We identify 136 genes/eRNA/proteins associated with IS risk across 
54 independent genomic regions and find IS risk is most enriched for eQTLs in arterial and 
brain-related tissues. Focusing on IS-relevant tissues, we prioritize 9 genes/proteins using 
probabilistic fine-mapping TWAS analyses. In addition, we discover that blood cell traits, 
particularly reticulocyte cells, have shared genetic contributions with IS using TWAS-based 
pheWAS and genetic correlation analysis. Lastly, we integrate our findings with a large-scale 
pharmacological database and identify a secondary bile acid, deoxycholic acid, as a potential 
therapeutic component. Our work highlights IS risk genes/splicing-sites/enhancer 
activity/proteins with their phenotypic consequences using relevant tissues as well as identify 
potential therapeutic candidates for IS. 
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Introduction 

Stroke is a complex disease resulting from an interruption of blood flow to the brain [1]. A 
common type of stroke is ischemic stroke (IS), which is caused by cerebral infarction [2]. 
Diabetes, obesity, hypertension, and coronary artery disease are well-known risk factors for 
stroke [3–6], but the pathogenesis of IS is still largely unknown. Although genome-wide 
association studies (GWAS) have successfully identified genomic regions associated with IS 
outcomes, the genes underlying IS risk and their regulatory mechanisms remain elusive as the 
majority of associated variants are non-coding in nature [7,8]. 

Recently, the transcriptome-wide association study (TWAS) approach attempts to mitigate this 
gap in understanding by integrating GWAS associations together with molecular quantitative 
trait loci (molQTL) data [9,10]. Previous works have leveraged TWAS to identify candidate 
susceptibility genes for IS risk, however these analyses have three primary limitations. First, 
previous analyses were limited to integration of molQTLs measured in whole blood, adipose, 
and brain tissues [11,12], which may miss disease mechanisms in less understood or unknown  
disease-relevant tissues [13–15]. Second, prior works focused on integration of expression QTL 
(eQTL) and protein QTL (pQTL) [12,16], which may miss independent regulatory mechanisms 
important for IS risk. For example, an essential mechanism of gene regulation and a significant 
factor in genetic risk of disease is the genetic control of alternative splicing (i.e., sQTLs) [17]. 
Moreover, recent work demonstrated enhancers undergo activity-dependent transcription, 
resulting in the production of noncoding enhancer RNAs (eRNAs) which serve as a crucial 
hallmark of enhancer activation [18,19]. Third, while the GAGASTROKE prioritized relevant 
tissues for IS by leveraging eQTL data, it relied on the GTEx v7 study (N=388), [12], which had 
a smaller sample size than the European GTEx v8 study (N=588). Lastly, the L1000 
Connectivity Map (CMap), a public database for large pharmalogical datasets, provides 
extensive gene expression profiles of thousands of compounds in various human cell lines [20]. 
Recent studies have successfully provided novel therapeutic candidates by utilizing TWAS 
results with the pharmalogical database [21,22].  

Here, we integrate large-scale IS GWAS data (N=62,100 cases and 1,234,808 controls) with 
gene expression, alternative splicing, eRNA and protein abundance data (N=11,588) from 50 
different tissues to identify IS susceptibility genes, tissues, and drug targets. We identify 136 
genes/splicing sites/eRNA/proteins across 54 genomic regions whose genetically predicted 
activity is associated with IS risk using a multi-tissue mRNA/splicing/eRNA/protein 
transcriptome-wide association study (TWAS/spTWAS/eTWAS/PWAS). We leverage TWAS 
results to identify tissues relevant for IS risk and find arterial and brain most enriched for eQTL 
mediated heritability. Focusing on the IS-relevant tissues, we perform probabilistic fine-mapping 
analyses of TWAS results to prioritize 9 putative causal genes/proteins. Among them, only 3 
genes/proteins (i.e., FOX2, F11, MMP12) were identified in previous GWAS or TWAS studies 
[7,12,16]. In addition, we conduct a TWAS-based pheWAS analysis to understand the 
phenotypic consequences of identified IS susceptibility genes, and the identified reticulocyte cell 
traits are significantly correlated with IS. In addition, we discover that reticulocyte traits have 
shared genetic contributions with IS using TWAS-based pheWAS and genetic correlation 
analysis. Lastly, to find therapeutic drug candidates for IS risk, we integrate our TWAS findings 
with 308,872 pairs of compound and compound-perturbed cell-type specific gene expression 
alterations from the L1000 Connectivity Map. Using this approach, we detect a secondary bile 
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acid, deoxycholic-acid (DCA), as a potential therapeutic component. Overall, our results shed 
light on underlying molecular mechanisms and tissue contexts that cause ischemic stroke. 

 

Materials and Methods 

Ischemic stroke GWAS summary statistics 

IS GWAS summary statistics from GIGASTROKE consortium [16] were downloaded from the 
GWAS Catalog (GCST90104540) (see URLs). We restricted summary statistics data to ischemic 
stroke (AIS) results from 1,296,908 individuals of predominantly European ancestry (62,100 
cases and 1,234,808 controls). Next, we filtered summary statistics data to exclude SNPs with 
minor allele frequency (MAF) < 0.01 or any SNPs with strand-ambiguous variants (i.e. A/T or 
C/G; or vice-versa) using the focus munge tool [23], resulting in 6,335,571 bi-allelic SNPs for 
downstream analyses. 

 

Reference functional data for predictive models of eQTL/spQTL/EeQLT/pQTL 

To perform TWAS and spTWAS, we generated predictive models of gene and splicing 
expression using individuals from the Genotype-Tissue Expression Project (GTEx) v8 [24] using 
a modified FUSION script (see URLs). We downloaded genotype, phenotype, and covariate 
information from European-American subjects in the GTEx v8 study (48 tissues; N�=588). We 
defined the cis-mapping window as ±500kb around the transcription start site (TSS) after 
filtering based on minor allele frequency (MAF) < 0.005, Hardy-Weinberg Equilibrium (HWE) 
< 1 x 10-5. We included the reference set of covariates from the GTEx v8 eQTL/spQTL analyses, 
which included first five genotype principal components (PCs), 15 hidden covariate derived from 
Probabilistic Estimation of Expression Residuals (PEER) [25] factors, whole genome sequencing 
(WGS) platform (HiSeq 2000 or HiSeq X), WGS library preparation protocol (PCR-based or 
PCR-free), and donor gender. We estimated cis-SNP heritability (cis-��

�) of each model using 
REML as implemented in Genome-wide Complex Trait Analysis (GCTA) [26]. We focused on 
genes and splicing sites with nominally significant estimates of cis-��

� (p-value < 0.01), which 
resulted in 293,295 total tissue-gene pairs from 27,549 unique genes and 371,441 total splicing 
sites from 16,871 unique genes. To train and generate predictive models, we fitted LASSO [27], 
Elastic Net [28], and the Sum of Single Effects model (SuSiE) [29]. The best performing model 
for each gene/tissue (splice-site/tissue) context was selected by calculating cross-validation 
prediction accuracy, as implemented in the FUSION pipeline.  

To perform enhancer TWAS analysis (eTWAS), we downloaded precalculated FUSION weights 
for enhancer eQTL (EeQTL) data from two brain tissues, the dorsolateral prefrontal cortex 
(DLPFC) (N=486) and the anterior cingulate cortex (ACC) (N=402), in CommonMind 
Consortium (CMC) [19]. Briefly, the LASSO [27], Elastic Net [28] were used to train and 
generate the eTWAS predictive models for the ACC (4,907 predictive models) and DLPFC 
(5,715 predictive models). In addition, we also downloaded fitted prediction models of gene 
expression in both ACC (8,021 predictive models) and DLPFC (8,946 predictive models) tissues. 
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For detailed information of the eTWAS and TWAS predicted models, see the previously 
described ref [19].  

To perform a proteome-wide association study (PWAS), we downloaded fitted prediction models 
of protein abundance trained using individuals from the INTERVAL (N=3,301) [30] and 
Atherosclerosis Risk in Communities (ARIC) [31] cohorts (see URLs). In the ARIC cohort, we 
focused only on the European ancestry dataset (N=7,213). Briefly, to train and generate the 
PWAS predictive models using FUSION script, the LASSO [27], Elastic Net [28], and SuSiE 
[29] were used for the INTERVAL (994 predictive models) and the Elastic Net [28] was used for 
the ARIC (1,305 predictive models). For detailed information of the PWAS predicted models, 
see the previously described INTERVAL [32] and the ARIC [33]. 

 

Transcriptome-wide association study analyses 

We performed TWAS, spTWAS, eTWAS, or PWAS analyses using FUSION [9] with the 
trained GTExv8 [24], CMC [19], or INTERVAL [32] and ARIC [33] models, respectively. 
European LD reference data from the 1000G project [34] was used for TWAS analysis. We 
excluded TWAS associations from human leukocyte antigen (HLA) regions due to the complex 
LD patterns. The significance threshold of TWAS associations was determined using a per-tissue 
Bonferroni correction (Avg num tests = 6770; see Supplementary Table 1). We then carried out 
an adaptive permutation test using TWAS test statistics for each tissue panel. For this analysis, 
106 maximum number of permutations was used, and the significance threshold was corrected 
with per-tissue Bonferroni correction. 

To provide partial support for findings from our FUSION TWAS analyses, we leveraged S-
PrediXcan [35] with pre-trained Multivariate Adaptive Shrinkage in R (MASHR)-based models 
of PredictDB [36,37]. In GTEx v8, we tested 648,028 and 1,681,295 models of expression and 
splicing site, respectively. 

 

Colocalization analysis 

We performed colocalization analysis to test whether the same causal variants were shared 
between stroke GWAS and gene/protein expression levels. We used coloc r package [29] 
together with stroke GWAS summary statistics and marginal molecular QTL (molQTL) results 
from FUSION prediction models. The evidence of colocalization was defined as PP3 + PP4 ≥ 0.8 
and PP4/PP3 ≥ 2 where posterior probability (PP) was obtained from hypothesis H3 and H4. H3 is 
the PP of GWAS and eQTL signals are associated with different causal variants, and H4 is the PP 
of GWAS and eQTL signals are associated and share a single causal variant.  

 

Mediated Expression Score regression analyses 

To identify tissues relevant for IS risk, we used Mediated Expression Score Regression (MESC) 
to estimate the proportion of heritability mediated by assayed gene expression levels �����

� /��
�� 
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[38]. For MESC expression scores, the eQTL effect sizes using the SuSiE model [29] and 
expression cis-heritability using REML were imported from FUSION GTEx v8 weights. Only 
SNPs from the HapMap3 [39] were kept for this research. 

 

Fine-mapping of TWAS associations 

To differentiate between causal and tagging associations at TWAS risk regions, we performed 
probabilistic fine-mapping of TWAS results to prioritize genes using the tool FOCUS [23]. We 
generated an eQTL/spQTL/pQTL weight database for FOCUS by importing our trained GTEx 
v8 weights from FUSION. To determine approximately independent genomic regions, we used 
LD block architecture GRCh19 provided by Berisa and Pickrell et al. [40] (see URLs). 

 

Phenome-wide association studies and genetic correlation analyses 

To understand the phenotypic consequences of identified TWAS/spTWAS/PWAS associations, 
we performed a phenome-wide association study (pheWAS) for each identified gene using 
PhenomeXcan [41]. Using the TWAS/spTWAS/PWAS genes, phenotypes from the results of 
pheWAS analysis were reported based on transcriptome-wide significance (P-value < 2.25 x 10-
6). In addition, the PheWAS result was filtered by traits involving at least five TWAS genes. 

To determine the genetic relationship between IS and the phenotypes identified from 
PhenomeXcan, we performed genome-wide genetic correlation analyses using RHOGE [42] 
with publicly available GWAS summary statistics from the UK Biobank (see URLs). First, 
TWAS/spTWAS/PWAS analyses were performed using the same FUSION pipeline in the IS 
analysis. Next, we estimated the genome-wide genetic correlation between the IS and the 
PhenomeXcan traits derived from TWAS analysis using LD block architecture GRCh38 (see 
URLs) MacDonald et al. [43]. In addition, we performed SNP-based genetic correlation analysis 
using LD Score Regression (LDSC) [44] with the GWAS summary statistics data. 

 

Mendelian randomization analysis 

To assess causal effects of reticulocyte traits on IS risk, we performed Mendelian Randomization 
(MR) analysis. To extract instruments for use in MR from the 5 reticulocyte traits including 
"Reticulocyte percentage (ukb-d-30240_irnt)", "Reticulocyte count (ukb-d-30250_irnt)", 
"Immature reticulocyte fraction (ukb-d-30280_irnt)”, “High light scatter reticulocyte percentage 
(ukb-d-30290_irnt)", and "High light scatter reticulocyte count (ukb-d-30300_irnt)", we 
leveraged extract_instruments function in TwoSampleMR r package [45]. In addition, For the 
reverse relationship between reticulocyte traits and IS risk, the fine-mapping results of 
GIGASTROKE [16] were used as instruments. After harmonizing the effect of a SNP on the 
between IS and reticulocyte traits to the same allele, the MR analysis was conducted using 5 MR 
method (“MR Egger”, “Weighted median”, “Inverse variance weighted”, “Simple mode”, and 
“Weighted mode”). 
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Drug repositioning analysis 

To identify potential drug candidates for IS, we used Trans-Phar [21] by comparing the inverse 
expression profiles between genetically regulated gene expression from TWAS with compound-
induced gene expression profiles from a large-scale pharmacological database. Briefly, we 
obtained differentially expressed genes (DEGs) data from ref. [21] for each compound-induced 
gene expression data and used 13 tissue/cell-type categories assigned for 29 GTEx tissues and 77 
L1000 Connectivity Map (CMap) cell types [21]. Then, we computed the rank correlations using 
Spearman's rank correlation coefficient between the top 10% TWAS genes from each GTEx 
tissue and each CMAP expression level in the same group of tissues or cell types. In addition, we 
also calculated the Spearman's rank correlation coefficient using the 134 
TWAS/spTWAS/PWAS genes. Finally, a total of 308,872 P-values were collected for each 
correlation analysis. The significance threshold of the inverse correlation analysis was 
determined using a per-tissue or/and per-cell type Bonferroni correction (see Supplementary 
Table 2).  

 

Results 

Multi-tissue TWAS/spTWAS/eTWAS/PWAS identifies genes/proteins associated with IS risk 

To identify susceptibility genes and proteins for IS risk, we conducted a multi-tissue TWAS, 
spTWAS, and PWAS analysis by integrating large-scale IS GWAS summary statistics 
(N=1,296,908) together with eQTL/spQTL data from GTEx v8 [24] in addition to plasma pQTL 
data from the INTERVAL [30] and the ARIC [33] studies. Moreover, we performed enhancer 
TWAS analysis (eTWAS) using brain EeQTL from CMC [19] to investigate the impact of 
genetic regulation of expressed enhancers on IS risk (see Methods). Focusing on predicted 
mRNA expression, we tested 309,826 panel-specific expression models across 28,073 genes and 
identified 268 TWAS associations. Significant associations represented 84 genes across 50 
tissues and 41 independent 1 Mb genomic regions based on a per-panel Bonferroni correction 
threshold (see Fig. 1A and Supplementary Table 3). Next, to shed light on the role of 
alternative splicing for IS risk, we performed a multi-tissue splicing transcriptome-wide 
association study (spTWAS; see Methods). Of the 370,815 panel-specific splicing models with 
16,848 tested genes, we identified 498 spTWAS associations. Associations represented 69 
unique genes across 48 tissues at 29 independent 1Mb genomic regions (see Fig. 1B and 
Supplementary Table 4). In addition, we carried out an eTWAS to investigate expressed 
enhancer effects in two brain tissues using 10,622 tissue-specific eTWAS models with 8,397 
eRNAs. We identified two enhancers, chr4:186651582:186652095 and 
chr16:87541308:87541807, in DLPFC and ACC tissues, respectively (see Fig. 1C and 
Supplementary Table 5). Lastly, we focused on the impact of genetically predicted protein 
abundance by performing a PWAS using 2,299 panel-specific protein abundance models with 
1,556 proteins. We identified 7 PWAS associations across 6 proteins with 6 independent 1 Mb 
regions (see Fig. 1D and Supplementary Table 6). PWAS results from both pQTL panels 
showed strong positive correlation (R = 0.79; P-value < 2.2 x 10-16; see Fig. S1), suggesting that 
the genomic component of protein abundance is well-captured by fitted models. Comparing the 
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analysis results of TWAS and spTWAS, a total of 21 genes were implicated by both approaches, 
with ABO and F11 representing the genes or proteins identified by all three approaches (see Fig. 
S2). In addition, we identified 54 genomic regions with a total of 136 susceptibility genes, 
splicing sites, eRNA, and proteins based on multi-tissue TWAS/spTWAS/PWAS approaches. 
Among the genomic regions, 20 genomic regions have been implicated in GWAS analysis [16]. 

To provide additional support for genes identified using TWAS, we re-performed analyses using 
independent approaches and prediction models. First, we compared TWAS and spTWAS results 
with those computed by S-PrediXcan [35], an independent method to perform a TWAS analysis 
and fit predictive models. We found S-PrediXcan results were strongly correlated with FUSION-
based TWAS (R = 0.80; P-value < 2.2 x 10-16) and spTWAS (R = 0.82; P-value < 2.2 x 10-16; see 
Fig. S3). Second, we carried out a co-localization analysis, which reports the posterior evidence 
that two phenotypes share a causal variant. Here, we identified 51.49% (138 out of 268) TWAS 
associations exhibited evidence of co-localization between GWAS signals and eQTLs (see 
Supplementary Table 3). Similarly, among the 498 spTWAS associations, we observed that 
271 associations (54.41%) had evidence of co-localization between IS GWAS signal and spQTL 
association (see Supplementary Table 4). Moreover, we observed that the H4 posterior 
probability of co-localization, correlated with the TWAS (R = 0.52; P-value < 2.2 x 10-16) and 
spTWAS (R = 0.54; P-value < 2.2 x 10-16) (see Fig. S4). Repeating this analysis for PWAS 
signals, we observed ABO, F11, and MMP12 displayed evidence of colocalization between 
GWAS and pQTL signals (see Supplementary Table 6). Despite eTWAS identifying 2 eTWAS 
signals, we found little support for colocalization between eTWAS and IS GWAS (see 
Supplementary Table 5). The GIGASTROKE consortium recently performed IS TWAS 
analyses based on GTEx v7 prediction models and identified 17 genes across brain, artery, and 
heart tissues [16]. We sought to assess the stability of these associations by comparing them with 
our results which leveraged the larger GTEx v8 and INTERVAL/ARIC cohorts. Among the 17 
TWAS genes identified in the previous analyses, we found 7 replicated in our TWAS results 
(average Bonferroni across tissues, P < 7.39 x 10-6). Similarly, we observed a significant 
correlation between the TWAS effect sizes in the original GIGASTROKE study with those 
computed using our prediction models (R = 0.73; see Fig. S5). In summary, our findings support 
a role for genetically regulated expression, splicing, and proteome levels contributing IS risk. 
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Figure 1. Multi-tissue TWAS/spTWAS/PWAS for IS risk. Manhattan plots of multi-tissue (A) 
TWAS, (B) spTWAS, (C) eTWAS, and (D) PWAS. Each point corresponds to a P-value (y-axis) 
of TWAS/spTWAS/eTWAS/PWAS associations across reference panels and chromosomes (x-
axis). The most significant associations of TWAS/spTWAS/eTWAS/PWAS genes among 
reference panels represent orange, light blue, black and green, respectively. The black dotted 
lines represent the maximum significant thresholds in this multi-tissue analysis (Supplementary 
Table 1). The thresholds of TWAS/spTWAS/eTWAS/PWAS indicate 2.23 x 10-5, 2.00 x 10-5, 
1.02 x 10-5, and 5.03 x 10-5, respectively. The putative causal genes (PIP > 0.8) in Table 1 
represented gene/proteins of TWAS/spTWAS/PWAS indicate red, navy, and dark green, 
respectively. 

 

Relevant tissues for IS risk include brain and arterial tissues 

Given the broad number of tissues exhibiting TWAS/spTWAS/PWAS associations, we sought to 
quantify which tissues are most relevant for IS risk for each molecular context. Specifically, we 
estimated the proportion of heritability mediated by cis-QTL of gene expression levels �����

� /

��
��  and alternative splicing levels �������

� /��
��  using mediated expression score regression 

(MESC; see Methods) [38]. Using this approach, we identified 3 tissues which exhibited 
����
� /��

� estimates greater than 0 at nominal significance (P-value < 0.05). We found  “Artery - 
Aorta” exhibited the greatest ����

� /��
� value (����

� /��
� = 0.101, s.e= 0.038; P-value = 4.55 x 10-

3), followed by “Esophagus_Muscularis” (����
� /��

� = 0.082, s.e= 0.040; P-value = 1.86 x 10-2) 
and “Brain_Amygdala” (����

� /��
�  = 0.068, s.e= 0.040; P-value = 4.55 x 10-2)  (see Fig. 2). 

Results across expression and splicing were consistent MESC across tissues (R = 0.33; P-value = 
2.24 x 10-2; see Fig. S6). Previous studies reported that the risk of gastroesophageal reflux 
disease (GERD) is higher among stroke patients [46] and increases young adult stroke risk [47], 
suggesting that risk factors shared by individuals with GERD and stroke, such as diet, smoking, 
obesity, and metabolic syndrome, may account for this association. Our results are supportive of 
understood IS etiology in which IS occurs due to blood clotting or fatty deposits caused by 
atherosclerosis that obstruct an artery supplying blood to the brain [48]. Atherosclerosis is 
commonly thought of as a condition that affects the heart; however, it can also impact arteries 
located anywhere in the body [49]. In the splicing MESC, “Brain - Nucleus accumbens (basal 
ganglia)” ( ������

� /��
�= 0.085 and s.e. = 0.056) was a high rank in the splicing MESC (see Fig. 

S7). 
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Figure 2. Proportion of heritability mediated by gene expression levels. The bar plots 
correspond the estimated expression MESC (����

� /��
�) in each tissue panel in GTEx v8. Each 

error bar indicates jackknife standard errors. The red color represents significant tissue panels (P-
value < 0.05). 
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Fine-mapping analysis identifies 9 causal genes/proteins for IS risk 

Next, we performed TWAS fine-mapping analysis to identify putative causal genes with multiple 
signals in the TWAS region prioritizing IS-associated tissues obtained from the MESC analysis 
[23] (Fig. 2). Among the 84 TWAS significant genes, we identified 5 with posterior inclusion 
probability (PIP) > 0.8, which we denote as putative causal genes for IS (see Table 1). For 
example, ANO1 (PIP=0.89; also known as TMEM16A) is suggested to regulate calcium-activated 
chloride channels and has prior evidence in mouse ischemic stroke models where inhibition of 
ANO1 expression levels attenuated ischemic brain injury by neurological impairment [50]. We 
separately performed spTWAS fine-mapping analysis to identify splice variation that may be 
causally related to IS risk prioritizing brain tissues obtained from splicing MESC analyses. Of 
the 69 spTWAS significant genes, we identified only MAPKAPK5-AS1 with PIP > 0.8; see 
Table 1. The mitogen-activated protein kinase (MAPK)-activated protein kinase 5 (APK5), a 
member of the serine/threonine kinase family, is activated by cellular stress and proinflammatory 
cytokines [51]. The MAPKAPK5 Antisense RNA 1 (MAPKAPK5-AS1) prevents MAPKAPK5 
from being translated into a protein and recent study showed that IS-like pathology was 
ameliorated by inhibiting the MAPK signaling pathway [52]. Lastly, we performed PWAS fine-
mapping to identify protein levels causally relevant to IS risk. Of the 7 PWAS significant 
associations identified, we found 3 with PIP > 0.8 (see Table 1). Of these 3, F11 and MMP12 
genes were identified in a previous TWAS of IS risk [12]. Together, we prioritize 9 putative 
causal genes/proteins based on relevant tissue for IS risk. 

Type Panel Tissue Chr Symbol Exon/Intron 
junction* 

FUSION TWAS  

P-value 
FOCUS LD block 

FOCUS PIP† 

Artery Brain 

TWAS GTEx Esophagus Mucosa 4 PLRG1 - 4.69e-13 
155056126-
157485097 

1 1 

TWAS GTEx Pituitary 4 
RP11-

380D23.1 
- 3.84e-06 

111256567-
113870102 

0.999 0.999 

TWAS GTEx 
Cells Cultured 

Fibroblasts 
6 FOXF2 - 1.74e-07 73924-1452362 0.995 0.995 

TWAS GTEx Brain Cortex 9 CDKN2A - 8.17e-07 20463534-22206559 - 0.87 

TWAS GTEx Artery Tibial 11 ANO1 - 4.50e-06 69516130-70926292 0.891 - 

spTW
AS 

GTEx Nerve Tibial 12 
MAPKAPK5-

AS1 
112279274-
112279488 

8.10e-15 
110336719-
113263518 

0.965 0.966 

PWAS ARIC Plasma Protein 4 F11 - 1.82e-11 
186909090-
188472981 

0.981 - 

PWAS ARIC Plasma Protein 11 MMP12 - 7.81e-10 
101331121-
103959636 

0.865 0.865 

PWAS ARIC Plasma Protein 17 ENGASE - 1.55e-06 76263413-77298636 0.945 - 
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Table 1. Putative causal genes/splicing site/proteins from TWAS/spTWAS/PWAS (PIP > 
0.8). 

*: All genomic locations are GRCh37. 

†: FOCUS PIP values are obtained by tissue prioritization using “Artery” or “Brain” tissue. 

 

IS susceptibility genes correlate with reticulocyte cell traits 

To understand the phenotypic consequences of identified IS susceptibility genes, we performed a 
TWAS-based pheWAS analysis (see Methods). Analogous to the TWAS approach, the TWAS-
based pheWAS approach has produced more biologically interpretable results by mapping the 
genome to the phenome using the transcriptome [41]. We identified 71 traits across a broad 
range of physical measures (47.9%) and blood cell traits (33.8%) (see Fig. S8). In the category of 
physical measures, an average of 25.4% of genes (11.7/46 genes) detected only by spTWAS 
analysis were enriched, whereas an average of 34.7% of genes (7.3/21 genes) associated with 
both TWAS and spTWAS were mostly enriched in blood cell traits (see Supplementary Table 
7). Next, we applied genetic correlation analysis to test whether the PheWAS traits shared 
genetic contributions with IS at a transcriptome- or proteome-wide level (see Methods). The 
results show that the well-known risk factors for stroke, such as “Diastolic blood pressure. 
automated reading(4079_irnt)”, “Systolic blood pressure, automated reading (4080_irnt)”, “Non-
cancer illness code, self-reported: hypertension (20002_1065)”, “Vascular/heart problems 
diagnosed by doctor: High blood pressure (6150_4)”, and “Non-cancer illness code, self-
reported: high cholesterol (20002_1473)” [4,53,54], were significantly correlated with IS in the 
physical measures and medical conditions categories (FDR < 0.05)  (see Fig. 3 and 
Supplementary Table 8). Notably, 5 reticulocyte traits, including “Reticulocyte count 
(30250_irnt)”, “Reticulocyte percentage (30240_irnt)”, “High light scatter reticulocyte 
percentage(30290_irnt)”, “High light scatter reticulocyte count(30300_irnt), and “Immature 
reticulocyte fraction (30280_irnt)”, were significantly positively correlated with IS in TWAS and 
spTWAS levels in the blood cell traits (FDR < 0.05). Reticulocytes are slightly immature red 
blood cells, and immature reticulocyte fraction levels are associated with acute infection, chronic 
renal insufficiency, and hematologic diseases [55]. However, we found little evidence for a 
causal relationship between IS risk and reticulocyte traits (see Fig. S9).  Moreover, previous 
studies showed that high reticulocyte count or reticulocytosis are risk factors for stroke in 
children with sickle cell disease [56–58]. Additionally, we also used LD-score regression 
(LDSC) to measure shared genetic contributions between traits at the genome-wide level. We 
found significant correlations between IS and the reticulocyte traits and the well-known risk 
factors. Collectively, our results show that vascular traits and blood cell traits, especially 
reticulocyte cells, have shared genetic contributions with IS. 
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Figure 3. Genetic correlation between IS and UKBB phenotypes. Each point indicates a 
genetic correlation with standard errors from TWAS/spTWAS/eTWAS/PWAS. Significance 
levels are represented by red or orange color. We use the following abbreviations ��	
� , 
transcriptomic correlation analysis using TWAS; ����	
� , transcriptomic correlation analysis 
using spTWAS; ���	
� , transcriptomic correlation analysis using eTWAS; ��	
� , proteomic 
correlation analysis using PWAS; �
	
� , genomic correlation analysis using GWAS. In the 
figure, we show results indicating significance in at least one TWAS/spTWAS/eTWAS/PWAS 
analysis. 

 

TransPhar analysis identifies secondary bile acids as potential drug candidates for IS 

Next, we sought to find potential drug candidates for IS treatment by evaluating an inverse 
expression relationship with compound-induced gene expression profiles from a large-scale 
pharmacological database, L1000 CMap [20]. We computed the rank correlations using 
Spearman's rank correlation coefficient between the top 10% TWAS genes (or the 134 
TWAS/spTWAS/PWAS genes) from each GTEx tissue (a total of 29 GTEx tissues) and each 
CMAP expression level in the same group of tissues or cell types. The top 10% TWAS genes of 
each tissue contained an average of about 22.26% of the TWAS/spTWAS/PWAS genes (mean 
29.82 genes) among the 134 TWAS/spTWAS/PWAS genes or proteins (see Fig. S10). We 
obtained 308,872 relationships from all the tissue/cell type-compound pairs corresponding to 
each correlation analysis, and the results from the top 10% TWAS genes and the 134 
TWAS/spTWAS/PWAS genes were significantly correlated in each tissue (see Fig. S11). 
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Finally, we found two significant TWAS-compound linkages based on false discovery rate 
(FDR) correction (see Table 2, Fig. S12, and S13). The two compounds were associated with 
brain tissue; among them, the mechanism of action has been elucidated for deoxycholic-acid 
(DCA). The DCA is classified as secondary bile acids, which are produced by gut microbiota 
[59]. Previous studies showed that other types of secondary bile acids, such as Ursodeoxycholic 
acid (UDCA) and tauroursodeoxycholic acid (TUDCA), have demonstrated neuroprotective 
effects in diverse models of neurodegenerative disorders [60–64] as well as stroke [65]. Notably, 
lower levels of total bile acid excretion is linked to an increased risk of stroke and death [66]. 
The GIGASTROKE consortium carried out the inverse relationship analysis between TWAS 
gene and compound expression levels using GTEx v7 data, but there were no significant results 
for IS [16]. In summary, our results suggest that a negative correlation between the TWAS genes 
and compound-induced gene expression levels provides the potential drug candidates for IS. 

 

Tissue/cell-type 
categories GTEx panel 

(tissue) 
CMap L1000 

cell line 

CMap L1000 
library 

(dose, h) 

Mechanism 
of action 

 rho 
(ρ) 

P-value FDR 

Brain Brain - Frontal Cortex BA9 
Neural 

progenitor 
cells (NPC) 

Deoxycholic-
acid (DCA) 
(10µM, 24h) 

Fat 
emulsification 

-0.301 8.00e-06  5.46e-02 

BRD-
K41878610 
(10µM, 24h) 

NA 
-0.293 1.32e-05 5.46e-02 

Table 2. Potential drug candidates for IS. Rho (ρ) represents Spearman's Rank correlation 
coefficient, and FDR represents the false discovery rate. 

 

Discussion 

Stroke is the second leading cause of death worldwide, and the main cause of stroke is ischemic 
stroke (IS) due to cerebral infarction [2]. In this work, we identify 136 susceptibility genes, 
splicing sites, eRNA, and proteins spanning 54 genomic regions based on multi-tissue 
TWAS/spTWAS/PWAS analysis. Among them, 34 genomic regions were not discovered by the 
original GWAS study. Consequently, we highlight 9 potential causal genes/proteins using 
probabilistic fine-mapping analysis of the TWAS results with a focus on the IS-relevant tissues, 
including aorta artery and brain estimated by a total fraction of disease heritability mediated by 
gene expression levels. Moreover, we discovered that blood cell traits, particularly reticulocyte 
cells, have shared genetic contributions with IS. Lastly, we detected 2 potential therapeutic 
compounds for using inverse expression profiles between TWAS results with compound-induced 
gene expression profiles from a large-scale pharmacological database. 

The genes underlying IS risk and their regulatory mechanisms are still unknown, despite the fact 
that GWAS have effectively identified numerous genomic regions related with IS, because 
around 90% of the GWAS loci are located in non-coding regions  [7,8]. However, the TWAS 
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methodology has produced more biologically interpretable results by integrating GWAS results 
with mQTL data, such as eQTL, spQTL, EnQTL, and pQTL [9,10,19]. Consistent with the 
TWAS approach, the PhenomeXcan has allowed us to identify the mediating role of gene 
expression in complex traits and convert variant-phenotype associations into gene-phenotype 
associations by providing biological hypotheses [9,36,67].  

A notable finding was the significantly positive correlation between IS risk and reticulocyte traits 
(see Fig. 3). Reticulocytes are slightly immature red blood cells, and higher reticulocyte counts 
or percentages indicate higher hemolysis, which ultimately results in an increase in the amount 
of cell-free hemoglobin (CFH) in the blood [68]. The previous studies showed that the hemolysis 
and the CFH increases inflammation [69] and mediate vascular damage [70]. The findings 
suggested that a shared causal mechanism influence both the high level of reticulocytes with 
hemolysis and risk of IS. 

After an initial ischemic stroke or transient ischemic attack (TIA) which is a short episode in 
which temporary blockage of blood flow to the brain, the annual risk of future ischemic stroke is 
3 to 5% [71]. The TIA does not leave an impairment, but affected individuals are at increased 
risk of future ischemic events, especially in the days and weeks immediately after symptoms 
resolve [72]. The prompt initiation of a coordinated preventive strategy for IS is essential [73]. 

Recent studies have reported that the probability of success for clinical trials whose therapeutic 
targets are supported by human genetic information is approximately twice the probability of 
success for unsupported projects [74,75]. Taking advantage of the rapid growth of genomics 
fields, the utilization of human genetics information for new therapeutics have been performed in 
recent years [21,22,76,77]. Importantly, 66% (33 out of 50) of the FDA-approved new drugs 
were supported by human genetic information in 2021 [78]. In addition to genetic data, recent 
gene expression datasets have been leveraged for drug repositioning [79,80]. In particular, recent 
studies have investigated the utility of TWAS in drug discovery or repositioning [21,22]. One 
primary advantage of the TWAS-based drug repositioning strategy, which integrates large-scale 
GWAS together with gene expression data, compared with datasets solely comprised of 
expression is a vastly larger sample size. In general, the sample sizes of GWAS are many orders 
of magnitude larger (e.g., tens to hundreds of thousands) than those of gene expression datasets 
(e.g., tens to hundreds). In addition, the TWAS approach enables identifying potential 
therapeutic compounds that affect multiple tissues (e.g., heart, brain) or cell type-specific 
contexts by leveraging independent reference eQTL data. On the other hand, the expression data 
related to the tissue of interest are not easily accessible for many diseases, including IS. 

To shed light on susceptibility genes and mechanisms for IS, we used the recently published 
GWAS data from the GIGASTROKE consortium. A TWAS analysis was also carried out by the 
GIGASTROKE group, which discovered 17 genes using prediction models based on GTEx v7 
[16]. We found that 7/17 genes replicated with in our TWAS investigation in the brain, artery, 
and heart tissues with a strong correlation of TWAS effect-sizes (R = 0.73; see Fig. S5). 
Additionally, we identified 119 genes/proteins and demonstrated some strengths of our study. 
First, our reference panels for TWAS analysis were significantly larger than the GIGASTROKE 
study by leveraging GTEx v8 datasets [24], which allowed for more robust analysis and 
generalization of the findings. Second, our study used a diverse and extensive TWAS analysis, 
which included a multi-tissue mRNA/splicing/eRNA/protein transcriptome-wide association 
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study (TWAS/spTWAS/eTWAS/PWAS). This diversity provides a broader range of biological 
mechanisms to understand IS etiology. 

We note several limitations with our approach. First, our approach relies on using genetically 
predicted gene expression levels to identify genes whose expression associates with the genetic 
component of IS risk, which will require further functional studies for downstream validation. 
We note however, that our results were robust to choose TWAS approach (i.e., FUSION vs 
PrediXcan), statistical method (i.e., TWAS vs coloc), and eQTL reference panel (i.e., GTEx v7 
vs GTEx v8). Second, we investigated the association between IS risk with diverse molecular 
contexts focusing on genetically predicted gene expression, protein abundance, splicing variation, 
and enhancer expression across multiple tissues when available. However, recent works have 
demonstrated improved association and colocalization power when investigating transcription 
factor binding, chromatin activity, and chromatin accessibility information [81,82], which may 
be potential mediators for IS risk, missed by our work.  Despite these limitations, our results 
provide valuable insights into underlying molecular mechanisms and drug candidates for IS. 

In conclusion, we highlight IS risk genes and proteins using the multi-tissue 
TWAS/spTWAS/eTWAS/PWAS approach. Moreover, we provided potential drug candidates for 
preventing IS. We believe that these findings could be used as valuable resources for 
understanding the underlying mechanisms and designing subsequent functional studies for IS 
treatment. 
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The full results of TWAS, spTWAS, eTWAS, PWAS: 
https://github.com/mancusolab/stroke_twas 
Iscemic stroke summary statistics (GIGASTROKE): 
https://www.ebi.ac.uk/gwas/studies/GCST90104540 
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INTERVAL predictive models: https://www.mancusolab.com/pwas 
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LD blocks (GRCh19): https://bitbucket.org/nygcresearch/ldetect-data/src/master/EUR/ 
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LD blocks (GRCh38): https://github.com/jmacdon/LDblocks_GRCh38 
GWAS summary statistics (UK Biobank): http://www.nealelab.is/uk-biobank 
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